cap 16 beer.pdf

218

Click here to load reader

Upload: alberto-ramirez

Post on 20-Jan-2016

100 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 1.

( ) ( )( )( )1.5 m sin 60 294.3 N 0.75 m cos60A BM N∑ = ° − °

( )( )( )( )230 kg 4 m/s sin 60 0.75 m= °

144.96 NBN =

( )230 kg 4 m/sx BF N F∑ = − =

24.96 NF =

(a) 2 2 295.36 NA AR N F= + =

or 295 NA =R 85.2° !

1 294.3tan 85.2

24.96α −= = °

and 145.0 NB = !

(b) 24.96

0.08481294.3A

F

Nμ = = =

or 0.0848μ = !

Page 2: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 2.

Alternative

eff :A AM M∑ = ∑

cos60 sin 602 2

L Lmg ma° = °

So tan 60

ga =

o

( )( )( ) ( )( )( )( )294.3 N 0.75 m cos60 30 kg 0.75 m sin 60AM a∑ = ° = °

25.664 m/sa =

or 25.66 m/s=a !

(a) ( )( )230 kg 5.664 m/s 169.9 NxF F∑ = = =

(b) 169.9 N

0.5773294.3 NA

F

Nμ = = =

or 0.577μ = !

Page 3: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 3.

xF ma∑ =

(a) ( )cos60xF mg ma∑ = ° =

2

ga =

216.10 ft/sa = !

( )effC CM M∑ = ∑

(b) ( )( ) ( ) ( ) ( )( )1.8 lb 2 in. cos30 8 in. sin 30 8 in.C A AM R R∑ = − + ° − °

( )( )( ) ( )( )( )1.8 1.8cos30 6 in. sin 30 2 in.a a

g g

⎛ ⎞ ⎛ ⎞−= ° − °⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( )3.6 2.9282 11.1531A

aR

g− + = −

13.6 11.1531

20.675 lb

2.9282AR

⎛ ⎞− ⎜ ⎟⎝ ⎠= = −

or 0.675 lbA =R 60° !

( )1.8 lb cos30 0y A CF R R∑ = + − °=

1.5588A CR R+ =

( )1.5588 0.675 2.234 lbCR = − − =

or 2.23 lbC =R 60° !

Page 4: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 4.

See the free body diagram for problem 16.3

sinxF mg maθ∑ = =

sina g θ=

( ) ( )0 cos 2 in. sin in.G C CM R Rθ θ∑ = = − 6

(a) tanθ 1=3

or θ = °!18.43

(b) ( ) ( )2 232.2 ft/s sin18.43 10.180 ft/sa = ° =

or 210.18 ft/s=a 18.43° !

Page 5: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 5.

(a) If rear-wheel brakes fail to operate:

( ) ( ) ( ) ( )eff : 12 ft 5 ft 4 ftA A BM M N W maΣ = Σ − =

5 112 3B

WN W ag

= +

( )eff : , x x B k BWF F F ma N ag

µΣ = Σ = =

5 10.69912 3

W WW a ag g

+ =

( )2

2

50.699 32.2 ft/s12 12.227 ft/s

1 0.233a a

= =

Uniformly accelerated motion

( ) ( )2 2 2 20 2 0 30 ft/s 2 12.227 ft/sv v ax x= + = −

36.8 ftx = ! (b) If front-wheel brakes fail to operate:

( ) ( ) ( ) ( )eff : 7 ft 12 ft 4 ftB B AM M W N maΣ = Σ − =

7 112 3A

WN W ag

= −

continued

Page 6: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( )eff : , x x A k AWF F F ma N ag

µΣ = Σ = =

7 10.69912 3

W WW a ag g

− =

( )2

2

70.699 32.2 ft/s12 10.648 ft/s

1 0.233a a

= =

+

Uniformly accelerated motion

( ) ( )2 2 2 20 2 0 30 ft/s 2 10.648 ft/sv v ax x= + = −

42.3 ftx = !

Page 7: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 6.

(a) Four-wheel drive:

0: 0 y A B A BF N N W N N W mgΣ = + − = + = =

Thus: ( ) 0.80A B k A k B k A B kF F N N N N W mgµ µ µ µ+ = + = + = =

( )eff :x x A BF F F F maΣ = Σ + =

0.80mg ma=

( )2 20.80 0.80 9.81 m/s 7.848 m/sa g= = =

27.85 m/sa = ! (b) Rear-wheel drive:

( ) ( ) ( ) ( )eff : 1 m 1.5 m 0.5 mB B AM M W N maΣ = Σ − = −

0.4 0.2AN W ma= +

Thus: ( )0.80 0.4 0.2 0.32 0.16A k BF N W ma mg maµ= = + = +

( )eff :x x AF F F maΣ = Σ =

0.32 0.16mg ma ma+ =

0.32 0.84g a=

( )2 20.32 9.81 m/s 3.7371 m/s0.84

a = =

or 23.74 m/sa = !

continued

Page 8: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(c) Front-wheel drive:

( ) ( ) ( ) ( )eff : 2.5 m 1.5 m 0.5 mA A BM M N W maΣ = Σ − = −

0.6 0.2BN W ma= −

Thus: ( )0.80 0.6 0.2 0.48 0.16B k BF N W ma mg maµ= = − = −

( )eff :x x BF F F maΣ = Σ =

0.48 0.16mg ma ma− =

0.48 1.16g a=

( )2 20.48 9.81 m/s 4.0593 m/s1.16

a = =

or 24.06 m/s=a !

Page 9: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 7.

(a) Sliding impends:

( )eff: cos30y xF F F maΣ = Σ = °

( )eff

: sin 30y yF F N mg maΣ = Σ − = °

( )sin 30N m g a= + °

( )cos30

; 0.25 ; sin 30 3.3333 cos30sin 30s

F mag a a

N m g aμ °= = + ° = °

+ °

2.3867g a= 0.419g=a 30° !

(b) Tipping impends:

( )eff: 0

2 2G Gh d

M M F N⎛ ⎞ ⎛ ⎞Σ = Σ − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

F d

N h=

; 0.3 ; 3.33F d h

N h dμ = = = !

Page 10: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 8.

(a) Sliding impends:

( )eff: cos30x xF F F maΣ = Σ = °

( )eff

: sin 30y yF F N mg maΣ = Σ − = − °

( )sin 30N m g a= − °

( )cos30

; 0.3sin 30s

F ma

N m g aμ °= =

− °

sin 30 3.3333 cos30g a a− ° = °

1

0.295273.3333cos30 sin 30

a

g= =

° + ° 0.295=a !

(b) Tipping impends:

( )effG GM MΣ = Σ

; 2 2

h d F dF W

N h⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

; 0.30 ; 3.33F d h

N h dμ = = = !

Page 11: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 9.

(a) Acceleration

( )eff:x xF FΣ = Σ

25 lb ma=

2

50 lb25 lb

32 ft/sa=

216.10 ft/sa = !

(b) For tipping to impend ; 0A =

( )eff:B BM MΣ = Σ

( ) ( )( ) ( )25 lb 50 lb 12 in. 36 in.h ma− =

For tipping to impend ; 0B =

( )eff:A AM MΣ = Σ

( ) ( )( ) ( )25 lb 50 lb 12 in. 36h ma+ = or 12 in.h =

cabinet will not tip for 12 in. 60 in.h≤ ≤ !

Page 12: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 10.

(a) Acceleration

(b) Tipping

0 0y A BF N N WΣ = + − =

50 lbA BN N+ =

But ,F Nμ= Thus

( )50 lb , 0.25A B s sF F μ μ+ = =

( )eff:x xF FΣ = Σ

( )25 lb A BF F ma− + =

( )( ) 2

50 lb25 lb 0.25 50 lb

32.2 ft/sa

⎛ ⎞⎡ ⎤− = ⎜ ⎟⎣ ⎦ ⎝ ⎠

28.05 ft/sa =

For tipping to impend : 0AN =

( )eff:B BM MΣ = Σ

( ) ( )( ) ( )( )22

50 lb25 lb 50 lb 12 in. 8.05 ft/s 36 in.

32.2 ft/sh − =

42 in.h =

For tipping to impend : 0BN =

( )eff:A AM MΣ = Σ

( ) ( )( ) ( )( )22

50 lb25 lb 50 lb 12 in. 8.05 ft/s 36 in.

32.2 ft/s+ =

6 in.h = − impossible

cabinet will not tip if 42 in.h ≤ !

Page 13: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 11.

