catalytic c-c bond formation via capture of hydrogenation intermediates

41
1 Michael J. Krische Presented by Louis-Philippe Beaulieu Université de Montréal April 7 th 2009 Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

Upload: clover

Post on 13-Jan-2016

49 views

Category:

Documents


8 download

DESCRIPTION

Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates. Michael J. Krische Presented by Louis-Philippe Beaulieu Université de Montréal April 7 th 2009. 1. Michael J. Krische: Biographical Information. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

1

Michael J. Krische

Presented byLouis-Philippe BeaulieuUniversité de Montréal

April 7th 2009

Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

Page 2: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

2

Michael J. Krische: Biographical Information

Obtained a B.S. degree in chemistry from the University of California at Berkeley under the supervision of Professor Henry Rapoport. He received his Ph.D. in 1996 under the mentorship of Professor Barry Trost and he studied with Jean-Marie Lehn at the Université Louis Pasteur as a post-doctoral fellow.

In 1999, he was appointed Assistant Professor at the University of Texas at Austin. He was Promoted to Full Professor in 2004, and was awarded the Robert A. Welch Chair in 2007.

Selected awards include the Tetrahedron Young Investor Award (2009), Novartis Lectureship Award (2008), Elias J. Corey Award (2007) and Dreyfus Teacher Scholar Award (2003).

2

Page 3: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

3

Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: General concept

Conventional reduction

C-C bondformation

Homolytic activation of H2 to form a high-valent dihydride

Heterolytic activation of H2 to form a low-valent monohydride

3

Page 4: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

4

Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: General concept

Ngai, M. Y.; Kong, J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063-1072.Skucas, E.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242-7243.

4

Page 5: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

5

Tenets of Green Chemistry

Li, C. J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197-13202.Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature (2007, 446, 404-408.

• Atom economy: Reaction yield = x 100% Quantity of product isolatedTheoretical quantity of product

Atom economy= x 100% MW of desired productMW of all products

• Synthesis without protections

• Development of tandem and cascade reactions

• Use of environmentally bening solvents

5

Page 6: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

6

Historical and Industrial Perspective of Catalytic Hydrogenation

Milestones in catalytic hydrogenataion

1500s Paracelsus (1493–1541) and Robert Boyle (1671)

1783 Antoine Lavoisier

1897 Paul Sabatier

1905 Fritz Haber and Carl Bosch

1923 Franz J.E. Fischer and Hans Tropsch

1938 Otto Roelen

1964 Geoffrey Wilkinson

1968-1980

William S. Knowles, Henri B. Kagan, Ryoji Noyori6

Page 7: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

7

Hydrogen-Mediated Reductive Aldol Coupling

Catalyst Ligand Additive (mol %)

Yield aldol (syn/anti)

Yield 1,4-reduction

Rh(PPh3)3Cl - - 1 % (99:1) 95%

Rh(COD)2OTf

Ph3P - 21% (99:1) 25%

Rh(COD)2OTf

Ph3P KOAc (30) 59% (58:1) 21%

Rh(COD)2OTf

(p-F3CC6H4)3P

- 57% (14:1) 22%

Rh(COD)2OTf

(p-F3CC6H4)3P

KOAc (30) 89% (10:1) 0.1%

Jang, H. Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 15156-15157.

7

Stereochemical model

(Z)-enolate, Zimmerman-Traxler-type transition state

Stereospecific Z(O)-enolate formation

Page 8: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

8

Hydrogen-Mediated Reductive Aldol Coupling

Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 2134-2143.

8

Page 9: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

9

Hydrogen-Mediated Reductive Aldol Coupling

Entry Ligand [DCM], M Yield (%) dr

1 Ph3P

0.1

31 3:1

2 Ph3As 17 7:1

3 (2-Fur)Ph2P 24 6:1

4 (2-Fur)

2PhP52 15:1

5 (2-Fur) 3P 74 19:1

6a (2-Fur) 3P 0.3 91 16:1a 10 mol% of Li2CO3

Jung, C. K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519-522.

9

Page 10: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

10

Hydrogen-Mediated Reductive Aldol Coupling

Jung, C. K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519-522.Ngai, M. Y.; Kong, J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063-1072.

10

Page 11: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

11

Hydrogen-Mediated Reductive Aldol Coupling: Enantioselective Version

Front view of [Rh(cod)(L)2]OTfomitting the methyl groups, triflate ion, and COD

Entry R1 R2 Yield (%)

syn:anti ee (syn)

1 Me BnO 85 25:1 91

2 Me PhtN 88 50:1 96

3 Me 1-Me-indol-3-yl

92 15:1 86

4 Me Ph 70 25:1 89

5 Et BnO 96 21:1 88

6 Et PhtN 94 45:1 95

7 Et 1-Me-indol-3-yl

97 25:1 90

8 Et Ph 76 22:1 90Bee, C.; Soo, B. H.; Hassan, A.; Iida, H.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 2746-2747.

11

Page 12: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

12

Hydrogen-Mediated Reductive Aldol Coupling

12

Ngai, M. Y.; Kong, J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063-1072.

Page 13: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

13

Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5, 1143-1146.

Hydrogen-Mediated Reductive Aldol Coupling

13

Page 14: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

14

Marriner, G. A.; Garner, S. A.; Jang, H. Y.; Krische, M. J. J. Org. Chem. 2004, 69, 1380-1382.

