光散乱の古典理論 - kyoto uexp( ) n incoh m m ai θ = ∝ ∑ θ m=θ n θθmn≠ the...

18
光散乱の古典理論 光散乱の古典理論 誘電率の揺らぎによる光散乱 液体の光散乱 空間相関と構造因子 臨界タンパク光 臨界タンパク光 混合液体系(Binary Liquid system)の例 2成分の界面 温度計 Methanol-rich phase Hexane-rich phase Hexane(C 14 Methanol(CH OH) = 6 : 4 (in mol ) ~ 5 : 1 (in volume)

Upload: others

Post on 30-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • 光散乱の古典理論

    • 光散乱の古典理論–誘電率の揺らぎによる光散乱

    • 液体の光散乱–空間相関と構造因子

    臨界タンパク光臨界タンパク光混合液体系(Binary Liquid system)の例

    2成分の界面

    温度計

    Methanol-rich phase

    Hexane-rich phase

    Hexane(C6H14) : Methanol(CH3OH)

    = 6 : 4 (in mol ) ~ 5 : 1 (in volume)

  • 臨界タンパク光臨界タンパク光 -- OpalescenceOpalescence光の波長程度の粒径に液滴が成長したときに、強く光が散光の波長程度の粒径に液滴が成長したときに、強く光が散乱される。乱される。

    Partially Miscible Binary SystemsPartially Miscible Binary Systemshexane and methanolhexane and methanol

    Begin with pure A (left side of graph). Begin with pure A (left side of graph). Only have one phase.Only have one phase.As B is added:As B is added:

    Below the saturation limit, there Below the saturation limit, there will only be one phase will only be one phase Above the saturation limit, there Above the saturation limit, there will be two phases.will be two phases.

    In this diagram, the composition of In this diagram, the composition of one of the phases is aone of the phases is a’’ and the and the composition of the other phase is composition of the other phase is aa””..

    Eventually enough B is added such that Eventually enough B is added such that A is actually dissolved in B and you A is actually dissolved in B and you once again only have one phase.once again only have one phase.Above Above TTucuc (the upper critical (the upper critical temperature), the two liquids are temperature), the two liquids are miscible in all proportions.miscible in all proportions.

    No phase separation occurs. No phase separation occurs. Mole fraction of methanol,

  • 風景の変化風景の変化

    Q: Does aerosol have anything to do with the difference?

  • ステンドガラスステンドガラス金属・半導体微粒子の分散による光吸収・散乱金属・半導体微粒子の分散による光吸収・散乱

    火星の夕焼け火星の夕焼け

    NASANASA MARS PATHFINDERMARS PATHFINDER

  • 粒径による散乱の違い粒径による散乱の違い

    粒径粒径 a a 光の波長光の波長 λλa a>> λλ

    Mie-scatteringExact solution of scattering by spheres similar in size

    to wavelength of radiation results in larger scattering in the forward direction.

    Geometric scattering

    Coherent vs. Incoherent light scatteringCoherent vs. Incoherent light scatteringCoherentCoherent light scattering: scattered wavelets have light scattering: scattered wavelets have nonrandom nonrandom relative phases in the direction of interest.relative phases in the direction of interest.

    IncoherentIncoherent light scattering: scattered wavelets have light scattering: scattered wavelets have randomrandom relative relative phases in the direction of interest.phases in the direction of interest.Example:Example:

    Forward scattering is coherent—even if the scatterers are randomly arranged in space.

    Path lengths are equal.

    Off-axis scattering is incoherentwhen the scatterers are randomly arranged in space.

    Path lengths are random.

  • Coherent scattering:Coherent scattering:

    Total complex amplitude, . Irradiance,Total complex amplitude, . Irradiance, II∝∝ µµ AA22.. So:So: IIcc∝∝µµ NN22

    Incoherent scattering:Incoherent scattering: Total complex amplitude, Total complex amplitude,

    The irradiance The irradiance

    So So incoherent incoherent scattering is weaker than scattering is weaker than coherent coherent scattering, scattering, but not zerobut not zero..