0 0G AM FΣ = ⇒ =

( )( )sin 30BGF mg ma⊥Σ = ° =

2or 16.1 ft/s2

ga a= =

( )( )16 lb cos30 0BG BF F∑ = − ° =

13.856 lbBF =

(a) 216.10 ft/s=a 30°

(b) 0, 13.86 lb compressionA BF F= =

Page 14: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(c) Front-wheel drive:

( ) ( ) ( ) ( )eff: 2.5 m 1.5 m 0.5 mA A BM M N W maΣ = Σ − = −

0.6 0.2BN W ma= −

Thus: ( )0.80 0.6 0.2 0.48 0.16B k BF N W ma mg maμ= = − = −

( )eff:x x BF F F maΣ = Σ =

0.48 0.16mg ma ma− =

0.48 1.16g a=

( )2 20.489.81 m/s 4.0593 m/s

1.16a = =

or 24.06 m/s=a !

Page 15: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 12.

Analysis of linkage

Since members ACE and DCB are of negligible mass, their effective forces may also be neglected and the methods of statics may be applied to their analysis.

Free body: Entire linkage:

0:DMΣ =

( ) ( ) ( )30 sin 30 30 sin 30 0y xB E B− ° − ° =

( ) cos30 sin 30 0y xB E B− °− °= (1)

Free body: member ACE

0:CMΣ =

( ) ( )15 cos30 15 cos30 0 ;A E E A° − ° = =

carrying into eq. (1):

( ) cos30 sin 30 0y xB A B− °− °= (2)

Equations of motion for member AB

Page 16: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(a) + 60° ( )eff

:t tF FΣ − ∑

( ) cos30 sin 30 cos30y xB A B W ma− °− ° + °=

Recalling equation (2), we have,

cos30 cos30 cos30WW ma a gm

°= = °= °

( )232.2 ft/s cos30a = ° 227.9 ft/s=a 60° !

(b) ( )eff :B BM MΣ = ∑

( ) ( ) ( ) ( ) ( ) ( )7.5 in. 30 in. cos30 sin 60 7.5 in. cos60 2.5 in.W A ma ma− °= ° − °

But cos30ma W= ° As found above. Thus:

( )7.5 30 cos30 cos30 7.5 sin 60 2.5 cos60W A W− ° = ° ° − °

1 1 1sin 60 cos60 0.113844 cos30 4 12

A W W

= − °+ ° = °

Recalling that 20 lbW =

( )0.11384 20 lb 2.2768 lbA = =

2.28 lb=A !

Page 17: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 13.

Bar AC

( )10 6 N m 0.45 m 0CM RΣ = ⇒ ⋅ − =

16 N m 40

N0.45 m 3

R⋅= =

Bar AB

(a) ( )( )40N 4 9.81 sin 30 4

3xF aΣ = − ° = −

21.5717 m/sa =

or 21.572 m/sa = 30°!

(b) ( )eff:A AM M∑ = ∑

( )( ) ( )( ) ( )( )39.24 N 0.3 m cos30 0.6 m sin 30 0.3 mA EBM T ma∑ = − ° = °

( )( )( )

( )( )4 1.5717 0.15 11.772

20.841 N0.866 0.6ABT

− += =

or 20.8 NABT = !

Page 18: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 14.

Bar AC

0CMΣ =

( )1 10 0.45 , so0.45

MM R R= − =

( )( ) ( )( )239.24 N sin 30 4 kg 4 m/s0.45 mx

MFΣ = − ° = −

(a) 1.629 N mM = ⋅ !

(b) ( )( ) ( )( ) ( )( )39.24 N 0.3 m cos30 0.6 m sin 30 0.3 mA EBM T maΣ = − ° = °

18.036 NEBT =

or 18.04 NEBT = !

Page 19: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 15.

We will need the acceleration of the center of gravity of the bar and since it is translating let’s find the acceleration of point B.

180 rpm 18.85 rad/sω = =

Since ω is constant

( )( )22 0.2 m 18.85 rad/sB Bna a rω= = =

271.061 m/s=

Since AB is translating 271.061 m/sG Ba a= = 60°

Apply Newton’s second law to the system = Bar BC

( ) ( ) ( ) ( )eff0.75 0.375 sin 60 0.375B B y GM M C mg maΣ = Σ ⇒ − = − °

( )0.5 sin 60 0.5y GC mg ma= − °

( )( ) ( ) ( )0.5 7.5 9.81 7.5 71.061 sin 60 0.5= − °

193.99 N= −

194.0 NyC = !

( )eff

sin 60y y y y GF F B mg C maΣ = Σ ⇒ − + = − °

( ) ( )sin 60 7.5 9.81 193.99 7.5 71.061 sin 60y y GB mg C ma= − − °= + − °

193.99 N= −

194.0 NyB = !

Page 20: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 16.

( )( ) ( )( ) ( )( )0 200 0.6 0.866 300 0.6 0.866 0.6 0.5GM P= = − +∑

(a) 173.2 N=P !

( ) ( ) 2300 5 9.81 200 5 0.4yF ω= − + =∑

(b) = 15.02 rad/sω !

( )5 0.4 173.2xF P α= = =∑

(c) 2= 86.6 rad/sα !

Page 21: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 17.

Bar AB

Free body diagram Kinetic diagram

0;na = Released from rest

( )effx xF F=∑ ∑

8 cos3032.2 1.5 2

u gV − = °

2.3094V u− =

= 2.3094V u− At 1.5 ftu = 3.464 lb;V = − + 2p tuM M ma = =

8 cos3032.2 1.5 2 2

u g uM = °

21.1547M u=

At 1.5 ft; 2.598 ft lbu M= = ⋅

Shear Moment

"

Page 22: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Bar BE

8= 832.2 1.5 1.5

u umg g =

8 cos30 2.309432.2 1.5 2x

u gm a u = ° =

( )effx xF F=∑ ∑

8 cos30 2.30941.5uV u − + ° =

2.3094V u=

+ 8 cos30 2.30941.5 2 2pu u uM M u = + ° =

21.1547M u= −

Shear Moment

"

"

Page 23: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 18.

From Problem 16.15 271.061 m/sGa = 60°

261.541 m/sya =

Distributed mass per unit length 7.5 kg

10 kg m0.75 m

m

L= = =

Distributed weight per unit length ( )( )210 kg/m 9.81 m/s 98.1 N/m= =

Vertical component of effective forces ( )( )210 kg/m 61.541 m/s 615.41 N/my= ma = =

( ) ( )( ) ( )( )eff

: 98.1 0.75 0.75 615.41 N/my y y yF F B C= + + =∑ ∑

387.98y yB C+ =

From symmetry 194.0 Ny yB C= = (Same as what we got for Prob. 16.15)

Max value of bending moment occurs at G where V = 0

maxM = Area under V – Diagram from B to G

( )( )1194.0 N 0.375 m

2= 194 NBV = − !

36.4 N mmaxM = ⋅ !

Page 24: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 19.

Since slab is in translation, each particle has same acceleration as G, namely .a The effective forces consist of

( ) .imΔ a

The sum of these vectors is: ( ) ( )i im mΣ Δ = ΣΔa a

or since ,im mΣΔ =

( )im mΣ Δ =a a

The sum of the moments about G is: ( ) ( )i i i ir m m r′ ′Σ × Δ = ΣΔ ×a a (1)

But, 0,i im r mr′ ′ΣΔ = = because G is the mass center. It follows that the right-hand member of Eq. (1) is zero.

Thus, the moment about G of ma must also be zero, which means that its line of action passes through G and that it may be attached at G.

Page 25: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 20.

For centroidal rotation: ( ) ( ) 2i i i i it n

ω′ ′= + = × −a a a r rα

Effective forces are: ( ) ( )( ) ( ) ( )( )2i i i i i i i im a m m r mω α′Δ = Δ × − Δ Δ ×r rα

( ) ( )( ) ( ) 2i i i i i im m m rω′ ′Σ Δ = Σ Δ × − Σ Δa rα

( ) ( )2i i i im m rα ω′ ′= × Σ Δ − Σ Δr

Since G is the mass center, ( ) 0i im r ′Σ Δ =

∴ effective forces reduce to a couple, summing moments about G

( ) ( )( ) ( ) 21 i i i i i i i im m m rω⎡ ⎤′′ ′ ′ ′Σ × Δ = Σ × Δ × − Σ × Δ⎢ ⎥⎣ ⎦

r a r r rα

But, ( ) ( )( )2 2 0i i i i i im mω ω′ ′ ′ ′× Δ = Δ × =r r r r

and, ( )( ) ( ) 21i i i im r m r ′′ ′× Δ × = Δr α α

Thus, ( ) ( ) ( )2 21i i i i i im m r m rα α⎡ ⎤′ ′Σ × Δ = Σ Δ = Σ Δ⎣ ⎦r a

Since ( ) 2 ,im r I′Σ Δ =

the moment of the couple is I α

Page 26: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 21.