Hydrogen-Mediated Reductive Aldol Coupling

14

Page 15: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

15

Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling

Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449.15

Page 16: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

16

Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling

16

Jang, H. Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653-661.

Dewar-Chatt-Duncanson Model

Page 17: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

17

Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449.

Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling

17

Page 18: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

18

Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449.Iida, H.; Krische, M. J. Top. Curr. Chem. 2007; 279, 77-104.

Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling

18

Page 19: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

19

Kong, J. R.; Cho, C. W.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 11269-11276.

Hydrogen-Mediated Conjugated Alkyne-Ethyl (N-Sulfinyl)iminoacetates Coupling

19

Page 20: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

20

Kong, J. R.; Cho, C. W.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 11269-11276.20

Hydrogen-Mediated Conjugated Alkyne-Ethyl (N-Sulfinyl)iminoacetates Coupling

Page 21: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

21

Huddleston, R. R.; Jang, H. Y.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 11488-11489.

Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling

21

Page 22: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

22

Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling

Jang, H. Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653-661.

Competition experiments reveal coupling to the strongest π-acid

22

Page 23: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

23

Jang, H. Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174-6175.

Reductive Cyclization of 1,6-Enynesvia Rhodium-Catalyzed Asymmetric Hydrogenation:C−C Bond Formation Precedes Hydrogen Activation

23

Page 24: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

24

Reductive Cyclization of 1,6-Enynesvia Rhodium-Catalyzed Asymmetric Hydrogenation:C−C Bond Formation Precedes Hydrogen Activation

Jang, H. Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174-6175.2

4

Page 25: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

25

Jang, H. Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174-6175.

Reductive Cyclization of 1,6-Enynesvia Rhodium-Catalyzed Asymmetric Hydrogenation:C−C Bond Formation Precedes Hydrogen Activation

25

Page 26: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

26

Reductive Cyclization of Acetylenic Aldehydes

Rhee, J. U.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 10674-10675.26

Page 27: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

27

Carbonyl and Imine Z-Dienylation via Multicomponent ReductiveCoupling of Acetylene to Aldehydes and α-Ketoesters

Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040-16041. Iida, H.; Krische, M. J. Top. Curr. Chem. 2007; 279, 77-104.2

7

Page 28: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

28

Carbonyl and Imine Z-Dienylation via Multicomponent ReductiveCoupling of Acetylene to Aldehydes and N-Arylsulfonyl Imines

Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040-16041.Skucas, E.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242-7243.2

8

Page 29: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

29

Reductive Coupling of Disubstituted Alkynes to Activated Ketones

π-Backbonding in the metal-alkyne complex, as described by the Dewar-Chatt-Duncanson model, may facilitate alkyne-C=X (X = O, NR) oxidative coupling by conferring nucleophilic character to the bound alkyne.

Due to relativistic effects, iridium is a stronger π-donor than rhodium: (Ph3P)2M(Cl)(CO), M = Ir, νco = 1965 cm-1; M = Rh, νco = 1980 cm-1.

This may account for the ability of iridium-based catalysts to activate nonconjugated alkynes, which embody higher lying LUMOs.

Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 280-281..Vaska, L.; Peone, J. Chem. Commun. 1971, 419.2

9

Page 30: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

30

Reductive Coupling of Disubstituted Alkynes to Activated Ketones

Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 280-281..30

Page 31: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

31

Reductive Coupling of Disubstituted Alkynes to N-Arylsulfonyl Imines

Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644-12645.

31

Page 32: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

32

Reverse Prenylation via Iridium-Catalyzed Hydrogenative Coupling of Dimethylallene

Skucas, E.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678-12679.

32

Page 33: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

33

Reverse Prenylation via Iridium-Catalyzed Hydrogen Autotransfer and Transfer Hydrogenation

Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134-15135.33

Page 34: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

34

Reverse Prenylation via Iridium-Catalyzed Hydrogen Autotransfer and Transfer Hydrogenation

Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134-15135.

34

A rapid redox equilibration in advance of C-C coupling is operative

Page 35: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

35

Ruthenium-Catalyzed C-C Bond-Forming TransferHydrogenation

Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6338-6339.Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120-14122.3

5

Page 36: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

36

Ruthenium-Catalyzed C-C Bond-Forming TransferHydrogenation

Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6338-6339.Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120-14122.

36

Page 37: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

37

Enantioselective Iridium-Catalyzed Carbonyl Allylation

Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899.

37

Page 38: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

38

Enantioselective Iridium-Catalyzed Carbonyl Allylation

Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899.

38

Page 39: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

39

Enantioselective Iridium-Catalyzed Carbonyl Allylation

Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899.

39

Page 40: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

40

Enantioselective Iridium-Catalyzed Carbonyl Allylation

Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899.

40

Page 41: Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

41

Conclusion

• The work of M. J. Krische is the first systematic investigation of the use of catalytic hydrogenation as a method of C-C coupling since the advent of alkene hydroformylation and the Fischer-Tropsch reaction.

•C-C Bond-forming hydrogenation reactions are analogous to conventional carabanion chemistry, yet they feature complete atom-economy . This makes them particularly suitable candidate reactions for industrial-scale applications .

• Several other retrosynthetic disconnections remain to be explored and may lead to other interesting reactions.

41