    Coherent vs. Incoherent ScatteringCoherent vs. Incoherent Scattering

    11

    N

    cohm

    A N=

    ∝ =∑

    2

    1 1 1

    1 1 1 1

    exp( ) exp( ) exp( )

    exp[ ( )] exp[ ( )]

    N N N

    m m nm m n

    N N N N

    m n m nm n m nm n m n

    I i i i

    i i N

    θ θ θ

    θ θ θ θ

    = = =

    = = = == ≠

    ∝ = −

    ⎛ ⎞ ⎛ ⎞= − + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ∑ ∑ ∑

    ∑∑ ∑∑

    1exp( )

    N

    incoh mm

    A iθ=

    ∝∑

    θm=θn m nθ θ≠

    The equations of optics are Maxwell’s equations.

    where is the electric field, is the magnetic field, ρ is the charge density, ε is the permittivity, and µ is the permeability of the medium.

    /

    0

    BE EtEB Bt

    ∂ρ ε∂∂µε∂

    ∇ ⋅ = ∇× = −

    ∇ ⋅ = ∇× =

    rr r r r

    rr r r r

    Er

    Br

  • )),((),( 0 trItr δεεεε +=

    runit vecto : r,unit tenso : inI

    )}(exp{),( 0 trkiEntrE iiii ω−=

    iik ω ,0 , Eni

    rR −

    R

    D

    Or

    rd 3

    V

    IR εεε 0)( =

    誘電率の揺らぎによる電磁波の散乱

    tDH

    tBE

    BD

    ∂∂=×∇

    ∂∂−=×∇

    =⋅∇=⋅∇

    00

    iiii BHDE , , ,

    SSSS BHDE , , ,

    Si

    Si

    Si

    Si

    BBBHHHDDDEEE

    +=+=+=+=

    入射波と散乱波

  • tDH

    tBE

    BD

    ii

    ii

    i

    i

    ∂∂=×∇

    ∂∂−=×∇

    =⋅∇=⋅∇

    00

    2

    2

    0 tDE ii ∂

    ∂−=×∇×∇ µ

    ii ED 0εε=

    0=⋅ ii nk

    AAA 2)( ∇−⋅∇∇=×∇×∇

    022

    22 =

    ∂∂−∇

    tE

    cE ii

    εii c

    k ωε=

    0th order solution• Maxwell equation

    1st order solution (1)• Maxwell equation

    2

    2

    0 tDE SS ∂

    ∂−=×∇×∇ µ )),((),( 0 trItr δεεεε +=

    )(),(

    )))(,((),(2

    000

    0

    δδεεεεεεδεεεε

    oEtrEEEEtrIEtrD

    iSi

    Si

    +++=

    ++==

    iSS

    iSS

    EtrDE

    EtrED

    εδε

    εε

    δεεεε),(1),(

    0

    00

    −=

    +=

    }),({ 022

    22

    iS

    S EtrtD

    cD δεεε ×∇×−∇=

    ∂∂−∇

  • 1st order solution (2)• Hertz vector

    π×∇×∇=SD

    iEtrtc),(02

    2

    22 δεεπεπ −=

    ∂∂−∇

    ∫ −= Vi

    rRtrEtrrdtR )',()',(

    41),( 03 δεεπ

    π

    rRc

    tt −−= ε'

    ⎥⎥⎦

    ⎢⎢⎣

    −×∇×∇= ∫V

    iRRS rR

    trEtrrdtRD )',()',(41),( 03 δεεπ

    1st order solution (3)• Scattering field

    Fourier component of the fluctuation δε(r,t)

    ⎥⎥⎦

    ⎢⎢⎣

    −×∇×∇=

    ⎥⎥⎦

    ⎢⎢⎣

    −×∇×∇=

    V

    trkiiRR

    Vi

    RRS

    iientrrR

    rdE

    rRtrEtrrdtRE

    )'(3

    0

    3

    ):)',((4

    )',()',(4

    1),(

    ωδεπε

    δεπε

    '),(21)',( tierdtr ωωδεωπ

    δε ∫=

    ⎥⎥⎦

    ⎢⎢⎣

    ×∇×∇=

    −−∫∫ ')(3

    0

    ):),((21

    4),(

    tiiV

    rik

    RRS

    ii enrderR

    rd

    EtRE

    ωωωδεωπ

    πε

  • 1st order solution (4)Far field approximation

    )ˆ('