20 ,M I mkα α= =∑ MF from friction

( )2300 200 0.4 32FM α α− = =

(a) Kinematics 1 1 12

, 2400 80 rad/s60

tπω α ω π⎛ ⎞= = =⎜ ⎟

⎝ ⎠

1 28 st =

∴ ( )2 80300 200 0.4 287.23

28FMπ⎛ ⎞− = =⎜ ⎟

⎝ ⎠

12.77 N mFM = ⋅ !

(b) 22 2

12.768712.77 N m, rad/s

32Iα α −= − ⋅ =

Kinematics 0

2 0 80

12.7687, 80

32T

dt d Tπα ω π−= = −∫ ∫

630 s,T = after 28 st =

658 st =∴ !

Page 27: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 22.

( )20 200 12.5 lb ftM I mkα α= = = − ⋅∑

(a) 2500187.5 lb.ft

32.2k α⎛ ⎞ =⎜ ⎟

⎝ ⎠

Kinematics 1 1, 0d

tdt

ωα α ω= = −

( ) ( )( )3000 2 /60 100 2

30 60

π πα = =

210.4720 rad/sα =

∴ ( )( )2 2187.5

1.15308 ft10.4720 500/32.2

k = =

1.074 ftk = !

(b) 20 212.5M mk α= − =∑

( )( )2

212.5

0.69813 rad/s500/32.2 1.15308

α = − = −

Kinematics 2d

d

ωα ωθ

=

( )2

0

0 100

1000.69813

2d d

θπ

πθ ω ω

−− = =∫ ∫

1 rev

= 70,686 radians,2 rad

θπ

⎛ ⎞⎜ ⎟⎝ ⎠

= 11,250 revθ !

Page 28: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 23.

Kinematics: 0 360 rpm 37.699 rad/sω = =

25 rev 157.08 radθ = =

( ) ( )22 20 2 ; 37.699 2 157.08ω ω αθ θ α= + = +

2= 4.524 rad/sα − (sense opposite to θ):

2= 4.524 rad/sα

Equation of motion for the flywheel

15 in. 1.25 ftr = =

21

2I m r=

( )21 401.25

2 32.2⎛ ⎞= ⎜ ⎟⎝ ⎠

25.823 lb ft s= ⋅ ⋅

( )eff:G GM M Tr Pr Iα= − =∑ ∑

( )5.823 4.524

1.25

IT P

r

α− = =

21.075T P− = (1)

Belt Friction: We recall equation (8.14), page 351 of Statics. Using μk insted of μs, since the band brake is slipping, and noting that T1 = P and T2 = T:

( )0.35 22

1

: 1.7329kT T

e e T PT P

μ β π= = =

Substituting into (1):

1.7329 P – P = 21.075 P = 28.8 lb !

Page 29: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 24.

Equilibrium of lever AD

(Dimensions in mm)

0;CM =∑

( )( ) ( ) ( )2 150N 200 40 160 0T T+ − =

1 24 250 NT T− = (1)

Equation of Motion for flywheel and drum

2

I m k=

( )( )2300 kg 0.600 m=

2108 kg m= ⋅

0.100 mr =

( ) 2 1eff :C CM M T r T r Iα= − =∑ ∑

( )( )2 1 0.100 m 108T T α− =

( )( )62 1925.93 10 T Tα −= × − (2)

Belt Friction We recall equation (8.14), page 351 of Statics. Using µk instead of µs since the brake band is slipping:

2

1

kT eT

µ β= or 2 1kT T eµ β= (3)

Making 0.30 and = 180 rad in (3):kµ β π= ° =

0.302 1T T e π= 2 12.5663T T= (4)

Page 30: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Substituting for T2 from (4) into (1):

1 1 14 2.5663 250 N 174.38 NT T T− = =

From (1): ( )2 24 174.38 250 447.51 NT T= − =

Substituting for 1 2and into (2):T T

( )( )6 2925.93 10 447.51 174.38 , 0.2529 rad/sα −= × − =αααα

Kinematics

0 180 rpm=ωωωω 0 18.850 rad/sω = +

20.2529 rad/s=αααα 20.2529 rad/sα = −

0 : 0 18.850 0.2529t tω ω α= + = −

= 74.5 st "

Page 31: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 25.

( )( ) ( )2 2110 kg 0.225 m 0.25313 kg m

2GI α α α= = ⋅

( )effB BM M=∑ ∑

( )( )11 N m 0.4 0.225 0.25313BM N α= ⋅ − =∑

0.4 cos30 cos 60 98.1 0; 115.901 NyF N N N= ° + ° − = =∑

( )( )( )11 0.4 115.901 0.225 mNα = −

20.568892.2474 rad/s

0.25313= =

(a) 22.25 rad/sα = !

( ) ( )cos30 0.4 sin 30 0xF C N N= − ° + ° =∑

( )( )0.6660 0.6660 115.901C N= =

= 77.190 N

(b) 77.2 NC = (compression) !

Page 32: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 26.

( )( ) ( )2 2110 kg 0.225 m 16 rad/s 4.05 N m

2GI α = = ⋅

( )effB BM M= ⇒∑ ∑ ( )( )0.25 0.225 4.05 N mBM M N= − = ⋅∑

( )( ) ( )0.25 cos30 sin 30 98.1 24.525 0yF N N= ° + ° − − =∑

= 171.143 NN

(a) Now ( )( )( )4.05 N m 0.25 171.143 0.225 mM N= ⋅ +

13.677 N m= ⋅

or 13.68 N mM = ⋅ !

(b) 1 0.25= tan 14.04

1.00β − ⎛ ⎞ = °⎜ ⎟

⎝ ⎠

( )22 0.25 176.4 NF N N= + =

or 176.4 NF = 44°!

Page 33: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 27.

Case 1:

Case 2:

Case 3:

Ca

(a) ( )0 0 eff :M MΣ = Σ

( )( ) ( )2785 N 0.2 m 20 kg m α= ⋅

27.85 rad/s=αααα """"

(b) 3 m 15 rad0.2 m

θ = =

( )( )2 22 2 7.85 rad/s 15 radω αθ= =

215.35 rad/s=ω """"

(a) ( )0 0 eff :M MΣ = Σ

( )( )( ) ( )280 kg 9.81 m/s 0.2 m 20 0.2 mmaα= +

( )( )( )157.0 20 80 0.2 0.2α α= +

26.767 rad/sα =

26.77 rad/s=αααα """"

(b) 3 m 15 rad0.2 m

θ = =

( )( )2 22 2 6.767 rad/s 15 radω αθ= =

214.25 rad/s=ω """"

(a) ( )0 0 eff :M MΣ = Σ

( )( )( ) ( )( )( )2 2230 kg 9.81 m/s 0.2 m 150 kg 9.81 m/s 0.2 m−

( ) ( )20 230 0.2 m 150 0.2 ma aα= + +

( ) ( )2 2157.0 20 230 0.2 150 0.2α α α= + +

24.460 rad/sα = 2or 4.46 rad/s=αααα """"

Page 34: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Case 4:

(b) 3 m 15 rad0.2 m

θ = =

( )( )2 22 2 4.46 rad/s 15 radω αθ= =

11.57 rad/s=ωωωω """"

(a) ( )0 0 eff :M MΣ = Σ

( )( )( ) ( )240 kg 9.81 m/s 0.4 m 20 40 0.4 maα= +

( )2 2157.0 20 40 0.4 , 5.947 rad/sα α α= + =

25.95 rad/s=αααα """"

(b) 3 m 7.5 rad0.4 m

θ = =

( )( )2 22 2 5.947 rad/s 7.5 radω αθ= =

9.44 rad/s=ω """"

Page 35: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 28.

Kinematics Kinetics

( )eff:B BM MΣ = Σ

( ) ( )A Am g r I m a rα= +

2A F A

am gr m k m ar

r⎛ ⎞= +⎜ ⎟⎝ ⎠

2

A

A F

m ga

km m

r

=⎛ ⎞+ ⎜ ⎟⎝ ⎠

(a) ( )( )

( )

22

2

18 kg 9.81 m/s1.7836 m/s

450 mm18 kg 144 kg

600 mm

a = =⎛ ⎞+ ⎜ ⎟⎝ ⎠

2or 1.784 m/sA =a !

(b) 2 2 2A BV V as+ +

For 1.8 ms =

( )( )2 2 2 20 2 1.7836 m/s 1.8 m 6.42096 m /sAV = + =

2.5339 m/sAV =

or 2.53 m/sAV = !

Page 36: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 29.

Kinematics Kinetics

( )eff:B BM MΣ = Σ

( ) ( )A f Am g r M I m a rα− = +

A f Aa

m gr M I m arr

− = + (1)

( )221 1Case 1: 12 ft, 4.5 s; 12 ft 4.5 s

2 2y t y at a= = = ⇒ =

21.1852 ft/sa =

From (1) ( )( ) ( )( )2

22

1.1852 ft/s 20 lb20 lb 1.5 ft 1.1852 ft/s 1.5 ft

1.5 ft 32.2 ft/sfM I

⎛ ⎞ ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

30 0.79013 1.1042fM I− = + (2)

( )221 1Case 2: 12 ft, 2.8 s; 12 ft 2.8 s

2 2y t y at a= = = ⇒ =

23.0612 ft/sa =

From (1) ( )( ) ( )( )2

22

3.0612 ft/s 40 lb40 lb 1.5 ft 3.0612 ft/s 1.5 ft

1.5 ft 32.2 ft/sfM I

⎛ ⎞ ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

60 2.0408 5.7041fM I− = + (3)

Subtract (2) from (3) 30 1.25067 4.5999I= +

220.309 lb ft sI = ⋅ ⋅ 2or 20.3 lb ft sI = ⋅ ⋅ !

