categori ed trace for module tensor categories over ... · module categories for tensor categories...

14
Categorified trace for module tensor categories over braided tensor categories David Penneys, UCLA joint with Andr´ e Henriques and James Tener AMS Special Session on Fusion categories and topological phases of matter April 10, 2016

Upload: others

Post on 08-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Categorified trace for module tensor categoriesover braided tensor categories

David Penneys, UCLAjoint with Andre Henriques and James Tener

AMS Special Session on Fusion categories and topological phases of matter

April 10, 2016

Page 2: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Categorified traces

A trace on a k-algebra is a linear map tr : A→ k such that

I tr(ab) = tr(ba) for all a, b ∈ A.

A categorified trace on a tensor category M takes values inanother category C. It’s a functor TrC :M→ C such that

I we have isomorphisms τx,y : TrC(x⊗ y)'−→ TrC(y ⊗ x)

natural in x and y called the traciatorsI there is a hexagon compatibility axiom:

TrC((x⊗ y)⊗ z) τ // TrC(z ⊗ (x⊗ y))

TrC(α)

((TrC(x⊗ (y ⊗ z))

TrC(α)66

τ((

TrC((z ⊗ x)⊗ y)

TrC((y ⊗ z)⊗ x)TrC(α

−1)

// TrC(y ⊗ (z ⊗ x))

τ

66

Page 3: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

An example of a categorified trace

Let M be a pivotal tensor category. Define TrVec :M→ Vec by

TrVec(x) := HomM(1M, x).

The pivotal structure gives us our natural isomorphisms:

TrVec(x⊗ y) = HomM(1M, x⊗ y)∼= HomM(y∗, x)∼= HomM(1M, y

∗∗ ⊗ x)∼= HomM(1M, y ⊗ x)

= TrVec(y ⊗ x)

Page 4: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Diagrammatic calculus for a categorified trace

Some algebraic equations are better represented on differenttopological spaces. Traces on algebras can be represented on S1:

tr(xy) =xy

= x y =y

x= tr(yx)

Similarly, we can denote the objects TrC(x⊗ y) ∼= TrC(y ⊗ x) bydots on circles, but we must remember the isomorphism τx,y,which we denote by a cylinder with strings:

τx,y =

yx

: TrC(x⊗ y)'−→ TrC(y ⊗ x)

Page 5: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Categorified traces from central functors

When M is pivotal, Bezrukavnikov-Finkelberg-Ostrik showed thatif ΦZ : C → Z(M) is a functor such that Φ := F ◦ ΦZ admits aright adjoint TrC , then TrC is a categorified trace.

The adjunction lets us construct the traciator τx,y:

∈ C(TrC(x⊗ y),TrC(x⊗ y)) ∼=M(Φ(TrC(x⊗ y)), x⊗ y)

∼=M(Φ(TrC(x⊗ y))⊗ y∗, x)

(Φ is central) ∼=M(y∗ ⊗ Φ(TrC(x⊗ y)), x)∼=M(Φ(TrC(x⊗ y)), y ⊗ x)

∼= C(TrC(x⊗ y),TrC(y ⊗ x)) 3

Page 6: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Module categories for tensor categories

Suppose C is a tensor category. A module category for C is acategory M together with a bifunctor ⊗ : C �M→M satisfyingcertain axioms.

A braided tensor category C is a 3-category with one object andone 1-morphism, so it is one categorical dimension higher.Modules for C are also one categorical dimension higher.

Page 7: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Module tensor categories for braided tensor categories

DefinitionA module tensor category for the braided tensor category C is atensor category M and a braided functor ΦZ : C → Z(M).

I We define Φ = F ◦ ΦZ where F : Z(M)→M is theforgetful functor.

C M

Z(M)

Φ

ΦZ F

Page 8: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Example: ModC(a)

Let C be a braided tensor category with a ∈ C a commutativealgebra object. Let M = ModC(a), the category of left a-moduleobjects in C.

DefinitionWe define the free module functor ΦZ : C →M byΦZ(c) = (Φ(c), eΦ(c)) where

I Φ(c) = a⊗ c

I eΦ(c),x : Φ(c)⊗a x ∼= c⊗ x βc,x−→ x⊗ c ∼= x⊗a Φ(c).

I Φ(f : c→ d) = ida⊗f : a⊗ c→ a⊗ d

Example

Let C = SU(2)10 with objects 1, . . . ,11. Let a = 1⊕ 7. ThenM = ModC(a) is the E6 module tensor category.

Page 9: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Categorified trace for module tensor categories

We now assume C is a pivotal braided tensor category, M is apivotal module tensor category, and ΦZ : C → Z(M) is a braidedpivotal functor.

Under mild assumptions, Φ : C →M has a right adjoint TrC ,which is a categorified trace.

C M

Z(M)

Φ

TrC

ΦZ

Page 10: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Adjoints of tensor functors are lax monoidal

It is well known that the right adjoint of a tensor functor is laxmonoidal, so we get canonical natural multiplication maps

µx,y =

x y

: TrC(x)⊗ TrC(y)→ TrC(x⊗ y)

TheoremThe traciators and multiplication maps are compatible, giving us agraphical caluclus of srings on tubes which can branch and braid.

Page 11: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Graphical calculus

Page 12: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Application: constructing algebras in CSince tensor functors are lax monoidal, given an algebra a ∈M,TrC(a) is an algebra in C.

TheoremIf a, b ∈M are algebras, then TrC(a⊗M b) is an algebra in C.

:=

Page 13: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Application: anchored planar algebrasWe can use the internal trace to construct planar algebras internalto a braided tensor category.

DefinitionA planar algebra in Vec is a sequence of objects Pn ∈ Vec and anaction of planar tangles.

An anchored planar algebra in C is a sequence of objects Pn ∈ Cand an action of anchored planar tangles.

P5⊗VecP3→P6

2

1

P3⊗CP5→P6

Page 14: Categori ed trace for module tensor categories over ... · Module categories for tensor categories Suppose Cis a tensor category. A module category for Cis a category Mtogether with

Thank you for listening!

Slides available at:http://www.math.ucla.edu/~dpenneys/PenneysAMS2016.pdf

Article available at:http://arxiv.org/abs/1509.02937