    /ˆ ˆ

    S

    SS

    krRc

    tt

    RRkkrRrR

    ⋅−−≅

    =⋅−=−

    ε

    )):),((21

    (4

    ),(

    )(

    )ˆ)((30

    Rc

    i

    iti

    V

    rkc

    iki

    RRti

    S

    i

    Siii

    enred

    erR

    rdeEtRE

    ωωεω

    ωωεω

    ωδεωπ

    πε

    −−−

    ×

    −×∇×∇=

    )):),((21

    (4

    ),(

    )(

    )ˆ)((30

    Rc

    i

    iti

    V

    rkc

    iki

    RRti

    S

    i

    Siii

    enred

    erR

    rdeEtRE

    ωωεω

    ωωεω

    ωδεωπ

    πε

    −−−

    ×

    −×∇×∇=

    1st order solution (5)• Scattering wave

    • Slow fluctuation approximation

    SiSSSiSiS kkqkck

    ck −≡=−≡−≡ ,ˆˆ)( , ωεωωεωωω

    )):),(((4

    ),(3

    0iV

    iqrRikRR

    tiS ntrerR

    rdeeEtRE Si δεπε

    ω ∫ −×∇×∇=−

    ω積分の外に出す。

  • 1st order solution (6)Far field approximation again

    Fourier transformation of δε in r-space

    order in , 111 -RikRrR ×→×∇→− −−

    { }):),((4

    ),( 3)(0 iViqr

    SStRki

    S ntrredkkeREtRE iS δεπε

    ω ∫××−= −

    ∫= Viqr trredtq ),(),( 3 δεδε

    SEn ofr unit vecto :S SS

    SS nE Ekn 0S ,0 ==⋅

    { }):),((4

    ),( )(00 iSSStRkiS ntqkkne

    REtRE iS δεπε

    ω ××⋅−= −

    )()()( BACCABCBA ⋅−⋅=××

    • 誘電率の揺らぎテンソル

    • Scattering amplitude

    ):),((),( iSSi ntqntq δεδε ⋅=

    1st order solution (7)