Page 37: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 30.

Disk A 21

2A A AI m r=

( )eff:A AM = M∑ ∑

2

2 11

2A A A AM F r F r m r α+ − −

2 11

2 A A AA

MF F m r

rα+ − = (1)

Disk B 21

2B B BI m r=

( )eff:B BM M=∑ ∑

21 2

1

2B B B B BF r F r m r α− =

1 21

2 B B BF F m r α− = (2)

Add (1) and (2): 1 1

2 2A A A B B BA

Mm r m y

rα α= +

( )1= , Thus:

2Belt A A B B A A A B B AA

MBut r r m r m r

rα α α α α= = +

( ) 2

2,

2A B

A A AA A B A

M m m Mr

r m m rα α+= =

+

With given data: ( )( )( )2

2 2.70 N m

2 kg + 4 kg 0.2 mAα

⋅=

222.5 rad/sA =α !

From ( )0.2 m: 22.5

0.3 mA

A A B B B AB

rr r

rα α α α= = =

215.00 rad/sB =α !

Page 38: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 31.

04 8

3.512 12A BM T T⎛ ⎞ ⎛ ⎞Σ = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2

25 6

32.2 12I α α⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

4

12A Aa r α α⎛ ⎞= = ⎜ ⎟⎝ ⎠

8

12B Ba r α α⎛ ⎞= = ⎜ ⎟⎝ ⎠

:A 10

1032.2A AF T a⎛ ⎞Σ = − = ⎜ ⎟⎝ ⎠

:B5

532.2B BF T a⎛ ⎞Σ = − = ⎜ ⎟⎝ ⎠

Elimination: ( )210 4 5 8 253.5 10 5 0.5

12 12A Ba a

g g gα⎛ ⎞ ⎛ ⎞

+ − − + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

3.5 3.333+ 1.111 3.333g

α⎛ ⎞− −⎜ ⎟

⎝ ⎠2.222 6.25

g g

α α⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

(a) 211.76 rad/s=α !

(b) 8.78 lb , 6.22 lbA BT T= = !

Page 39: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 32.

Kinematics: Since the tangential accelerations of the outside of the disks are equal,

A A B Br rα α=

AB A

B

rr

α α= (1)

Kinetics:

Disk A:

( )eff :A AM MΣ = Σ

A A AM Fr I α− = (2)

Disk B:

( )eff :B BM MΣ = Σ

B B BFr I α=

212B B B BFr m r α =

1

2 B B BF m r α= (3)

Page 40: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Substitute for F from Eq. (3) into Eq. (2):

12 B B B A A AM m r r Iα α − =

Substitute for F from Eq. (3), and for Bα from Eq. (1).

21 12 2

AB B A A A A A

B

rM m r r m rr

α α

− =

( ) 212 A B A AM m m r α= +

( ) ( )2 22 2

AA B A A B A

M Mgm m r W W r

α = =+ +

Data: 12 lb, 6 lbA BW W= =

6 in. 0.5 ft; 4 in. 0.33333 ftA Br r= = = =

7.5 lb in. 0.625 lb ftM = ⋅ = ⋅

(a) ( )( )( )( )

22

2

2 0.625 lb ft 32.2 ft/s8.9444 rad/s

12 lb 6 lb 0.5 ftAα

⋅= =

+

28.94 rad/sA =αααα "

( )2 26 in. 8.9444 rad/s 13.417 rad/s4 in.

AB A

B

rr

α α= = =

213.42 rad/sB =αααα "

(b) ( )( )22

1 1 6 lb 0.33333 ft 13.417 rad/s2 2 32.2 ft/sB B BF m r α = =

0.41667 lbF =

or 0.417 lb=F "

Page 41: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 33.

Kinematics: Since the tangential acceleration of the outside of the disks are equal.

A A B Br rα α=

BA B

A

rr

α α= (1)

Kinetics: Disk A:

212A A AI m r=

( )effA AM MΣ = Σ :

A A AFr I α=

21 1 2 2A A A A A A AFr m r F m rα α= = (2)

Disk B:

( )eff :B BM MΣ = Σ

B B BM Fr I α− = (3)

Substitute for F from Eq. (2) into Eq. (3)

12 A A A B B BM m r r Iα α − =

Page 42: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Substitute for Aα from Eq. (1), and 212B B BI m r=

21 12 2

BA A B B B B B

A

rM m r r m rr

α α

− =

( ) 212 A B B BM m m r α= +

( ) ( )2 22 2

BA B B A B B

M Mgm m r W W r

α = =+ +

Data: 12 lb, 6 lb,A BW W= =

( ) ( )6 in. 0.5 ft , 4 in. 0.33333 ftA Br r= = = =

7.5 lb in. 0.625 lb ftm = ⋅ = ⋅

(a) ( )( )( )( )

22

2

2 0.625 lb ft 32.2 ft/s20.125 rad/s

12 lb 0.33333 ftBα

⋅= =

220.1 rad/sB =αααα !

( )2 24 in. 20.125 rad/s 13.417 rad/s6 in.

BA B

A

rr

α α = = =

213.42 rad/sA =αααα !

(b) ( )( )22

1 1 12 lb 0.5 ft 13.417 rad/s2 2 32.2 ft/sA A AF m r α = =

1.2500 lb=

Friction force on disk B: 1.250 lb=F !

Page 43: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 34.

2

2 21 1 16 40.027605 lb ft s

2 2 32.2 12GI mr⎛ ⎞ ⎛ ⎞= = = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

A: 14

3 0.02760512GM F α⎛ ⎞Σ = − =⎜ ⎟⎝ ⎠

1 16 0yF NΣ = − =

Note: A Bα α= Since the cylinders have the same radius and

there is no slipping.

B: ( )1 24 4

0.2 0.02760512 12GM F N⎛ ⎞ ⎛ ⎞Σ = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 16 16yF NΣ = − −

Now 1 1 24 4 0.8

312 12 12

F F N⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

or 1 7.70 lbF =

(a) 215.70rad/sA =α !

215.70 rad/sB =α !

(b) 1min

1

7.70( )

16sF

Nμ= =

0.4813sμ =

or 0.481sμ = !

Page 44: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 35.

22 21 1 16 4

0.027605 lb ft s2 2 32.2 12GI mr

⎛ ⎞ ⎛ ⎞= = = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

A: 4

3 ft lb ft (7.2 lb)12GM⎛ ⎞Σ = ⋅ − ⎜ ⎟⎝ ⎠

0.027605 Aα=

221.735 rad/sAα =

or 221.7 rad/sA =α !

B: ( )4ft 7.2 lb

12BM⎛ ⎞Σ = ⎜ ⎟⎝ ⎠

4

ft (4.8 lb) = 0.02760512 Bα⎛ ⎞− ⎜ ⎟⎝ ⎠

228.98 rad/sBα =

or 229.0 rad/sB =α !

Page 45: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 36.

21

2G k BM N r mrμ αΣ = =

2 k BN

mr

μα =

sin 2 cos 2 sin 0x B k BF N N mgφ μ φ φΣ = − + + =

sin

sin 2 cos 2Bk

mgN

φφ μ φ

=−

or ( )2 sin

sin 2 cos 2k

k

g

r

μ φαφ μ φ

=−

!

Page 46: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 37.

21

sin2BM mgr mrφ αΣ = =

2 sing

r

φα = !

Page 47: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 38.

While slipping occurs: k kF N Pµ µ= =

Disk A:

( )eff :A A A A AM M Fr I αΣ = Σ =

212k A A A APr m rµ α=

2 kA

A A

Pm r

µ=αααα (1)

Disk B:

( )eff :B B B B BM M Fr I α+ Σ = Σ =

212k B B B BPr m rµ α=

2 kB

B B

Pm r

µ=αααα (2)

At any time t

20 k

A AA A

Pt tm r

µω α= + = (3)

0 02 k

B BB B

Pt tm r

µω ω α ω= − = − (4)

Slipping ends when A A B Br rω ω=

( )0A A B Btr t rα ω α= −

( ) 0A A B B Br r t rα α ω+ =

Page 48: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Substitute from Eqs (1) + (2): 02 2k k

A B BA A B B

P Pr r t rm r m r

µ µ ω

+ =

00

1 1 12 ; 1 12B

k BA B k

A B

rP t r tm m P

m m

ωµ ωµ

+ = = ⋅

+

0

2B A B

k A B

r m mtP m m

ωµ

= ⋅+

Eq (3): 022

k B A BA A

A A k A B

P r m mtm r P m m

µ ωω αµ

= = ⋅ ⋅ +

0B B

AA A B

r mr m m

ω ω= ⋅+

( )is independent of , QEDA kω µ

Eq (4): 00 0

22

k B A BB B

B B k A B

P r m mtm r P m m

µ ωω ω α ωµ

= − = − ⋅ ⋅ +

0 1 AB

A B

mm m

ω ω

= − +

0 0A B A B

BA B A B

m m m mm m m m

ω ω ω+ −= =+ +

0

1B

A

B

mm

ωω =+

Bω depends only upon 0ω and A

B

mm

(QED)

Page 49: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 39.

