carbon dioxide

55
Carbon Dioxide Dr. Reid B. Grigg New Mexico Petroleum Recovery Research Center New Mexico Institute of Mining and Technology Socorro, New Mexico

Upload: eron

Post on 04-Jan-2016

49 views

Category:

Documents


8 download

DESCRIPTION

Carbon Dioxide. Dr. Reid B. Grigg New Mexico Petroleum Recovery Research Center New Mexico Institute of Mining and Technology Socorro, New Mexico. CO 2 has been receiving a lot of publicity as of late, mostly bad PR. Let’s get to know this compound better. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Carbon Dioxide

Carbon Dioxide

Dr. Reid B. Grigg

New Mexico Petroleum Recovery Research CenterNew Mexico Institute of Mining and Technology

Socorro, New Mexico

Page 2: Carbon Dioxide

CO2 has been receiving a lot of publicity as of late, mostly bad PR.

Let’s get to know this compound better.

CO2 is a vital compound for natural processes, but can create havoc with nature as well.

Page 3: Carbon Dioxide

The following will be covered briefly:

Properties/Phase Behavior

Solubility/Extraction

Swelling

Density

Viscosity

CO2 Sequestration Volume Estimates

Page 4: Carbon Dioxide

Properties of Carbon Dioxide

Molecular Weight = 44.01 g/molCritical Pressure = 1071 psia (7.38 MPa)Critical Temperature = 87.9 F (31.1 C)Critical Density = 0.469 g/cc

Page 5: Carbon Dioxide
Page 6: Carbon Dioxide

P-T Phase Diagram for Carbon Dioxide (Wikipedia)

Critical point

Page 7: Carbon Dioxide

P-T Phase Diagram for Carbon Dioxide (Wikipedia)

Critical point

Where we live

Page 8: Carbon Dioxide

P-T Phase Diagram for Carbon Dioxide (Wikipedia)

Critical point

Where we live

World of geologicSequestration

Page 9: Carbon Dioxide

D-P Phase Diagram for Carbon Dioxide (Wikipedia)

Critical point

Page 10: Carbon Dioxide

P-T Phase Diagram for Carbon Dioxide (Wikipedia)

Critical point

Page 11: Carbon Dioxide

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

30 50 70 90 110 130 150 170 190Temperature [F]

Pres

sure

[psi

a] .

0.10.20.30.40.50.60.70.80.85phase change

Gas

Liquid

Supercritical

Critical point

Constant density [g/cm3] indicated

Page 12: Carbon Dioxide

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

30 50 70 90 110 130 150 170 190Temperature [F]

Pres

sure

[psi

a] .

0.10.20.30.40.50.60.70.80.85phase change

Gas

Liquid

Supercritical

Critical point

Page 13: Carbon Dioxide

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

30 50 70 90 110 130 150 170 190Temperature [F]

Pres

sure

[psi

a] .

0.10.20.30.40.50.60.70.80.85phase change

Gas

Liquid

Supercritical

Critical point

Constant density [g/cm3] indicated

Page 14: Carbon Dioxide

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

30 50 70 90 110 130 150 170 190Temperature [F]

Pres

sure

[psi

a] .

0.10.20.30.40.50.60.70.80.85phase change

Gas

Liquid

Supercritical

Critical point

Constant density [g/cm3] indicated

Page 15: Carbon Dioxide

800

850

900

950

1000

1050

1100

1150

1200

70 75 80 85 90 95 100

Temperature [F]

Pres

sure

[psi

a] .

0.10.20.30.40.50.60.70.80.85phase change

Gas

Liquid

Supercritical

Critical point

Constant density [g/cm3] indicated

Page 16: Carbon Dioxide

800

850

900

950

1000

1050

1100

1150

1200

70 75 80 85 90 95 100

Temperature [F]

Pres

sure

[psi

a] .

0.10.20.30.40.50.60.70.80.85phase change

Gas

Liquid

Supercritical

Critical point

Constant density [g/cm3] indicated

Page 17: Carbon Dioxide

CO2 density versus pressure at temperatures from 40-140 F

Page 18: Carbon Dioxide

Effects of density/volume/phase changes

Injection Production Facilities

Pipelines Compressors Booster pumps Etc

Page 19: Carbon Dioxide
Page 20: Carbon Dioxide

Three phases in CO2/oil micromodel tests.