    ),(4

    ),( )(2

    00 tqeR

    kEtRE SitRkiSS iS δε

    πεω−=

    RetRE

    tRkiS

    iS )(

    0 ),(ω−

    ),(),( 00 tqEtRE SiS δε∝

    球面波

    入射振幅、揺らぎに比例線形応答

    0),(0 =tRES

  • Power spectrum of the scattering wave• Wiener-Khinchin theorem

    dtetCqI tiSS S∫∞

    ∞−

    −= ωω )(),(

    )0()()()()( *2

    00*

    SSSSS EtEEtEttEtC =−+=

    dssEstET

    T

    SST ∫ += ∞→ 0* )()(1limL

    エルゴード性が成り立つときはアンサンブル平均になる。

    tiSiSi

    SSS

    ieqtqR

    kEEtE ωδεδεπε

    )0,(),(4

    )0()( *22

    20

    *

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    ∫∞

    ∞−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛= tiSiSiiS eqtqdtcR

    IqI ωδεδεωπ

    ω )0,(),(8

    ),( *54

    220

    等方的媒質による散乱• 誘電率の揺らぎテンソル

    ),()():),((),( tqnnntqntq iSiSSi δεδεδε ⋅=⋅=

    TTT

    δεδρρεδε

    ρ⎟⎠⎞

    ⎜⎝⎛

    ∂∂+⎟⎟

    ⎞⎜⎜⎝

    ⎛∂∂=

    通常小さい

    ∫∞

    ∞−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛= ti

    TiS

    iS eqtqdtnncR

    IqI ωδρδρδρδεω

    πω )0,(),()(

    8),( *

    22

    5

    4

    220

    密度揺らぎ 温度揺らぎ

    ∫ −= Viqr trredVqtq )0,0(),()0,(),( 3 δρδρδρδρ

    空間フーリエ変換

    密度揺らぎの時間空間相関関数

  • • 動的構造因子

    • 構造因子

    • 散乱強度

    ),()(8

    ),(2

    25

    4

    220 ω

    δρδεω

    πω qSnn

    cRVIqI

    TiS

    iS ⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛=

    動的構造因子

    ∫ ∫∞

    ∞−

    −=V

    tiiqr trdteredqS )0,0(),(),( 3 δρδρω ω

    ),(2

    )( ωπω qSdqS ∫=

    )()( qSqI ∝

    光散乱の性質

    • 散乱のパワースペクトルは動的構造因子のフーリエ変換に比例する。– 動的構造因子を実験的に決定可能

    • 散乱光強度は入射周波数の4乗に比例– 青い空、夕焼け

    • 偏光– 空の偏光

    • 密度ゆらぎの増大によって大きく散乱される。– 臨界タンパク光

    • エネルギー保存

    ),()(8

    ),(2

    25

    4

    220 ω

    δρδεω

    πω qSnn

    cRVIqI

    TiS

    iS ⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛=

  • 散乱の角度依存性について

    • 散乱角),()(

    8),(

    22

    5

    4

    220 ω

    δρδεω

    πω qSnn

    cRVIqI

    TiS

    iS ⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎠⎞

    ⎜⎝⎛=

    ikSk

    θq

    θ

    θ2

    2|2

    1

    cos1

    cos1

    +∝

    I

    II

  • 密度空間相関関数

    • レナードジョーンズポテンシャル

    • Hard core model

    Critical Opalescece (臨界タンパク光)をどう理解するか?2)0()()0()()( ρρρδρδρ −== rrrG

    r

    r r

    r

    )(rG

    )(rG

    )(rV

    )(rV

    r0r0

    r0

    r0

    ⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧

    ⎟⎠⎞

    ⎜⎝⎛−⎟

    ⎠⎞

    ⎜⎝⎛=

    60

    120

    0 2)( rr

    rrVrV

    密度空間相関関数1等温圧縮率との関係

    2)0()()0()()( ρρρδρδρ −== rrrG )( 0)( ∞→→ rrG粒子の全数に対する揺らぎ

    VTVT

    NNN

    NN

    NNN

    NN

    kTPVkTLkT

    NEpNrddhN

    L

    NEpNrddhN

    L

    NNNN

    ,2

    22

    ,2

    22

    2

    03

    1

    2

    03

    1

    222

    )/()()(ln)(

    )exp(!1

    )exp(!1

    )(

    ⎭⎬⎫

    ⎩⎨⎧

    ∂∂=

    ⎭⎬⎫

    ⎩⎨⎧

    ∂∂=

    ⎭⎬⎫

    ⎩⎨⎧ +−−

    +−=

    −=−

    ∫∑

    ∫∑∞

    =

    =

    µµ

    βµβ

    βµβ

    1963) (Huang, lnkTPVL =

    ∫= )(rdrN ρ

  • 密度空間相関関数2等温圧縮率との関係

    NTVT

    VTVT

    VV

    NkTVNkTV

    PkTVkTPVkTNN

    ,,

    ,2

    2

    ,2

    222

    )/(

    )/()()(

    ⎭⎬⎫

    ⎩⎨⎧

    ∂∂−=

    ⎭⎬⎫

    ⎩⎨⎧

    ∂∂

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂=

    ⎭⎬⎫

    ⎩⎨⎧

    ∂∂=−

    µµ

    µµ

    )( ,

    NFnVNP

    VT

    µµ

    ===⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    xyzx yz

    zw

    yw

    yw

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    ⎟⎠⎞

    ⎜⎝⎛

    ∂∂+⎟⎟

    ⎞⎜⎜⎝

    ⎛∂∂=⎟⎟

    ⎞⎜⎜⎝

    ⎛∂∂

    NTNTNTT

    VNP

    VVP

    FV ,,,

    2

    2 111⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂−=⎟

    ⎠⎞

    ⎜⎝⎛

    ∂∂−=⎟⎟

    ⎞⎜⎜⎝

    ⎛∂∂−=

    µκ

    TkTNNN κρ=−2)(

    密度空間相関関数3

    • 理想気体の等温圧縮率 をつかうと

    • 一方、

    等温圧縮率との関係

    kTT ρκ 10 =

    0

    2)(

    T

    T

    NNN

    κκ=

    ∫= )(rdrN ρ

    )()'()(')( 2 rGdrVrrdrdrNN ∫∫∫ ==− δρδρ

    ∫−= )(10 rdrGT

    T ρκκ

  • 密度空間相関関数4

    一方、臨界点近傍では、

    1.圧縮率の増大

    2.密度揺らぎの増大

    2.密度空間相関関数のおよぶ範囲(相関長)の増大

    等温圧縮率との関係

    ∫−= )(10 rdrGT

    T ρκκ

    γ

    κκ −−≈ )(0 C

    T

    T TT

    )()( qSqI ∝

    ∫∫ −− == Viqr

    V

    iqr rGredrredqS )()0()()( 33 δρδρ

    相関長の逆数がqに近づいたとき散乱強度が増大。

    Critical Opalescence