(a) Angular accelerations

While slipping occurs:

( )0.25 5 lb 1.25 lbk kF N Pµ µ= = = =

Disk A:

( ) 2eff

1:2A A A A A A AM M Fr I m rα αΣ = Σ = =

12 A A AF m r α=

21 12 lb 61.25 lb ft2 1232.2 ft/s Aα =

213.417 rad/sAα = 213.42 rad/sA =αααα !

Disk B:

( ) 2eff

1:2B B B B B B B BM M Fr I m rα αΣ = Σ = =

12 B B BF m r α=

21 30 lb 101.25 lb ft2 1232.2 ft/s Bα =

23.22 rad/sBα = 23.22 rad/sB =αααα !

Page 50: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(b) Angular velocities

( )02750 rpm 78.5398 rad/s60Aπω = =

; ( )0 0Bω =

When disks stop sliding

A BP P A A B Bv v r rω ω= =

( ) ( )0A A A B Bt r t rω α α − =

( )( ) ( ) ( )( ) ( )2 278.5398 rad/s 13.417 rad/s 6 in. 3.22 rad/s 10 in. 4.1813 st t t − = ⇒ =

( )( )278.5398 rad/s 13.417 rad/s 4.1813 s 22.439 rad/sAω = − =

6022.439 rad/s 214.2767 rpm2Aωπ

= =

or 214 rpmA =ωωωω !

( )6 0.6 214.2767 128.5660 rpm10B Aω ω= = =

or 128.6 rpmB =ωωωω !

Page 51: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 40.

Based on the solution for P16.39

( ) ( )0 0

20; 750 rpm 25 rpm

60A Bπω ω π⎛ ⎞= = =⎜ ⎟

⎝ ⎠

Eq. (1): ( )0; A A B B A A B B Br r tr t rω ω α ω α⎡ ⎤= = −⎣ ⎦

( )( ) [ ]( )13.417 6 in. 25 3.22 10 in.t tπ= −

6.9688 st =

( )( ) 6013.417 6.9688 93.5 rad/s 892.86 rpm

2A Atω απ

⎛ ⎞= = = =⎜ ⎟⎝ ⎠

or 893 rpmA =ω !

( )60.6 892.86 535.716 rpm

10B Bω ω= = =

or 536 rpmB =ω !

Page 52: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 41.

We know that the system of effective forces can be reduced to the vector ma at G and the couple .Iα We further know from Chapter 3 of statics that a force-couple system in a plane can be further reduced to a single force.

The perpendicular distance d from G to the line of action of the single vector ma is expressed by writing

( ) ( )eff: G GM M I ma dαΣ = Σ =

2I mk

dma ma

α α= =

2

k

da

α= !

Page 53: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 42.

Kinematics The acceleration of iP is

/i P G= +i

a a a

( ) 2i i i i iω′ ′ ′ ′= + × + × × = + × −a a α r ω ω r a α r r

Note that i′×α r is ⊥ to i′r

Thus, the effective forces are as shown in Fig P16.47 (also shown above). We write

( ) ( ) ( )( ) ( ) 2i i i i i i im m m m rω′ ′∆ = ∆ + ∆ × − ∆a a α r

The sum of the effective forces is

( ) ( ) ( )( ) ( ) 2i i i i i i im m m m ω′ ′Σ ∆ = Σ ∆ + Σ ∆ × − Σ ∆a a α r r

( ) ( ) ( ) ( )2i i i i i i im m m mω′ ′Σ ∆ = Σ ∆ + × Σ ∆ − Σ ∆a a α r r

We note that ( ) .im mΣ ∆ = And since G is the mass center,

( )i i im mr′Σ ∆ =r ′ 0=

Thus, ( )i im mΣ ∆ =a a (1)

The sum of the moments about G of the effective forces is:

( ) ( )( ) ( ) 2i i i i i i i i i i im m m m ω′ ′ ′ ′ ′ ′Σ × ∆ = Σ × ∆ + Σ × ∆ × − Σ × ∆r a r a r α r r r

( ) ( ) ( ) ( )2i i i i i i i i i i im m m mω′ ′ ′ ′ ′ ′ Σ × ∆ = Σ ∆ + Σ × × ∆ − Σ × ∆ r a r a r α r r r

Page 54: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Since G is the mass center, 0i im′Σ ∆ =r

Also, for each particle, 0i i′ ′× =r r

Thus,

( ) ( )i i i i i i im m′ ′ ′ Σ × ∆ = Σ × × ∆ r a r α r

Since α ⊥ ,i′r we have ( ) 2i i ir α′ ′× × =r α r and

( ) ( ) ( ) 2 2i i i i i i im r m r mα′ ′ ′Σ × ∆ = Σ ∆ = Σ ∆r a α

Since 2i ir m I′Σ ∆ =

( )i i im I α′Σ × ∆ =r a (2)

From Eqs. (1) and (2) we conclude that system of effective forces reduce to ma attached at G and a couple .Iα

Page 55: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 43.

Hoop: 2I mr=

( )eff:x xF FΣ = Σ

P ma=

P

m=a

( ) 2eff

:G GM M Pr I mrα αΣ = Σ = =

P

mr=α

(a) 2AP P P

a a r rm mr m

α ⎛ ⎞= + = + =⎜ ⎟⎝ ⎠

( )2 20.75 lb2 32.2 ft/s 8.05 ft/s

6Aa = =

28.05 ft/sA =a !

(b) 0BP P

a a r rm mr

α ⎛ ⎞= − = − =⎜ ⎟⎝ ⎠

0B =a !

Page 56: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 44.

Let 1 time required for 360 rotationt = °

2 21 1

1 1 2; 2

2 2

Pt g t

wrθ α π ⎛ ⎞= = ⎜ ⎟

⎝ ⎠

21

2 wrt

Pg

π=

1 distance moves during 360 rotationx G= °

21 1

1 1 2

2 2

P wrx at g r

w Pg

π π⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1x rπ= Q.E.D.!

Page 57: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 45.

( )( )22

23 kg 1 m0.25 kg m

12 12

mLI = = =

( )eff:x xF F P maΣ = Σ =

( )2 3 kgN a=

20.66667 m/sa =

GMΣ = ( )eff: ;

2GL

M P I α⎛ ⎞ =⎜ ⎟⎝ ⎠

( ) ( )212 N m 0.25 kg m

2α⎛ ⎞ = ⋅⎜ ⎟

⎝ ⎠

( )( )( )

22

2 N 0.5 m4 rad/s

0.25 kg mα = =

(a) ( )2 21 10.66667 m/s m 4 rad/s

2 2A a α ⎛ ⎞= + = + ⎜ ⎟⎝ ⎠

a

22.66667 m/s=

2or 2.67 m/sA =a !

(b) ( )2 2 21 10.66667 m/s m 4 rad/s 1.33333 m/s

2 2Ba a α ⎛ ⎞= + = − = −⎜ ⎟⎝ ⎠

2or 1.333 m/sB =a !

Page 58: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 46.

2 2120 kg, (120 kg)(0.600 m) 43.2 kg m2

ym = I = mk = = ⋅

(a) With all four rockets fired:

eff : 0 = mF F a=∑ ∑ 0=a !

eff( ) : 4G GM M Tr Iα= =∑ ∑

4(16.20 N)(0.8 m) = 43.2 α 21.200 rad/s=α

2(1.200 rad/s )= − jα !

(b) With all rockets except D:

2

eff( ) : 16.20 N = 120 = 0.1350 m/sx x xxF F a a= − −∑ ∑

eff( ) : 0 120 = 0z zzF F a a= =∑ ∑

2(0.1350 m/s )= −a i !

eff( ) : 3GGM M Tr I α= =∑ ∑

3(16.20 N)(0.8 m) = 43.2 α 2= (0.900 rad/s )− jα !

Page 59: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 47.

(a)

2

2 22

1 4 1 16

2 3 2 9

rI mr m mrα α α

π π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

( )2 22

12 1.7777(1 ft) 0.5 0.11921 lb s ft

32.2α α

π⎛ ⎞ ⎛ ⎞= − = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2121 lb , 2.6833 ft/s

32.2x G GF a aΣ = = =

2or 2.68 ft/sG =a i !