Page 21: Carbon Dioxide
Page 22: Carbon Dioxide
Page 23: Carbon Dioxide
Page 24: Carbon Dioxide
Page 25: Carbon Dioxide

Properties/Phase Behavior

Solubility/Extraction

Swelling

Density

Viscosity CO2 Sequestration Volume

Estimates

Page 26: Carbon Dioxide

Equilibrium Constant

Ki = yi

-------- xi

For a two phase vapor/liquid systemyi = mole fraction of component i in the vapor phasexi = mole fraction of component i in the liquid phase

Page 27: Carbon Dioxide
Page 28: Carbon Dioxide
Page 29: Carbon Dioxide
Page 30: Carbon Dioxide
Page 31: Carbon Dioxide

Water-CO2 Density

Page 32: Carbon Dioxide

Properties/Phase Behavior

Solubility/Extraction

Swelling

Density

Viscosity CO2 Sequestration Volume

Estimates

Page 33: Carbon Dioxide
Page 34: Carbon Dioxide

Oil-CO2 Density

Page 35: Carbon Dioxide
Page 36: Carbon Dioxide
Page 37: Carbon Dioxide

Properties/Phase Behavior

Solubility/Extraction

Swelling

Density

Viscosity CO2 Sequestration Volume

Estimates

Page 38: Carbon Dioxide

Oil-CO2 Density

Page 39: Carbon Dioxide

Oil-CO2 Density

Page 40: Carbon Dioxide

Oil-CO2 Density

Page 41: Carbon Dioxide

Oil-CO2 Density

Page 42: Carbon Dioxide

Water-CO2 Density

Page 43: Carbon Dioxide
Page 44: Carbon Dioxide
Page 45: Carbon Dioxide

Properties/Phase Behavior

Solubility/Extraction

Swelling

Density

Viscosity CO2 Sequestration Volume

Estimates

Page 46: Carbon Dioxide
Page 47: Carbon Dioxide
Page 48: Carbon Dioxide

Properties/Phase Behavior

Solubility/Extraction

Swelling

Density

Viscosity CO2 Sequestration Volume

Estimates

Page 49: Carbon Dioxide

Volume Estimates• 88 Permian Basin reservoirs have a

total pore volume of about 10 x109 m3 (61 billion barrels).

• Using a conservative displacement efficiency and CO2 retention, 12% of the pore volume (1.2 x 109 m3) estimated for potential CO2 storage or ~ 1 x 109 tonnes).

• ~1 x 109 tonnes possible storage.

Page 50: Carbon Dioxide

CH2 +(1.5)O2 = CO2 + H2OOil (~44/14 = 3.14)

CH4 +(2)O2 = CO2 + (2)H2OMethane (44/16 = 2.75)

CH +(1.25)O2 = CO2 + (0.5)H2OCoal (~44/13 = 3.38)

Production of CO2 from Hydrocarbons (Mole Wt. CO2/Mole Wt. Hydrocarbon)

Page 51: Carbon Dioxide

For example if the worldwide oil production is 12 x 106 m3/d

(15 x 106 m3/d [5.5 x 109 m3/yr] reservoir volume assuming a FVF of 1.25)

Assume density of hydrocarbon = 800 kg/m3

(specific gravity of 0.8)

Crude production ~ 4.4 x 109 tonnes/yr)

CO2 production ~ 13.8 x 109 tonnes/yr(thus 1 billon tonnes storage is ~ one month of world

production)

Page 52: Carbon Dioxide

Conclusions Being a Supercritical fluid in and of itself is not necessarily significant.

Many of the properties of CO2 are dependent on temperature and pressure. The most significant property is the density of CO2.

Understand the different properties of CO2

and then you can predict what will happen under your system conditions.

Page 53: Carbon Dioxide

0

50

100

150

200

250

CO2 methane ethane

Gas

SC

F of

Gas

@ S

TP/B

BL

H2O

.

Page 54: Carbon Dioxide

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110

Temperature [C]

Pres

sure

[MPa

] .

0.10.20.30.40.50.60.70.80.85phase change

GAS

Liquid

Super-Critical

Page 55: Carbon Dioxide

Temperature

- T -(oC)

Density- ρ -(kg/m3)

Liquid Specific Heat Capacity- cp -(kJ/kg K)

Temperature- T -(C)

Gas Specific heat capacity- cp -(kJ/kgK)

-50 1156 1.84

-40 1118 1.88 -73 0.735

-30 1077 1.97 -48 0.763

-20 1032 2.05 -23 0.791

-10 983 2.18 2 0.819

0 927 2.47 27 0.846

10 860 3.14 84 0.871

20 773 5.0

30 598 36.4

Carbon Dioxide specific heat capacity for liquid and gas. (Joule-Thomson effect).