(b) ( )4(1)1 lb ft 0.11921

3GM απ

⎛ ⎞Σ = =⎜ ⎟⎝ ⎠

23.5603 rad/sα =

/ 2.6833C G C G= + =a a a + 4(1)

13

απ

⎛ ⎞−⎜ ⎟⎝ ⎠

2.6833C =a + 2.0493

0.634= 2ft/s

2or 0.634 ft/sC =a i !

Page 60: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 48.

23.5603 rad/sα =

22.6833 ft/sGa =

(a) /A G A G= + =a a a 2.6833 +

= 2.6833 + = 2.6833 + 4.194 3.560A = −a i k

2or 4.19 3.56 ft/sA = −a i k !

(b) /B G B G= + =a a a 2.6833 +

= 2.6833 +

2or 4.19 3.56 ft/sB = +a i k !

3.5601.5110

1.5110 3.5603

0.42441(3.5601(3.5603)

Page 61: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 49.

(a)

( ) ( )1 2/2 /2m x m x

xm

+=

( ) ( )1 0.15 1 0

0.075 m2

x+

= =

x z=

( ) ( ) ( )( )2 2 2 212 0.3 0.075 0.075 0.0375 kg m

12 2 2

m mI

⎡ ⎤⎛ ⎞= + + = ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

0 , 0x Gx GxF ma a= = =∑

24 , 2 m/sz Gz GzF ma a= − = = −∑

( )4 0.075 0.0375 ,GM α= − =∑ 28 rad/s= − jα !

(b)

( ) 20.075 2 8 0.6 2 m/s=

/B G B G= + =a a a + 45°

aB =

20.6 2.6 (m/s )B = −a i k !

Mass center at G

2

0.6 m/s2

2.6 m/s2

Page 62: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 50.

2

2

2800 lb lb sm 86.957

ft32.2 ft/s

⋅= = r = 2.25 in.

22 26

86.957 ft 21.739 lb ft s12

I mk⎛ ⎞= = = ⋅ ⋅⎜ ⎟⎝ ⎠

( )eff

:y yF F=∑ ∑

2 2A BT T W ma+ − =

( )2 2800 86.957A BT T a+ − = (1)

( ) ( )eff: 2 2G G B AM M T T r Iα= − =∑ ∑

( ) 2.252 ft 21.739

12B AT T α⎛ ⎞− =⎜ ⎟⎝ ⎠ (2)

Given data: TA = 690 lb, TB = 730 lb.

(a) Substitute in (2):

( ) 2.252 730 690 21.739

12α− =

15 21.739α= 20.690 rad/s=α !

(b) Substitute in (1):

( )2 690 730 2800 86.957a+ − =

40 86.957a= 20.460 ft/s=a !

W = 2800 lb

Page 63: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 51.

See solution of Prob. 16.50 for diagram and derivation of equations (1) and (2):

( )2 2800 86.957A BT T a+ − = (1)

( ) 2.252 21.739

12B AT T α⎛ ⎞− =⎜ ⎟⎝ ⎠ (2)

Given data: 2 2680 lb, 6 in./s 0.5 ft/sAT a= = − = −

(a) Substitute in (1):

( ) ( )2 680 lb 2 2800 86.957 0.5BT+ − = −

2 2800 1360 43.48 1396.48 lbBT = − − =

698.26 lbBT = = 698 lbBT !

(b) Substitute for TA and TB into (2):

( ) 2.252 698.26 680 21.739

12α− = 20.315 rad/s=α !

Page 64: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 52.

( ) ( ) 25 kg 35 25 49.05 ; 2.19 m/syF a N a= = + − =∑

( ) ( )35 0.15 m 25 0.2 m = 0.072GM N N α= −∑

23.4722 rad/sα =

A =a 22.19 m/s + ( )2 23.4722 rad/s 0.15 m 2.711 m/s=

or 22.71 m/sA =a !

B =a 22.19 m/s + ( )2 23.4722 rad/s 0.2 m 1.496 m/s=

or 21.496 m/sB =a !

Page 65: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 53.

0: 0.2Ba a α= =

( ) ( )5 40 20 49.05yF a NΣ = = + −

22.19 m/sa = 210.95 rad/sα =

( ) ( ) ( ) ( )2 240 0.14 m 20 0.2 m 5 kg 10.95 rad/sGM N N kΣ = − =

2 20.02922 m 0.17095 mk k= =

or 170.9 mmk = !

Page 66: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 54.

( ) 212

2G kM P r mrμ αΣ = =

(a) 4 kP

mr

μ=α !

(b) ( )2y kF mg P maμΣ = + =

2 k P

gm

μ= +a !

Page 67: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 55.

See Problem 16.54

(a) ( )( )

2

4 0.12 11 lb4

12 lb 3.2ft

1232.2 ft/s

k P

mr

μα = =⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

or 253.1 rad/s=α !

(b) ( )( )2

2

2 0.12 11 lb232.2 ft/s

12 lb

32.2 ft/s

k Pa g

m

μ= + = +⎛ ⎞⎜ ⎟⎝ ⎠

or 239.3 ft/s=a !

Page 68: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 56.

(a)

110 110 196.2y GF ma= + − =∑

223.8 20 , 1.19 m/sG Ga a= =

( ) ( )110 0.9 110 0.3GM I α= − =∑

( )66 N mI α= ⋅

( ) ( ) ( )( )2 2 2 21Where 2 1.2 0.3 0.3 kg m

12 2 2

m mI

⎡ ⎤⎛ ⎞= + + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

6,I = 211 rad/s=α !

(b)

/B G B G= + =a a a 1.19 m/s2 +

B =a 23.92 m/sB =a 32.6° !

2.11 m/s2

3.3

11(0.3) = 3.3

11(0.3) = 3.3

Page 69: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 57.

(a)

120 100 196.2y GF ma= + − =∑

223.8 20 , 1.19 m/sG Ga a= =

( )100 0.6GM I α= =∑

26 kg m ,I = ⋅ 210 rad/s=α !

(b)

/B G B G= + =a a a 1.19 m/s2 +

B =a 23.50 m/sB =a 31.1° !

10(0.3) = 3

10(0.3) = 3 m/s2

1.81 m/s2,

3 m/s2

Page 70: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 58.

2y Gmg

F maΣ = =

21

2 4 12Gmg L

M mL α⎛ ⎞= =⎜ ⎟⎝ ⎠

(a) 2Gg

a = , 3

2

g

Lα = !

(b) A =a 2

g + 2 4

L gα =

4Ag=a !

(c) B =a 2

g + 0.75g

5

4Bg=a !

Page 71: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 59.

2

3y Gmg

F maΣ = =

21

3 2 12Gmg L

M mL α⎛ ⎞Σ = =⎜ ⎟⎝ ⎠

(a) 2

3Gg

a = , 2g

Lα = !

(b) A =a 2 2

3 2

g g L

L+

3

g= ,

3Ag=a !

(c) B =a 2 2

3 2

g g L

L+

5

3

g=

5

3Bg=a !

Page 72: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 60.

Before the spring breaks:

1 20: sin 30 sin 30 0yF T T W= ° + ° − =∑

12 sin 30T W mg° = =

1T mg= 30°

Immediately after spring 2 breaks, elongation of spring 1 is unchanged. Thus we still have T1 = mg 30°

(a) ( ) ( )1eff : sin 302GGLM M T I α= ° =∑ ∑

( ) 21sin 302 12Lmg mL α° =

3gL

=αααα !

( ) 1eff : cos30x xxF F T ma= ° =∑ ∑

0.866x g=a

( )eff: sin 30y yyF F W T ma= − ° =∑ ∑

0.5 ymg mg ma− =

12y g=a

continued

Page 73: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Accelerations of A and B

(b) Acceleration of A:

( ) ( )

/30.866 + 0.5

2

0.866

A G A Gg Lg g

L

g g

= + = → ↓ + ↑

= → + ↑

a a a

1.323A g=a 49.1° !

(c) Acceleration of B:

( ) ( )

/30.866 + 0.5

2

0.866 2

B G B Gg Lg g

L

g g

= + = → ↓ + ↓

= → + ↓

a a a

2.18B g=a 66.6° !

Translation with G + Rotation about G

Page 74: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 61.

( )2 2112

I m b b= +

216

I mb=

Statics: 1 21 12 2

T T W mg= = =

Kinetics: ( )effG GM MΣ = Σ

2bT I α=

21 12 2 6

bmg mb α =

32gb

( ) 1eff:y yF F W T maΣ = Σ − =

1 1 2 2

mg mg ma g− = =a

Kinematics:

Plane motion = Translation + Rotation

continued

Page 75: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(a) /A G A G= + =a a a a 2b α+

2Ag=a

2 2b g

b3 +

4

g= 14A g=a "

(b) /B G B G= + =a a a a 2b α+

12B g=a

3 2 2b g

b +

54

g= 54B g=a "

Page 76: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 62.

2

21

2 4

bI m mb

⎛ ⎞= =⎜ ⎟⎝ ⎠

Statics: 1 21 1

2 2T T W mg= = =

Kinetics: ( )eff:G GM MΣ = Σ

1 2

bT I α⎛ ⎞ =⎜ ⎟⎝ ⎠

21 1

2 2 4

bmg mb

⎛ ⎞ =⎜ ⎟⎝ ⎠

g

b=α

( )eff

:y yF F W T maΣ = Σ − =

1 1

2 2

mg mg ma g− = =a

Kinematics:

Plane motion = Translation + Rotation

(a) /A G A G= + =a a a a 2

b α+ 1

2g=

2

b g

b⎛ ⎞+ ⎜ ⎟⎝ ⎠ ; 0A =a "

(b) /B G B G= + =a a a a 2

b α+ 1

2g=

2

b g

b⎛ ⎞+ ⎜ ⎟⎝ ⎠ ; B g=a "

Page 77: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 63.

2

21 1

2 2 8

bI m mb

⎛ ⎞= =⎜ ⎟⎝ ⎠

Statics: 1 21 1

2 2T T W mg= = =

Kinetics: ( )effG GM MΣ = Σ

1 2

bT I α=

21 1

2 2 8

bmg mb α⎛ ⎞ =⎜ ⎟

⎝ ⎠

2g

b=α

( ) 1eff:y yF F W T maΣ = Σ − =

1 1

2 2

mg mg ma g− = =a

Kinematics:

Plane motion = Translation + Rotation

(a) /A G A G= + =a a a a 2

b α+ 1

2g= 2

2

b g

b⎛ ⎞+ ⎜ ⎟⎝ ⎠ ;

1

2A g=a "

(b) /B G B G= + =a a a a 2

b α+ 1

2g= 2

2

b g

b⎛ ⎞+ ⎜ ⎟⎝ ⎠ ;

3

2B g=a "

Page 78: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 64. Kinetics: 2I mk=

( )eff :x xF F F maΣ = Σ =

k kmg ma gµ µ= =a

( )eff :G GM M Fr I αΣ = Σ =

( ) 2kmg r mkµ α=

2k grk

µ=α

Kinematics: 0v v at= −

0 kv v gtµ= −

For 0v = when 1t t=

00 1 10 ; k

k

vv gt tg

µµ

= − = (1)

0 tω ω α= −

0 2k gr tk

µω ω= −

For 0ω = when 1t t=

2

0 1 1 020 ; k

k

gr kt tgrk

µω ωµ

= − = (2)

continued

Page 79: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Set Eq. (1) = Eq. (2)

2

00 0 02;

k k

v k r vg gr k

ω ωµ µ

= = (3)

Distance traveled: 21 0 1 1

12

s v t at= −

( )2 2

0 0 01 0 1

1 ; 2 2k

k k k

v v vs v g sg g g

µµ µ µ

= − =

(4)

Radius of gyration of a sphere 2 225

k r=

(a) Eq. (3): 00 0

2

52 25

r vvrr

ω = = 00

52

vr

=ω "

(b) Eq. (1) 01

k

vtgµ

= "

(c) Eq. (4) 20

1 2 k

vsgµ

= "

Page 80: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 65.

Kinetics: ( )effx xF FΣ = Σ

kmg maµ =

k gµ=a

N mg= ( )eff :G GM M Fr I αΣ = Σ =

225

I mr= ( ) 225kmg r mrµ =

52

k gr

µ=α

Kinematics: When sphere rolls, instant center of rotation is at C and when 1,t t= v rω= (1)

0 0 kv v at v gtµ= − = − (2)

0 0 152 kt gtω ω α ω µ= − + = − +

When 1:t t=

Eq. (1): :v rω= 0 1 0 152

kk

gv gt t rr

µµ ω − = − +

10 1 0

52

kk

gtv gt rr

µµ ω− = − +

( )0 01

27 k

v rt

µ+

= (3)

0 05 m/s, 9 rad/s, 100 mm 0.10 mv rω= = = =

(a) ( )( )( )1 2

5 m/s 0.01 m 9 rad/s2 1.7184 s7 0.1 9.81 m/s

t+

= =

1or 1.718 st = !

continued

Page 81: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(b) ( )( )21 0 5 m/s 0.1 9.81 m/s 1.7184 s 3.3142 skv v gtµ= − = − =

1or 3.31 m/s v = !

(c) ( )2 20.1 9.81 m/s 0.981 m/ska gµ= = =

( ) ( )( )22 21 0 1 1

1 15 m/s 1.7184 s 0.981 m/s 1.7184 s 7.1436 m2 2

s v t at= − = − =

1or 7.14 ms = !

Page 82: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 66.

Use equations derived in P16.64

Have 0 05 m/s, 18 rad/s, 0.10 mv rω= = =

(a) ( )

( )1 2

5 m/s 0.1 18 rad/s21.98049

7 0.1 9.81 m/st

⎡ ⎤+⎢ ⎥= =⎢ ⎥⎣ ⎦

1or 1.980 st = "

(b) ( )( )21 0 5 m/s 0.1 9.81 m/s 1.9805 skv v gtμ= − = −

3.0571 m/s=

1or 3.06 m/s=v "

(c) ( )0.1 9.81 m/s 0.981 m/ska gμ= = =

( )( ) ( )( )22 21 0 1 1

1 15 m/s 1.9805 s 0.981 m/s 1.9805 s 7.9785 m

2 2s v t at= − = − =

1or 7.98 ms = "

Page 83: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 67.

Kinetics: ( )eff:x xF F F maΣ = Σ =

kmg maμ =

k gμ=a

( )eff:G GM M Fr I αΣ = Σ =

( ) 22

5kmg r mrμ α=

5

2k g

r

μ=α

Kinematics: kv at gtμ= = (1)

5

2k g

t tr

μω α= = (2)

C = Point of contact with belt

5

2k

C kg

v v r gt t rr

μω μ ⎛ ⎞= + = + ⎜ ⎟⎝ ⎠

7

2C kv gtμ=

(a) When sphere starts rolling ( )1 ,t t= we have

1 1 17

; 2C kv v v gtμ= = 1

12

7 k

vt

gμ= "

(b) Velocities when 1t t=

Eq (1): 12

7 k

vv g

μ⎛ ⎞

= ⎜ ⎟⎝ ⎠

12

7v=v "

Eq (2): 15 2

2 7k

k

g v

r g

μωμ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

15

7

v

r=ω "

Page 84: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 68.

0 : 0;yF N W N W mgΣ = − = = =

( )eff:x xF F F maΣ = Σ =

kmg maµ = µ= k ga (1)

( )eff :G GM M Fr I αΣ = Σ = (2)

making 2 in Equ. (2):I m k=

2k mgr m kµ α= (3)

Kinematics: 2k grttk

µω α= = (4)

kv at gtµ= = (5)

2k

A kgrtv v r gt r

kµω µ = + = +

2

21A krv g tk

µ

= +

(a) When the wheel starts rolling (t = t1), we have

1Av v= 1

2

121krg t vk

µ

+ =

continued

Page 85: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

1

2 2

12kk rg t v

kµ + =

2

11 2 2

k

v ktg r kµ

=+

!!!!

(b) Substituting for t in (5) and (4) the value found for t1:

2

12 2 ,k

k

v kv gg r k

µµ

= +

2

1 2 2kv v

r k=

+ !!!!

2

12 2 2 ,k

k

gr v kgk r k

µωµ

= +

12 2v r

r k=

+ωωωω !!!!

Note: We check that 1 .v v rω= −

Page 86: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 69.

Kinetics: ( )eff:x xF F F maΣ = Σ =

kmg maµ =

k gµ=a

( )eff:G GM M Fr I αΣ = Σ =

( ) 225kmg r mrµ α=

52

k gr

µ=α

Kinematics: 0 0 kv v at v gtµ= − = − (1)

52

k gt tr

µω α= = (2)

C = Point of contact with belt

Cv v rω= − +

52

kC

gv v r tr

µ= − +

52k

Cgv v tµ= − + (3)

But, when 1,t t= 0v = and 1cv v=

Eq (3): 1 15 ;

2k gv tµ= 1

12

5 k

vtgµ

= !

Eq (1): 0 kv v gtµ= −

continued

Page 87: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

When 1, 0,t t v= =

10

20 ;5k

k

vv gg

µµ

= −

0 1

25

v v= !

Distance when 1:t t=

20 1 1

12

S v t at= −

( )2

1 11

2 2 1 25 5 2 5k

k k

v vS v gg g

µµ µ

= −

21 4 2 ;

25 25k

vSgµ = −

212

25 k

vSgµ

= !

Page 88: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 70.

tOG r rα= =a

We first observe that the sum of the vectors is the same in both figures. To have the same sum of moments about G, we must have

( )( ):G G tM M I ma GPαΣ = Σ =

( )2mk mr GPα α=

2k

GPr

= (Q.E.D.) "

Note: The center of rotation and the center of percussion are interchangeable. Indeed, since ,OG r= we may write

2 2

or k k

GP GOGO GP

= =

Thus, if point P is selected as center of rotation, then point O is the center of percussion.

Page 89: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 71.

21 12

a r I mLα= =

( )eff :C CM MΣ = Σ

( )2LP r ma r I α + = +

( ) 2112

mr r mLα α= +

2 212 12LP r m r L α + = +

Substitute data:

( )210 lb

32.2 ft/sm =

3 ftL = 9 in. 0.75 ftr = =

(a) ( )2

22

10 lb 315 lb 0.75 ft 1.5 ft 0.751232.2 ft/s

α

+ = +

( )2 233.75 lb ft 4.0761 lb ft s ; 82.7999 rad/sα α⋅ = ⋅ ⋅ =

or 282.8 rad/sα = !

(b) ( )eff: 0y y yF F C WΣ = Σ − = or 10 lbyC = !

( )eff : 0 x x x xF F C F C P maΣ = Σ − = − = −

( )( )22

10 lb15 lb 0.75 ft 82.8 rad/s32.2 ft/sxC − = −

4.2857 lbxC = − or 4.29 lbxC = !

Page 90: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 72.

(a)

21

12a r I mLα= =

( )eff:x xF FΣ = Σ

P ma=

( )P m rα=

P

mrα = (1)

( )eff:

2G GL

M M P I αΣ = Σ =

21

2 12

LP mL α=

21

2 12

L PP mL

mr⎛ ⎞= ⎜ ⎟⎝ ⎠

2 1 36 in.

; 2 12 6 6

L Lr L r

r= = =

or 6 in.r = "

(b)

Eq (1): 6

6

P P PLmr mLm

α = = =⎛ ⎞⎜ ⎟⎝ ⎠

( )( )

2

2

6 15 lb96.6 rad/s

10 lb3 ft

32.2 ft/s

α = =⎛ ⎞⎜ ⎟⎝ ⎠

or 296.6 rad/s=α "

Page 91: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 73.

21

2 12

La I mLα= =

( )effA AM MΣ = Σ

( )2

LPL ma I α= +

21

2 2 12

L Lm mLα α⎛ ⎞= +⎜ ⎟⎝ ⎠

21

3PL mL α=

(a) ( )

( )( )23 3.5 N3

11.667 rad/s1 kg 0.9 m

P

mLα = = =

211.67 rad/s=α "

(b) ( ) ( )( )2

eff: 0 1 kg 9.81 m/sy y y yF F A W AΣ = Σ − = ⇒ =

9.81 Ny =A "

( )eff:x x xF F A P maΣ = Σ − = −

( ) ( )20.9 m3.5 N 1 kg 11.667 rad/s

2 2xL

A P m α⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

1.750 N=

1.75 Nx =A "

Page 92: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 74.

(b)

21

2 12

La I mLα= =

( )eff:x xF FΣ = Σ

P ma=

2

LP m α⎛ ⎞= ⎜ ⎟

⎝ ⎠

2P

mLα =

( )( )( )

22 3.5 N7.7778 rad/s

1 kg 0.9 mα = =

27.78 rad/s=α "

(a)

( )eff:G GM MΣ = Σ

:2

LP h I α⎛ ⎞− =⎜ ⎟⎝ ⎠

21 2

2 12 6

L P PLP h mL

mL⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( )2 2; 900 mm

2 6 2 6 3 3

L L L Lh h L⎛ ⎞− = = + = =⎜ ⎟⎝ ⎠

or 600 mmh = "

Page 93: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 75.

Determination of m a

Since 20, ω= = = −na a rαααα

( )2 r zω= − +a i k

But 2 21 = − − = − −

rx r rπ π

( )10 ft 0.3633812 = −

0.30282 ft= −

And 2 2 10 ft 0.53052 ft12

rzπ π

= = =

180 rpm 18.85 rad/sω = =

Thus: ( ) ( )218.85 0.30282 0.53052= − − +a i k

( ) 2107.60 188.51 ft/s= + −i k

And ( )5 16.708 29.271 lb32.2

= = −ma a i k (1)

Equivalence of external and effective forces

Page 94: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

External Forces:

( ) ( ) ( ) ( )5 lb at 0.30282 ft 0.5 ft 3.53052 ft= − = − + +GrW j i j k

( )2 at 1 ft= + =x AA AA i k r j

+ at 0= + =x y z BB B BB i j k r

Effective Forces:

From Equ. (1): ( ) ( )16.708 lb 29.271 lb at= − Gma i k r

( )eff :∑ = ∑ × + × = ×B B G A G mM M r W r A r a

0.30282 0.5 0.53052 0 1 00 5 0 0

− +− x zA A

i j k i j k

0.30282 0.5 5.305216.708 0 29.271

= −− −

i j k

Equating the coefficients of k:

( )( ) ( ) ( )( )0.30282 5 1 16.708 0.5xA− = −

9.868 lbxA = + ( )9.87 lb=xA i !

Equating the coefficients of i:

( )( ) ( ) ( )( )0.53052 5 1 0.5 29.271+ = −zA

17.288 lbzA = − ( )17.29 lb= −zA k !

Page 95: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 76.

(mass) 2 3

2

mz z gr L

L Lω ⎛ ⎞⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

2

3

2ymgz mgz z

F T LL L

⎛ ⎞Σ = − = −⎜ ⎟⎝ ⎠

31 3

2

mgz zT

L L⎛ ⎞= + −⎜ ⎟⎝ ⎠

or

(a) 3

42

mgz zT

L L⎛ ⎞= −⎜ ⎟⎝ ⎠

!

(b) maxT at ,z L=

max 2.5AT T mg= =

( )( )2.5 2 lb 5 lb= =

or 5 lbAT = !

Page 96: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 77.

Determination of mass center of disk

We determine the centroid of the composite area:

1 1 2 2 1 2 1 1 2 2or ( )xA x A x A x A A x A x A= − − = −

2 2

1 2 22 2 2 2

1 2

0 (160) (60) (160)(60)6.667 mm

(300) (60) (300) (60)

xA x Ax

A A

ππ π

− −= = = − = −− − −

Mass center G coincides with centroid C

480 rpm 50.265 rad/sω = =

2 3 2 2(6.667 10 m)(50.265 rad/s) 16.844 m/sa rω −= = × =

2eff( ) : (30 kg)(16.844 m/s )Σ = Σ = =F F mA a

505 N=A !

Page 97: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 78.

(a)

1 0.35 kg/m(0.2 m) 0.07 kgm = =

( )( )2 0.35 kg/m 2 0.2 mm π=

0.43982 kg=

4 rad/sω π=

( )( )( )2

0.07 kg 0.2 m 4 rad/s: 1.1054 N

2x xF Aπ−

Σ = = −

1 2: (0.07)(9.81) (0.43982)(9.81) 5.0013 Ny yF A m g m gΣ = + = + =

1 (0.07)(9.81)(0.2): 0.06867 N m

2 2Am gr

M MΣ = − = = ⋅

or 0.0687 N m= ⋅M !

and 2 2( 1.1054) (5.0013) 5.122 NR = − + =

or 5.12 N=R 71.5° !

(b)

: 0x xF AΣ =

1 2 1.1054y yF A m g m gΣ = − − =

6.1067 NyA =

:AMΣ or 0=M !

and 6.11 N=R !

Ay Ax

m1g

m2g

=

21 2

rm ω

Page 98: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 79.

0 2

Laω α= =

( )eff:

2 2A AL L

M M W I maαΣ = Σ = +

21

2 12 2 2

L L Lmg mL mα α⎛ ⎞= + ⎜ ⎟

⎝ ⎠

21 3

2 3 2

L gmg mL

Lα= α =

( )eff

:2y yL

F F A mg ma m αΣ = Σ − = − = −

3

2 2

L gA mg m

L⎛ ⎞⎛ ⎞− = − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

3

4A mg mg− = −

1

;4

A mg= 1

4mg=A !

/ 0B A B A Lα= + = +a a a

3 3

2 2Bg

L gL

⎛ ⎞= =⎜ ⎟⎝ ⎠

a ; 3

2B g=a !

Page 99: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 80.

Let , 2LS b a Sα= − =

( )eff :C CM M WS I maSαΣ = Σ = +

( )2112

mgS mL m S Sα= +

2 2112

mgS m L S α = +

22

12

SgL S

α =+

(1)

For rotation about C: 2ALa S= −

2

2 22 2

2 2

12 12

A

L LS Sg S Sa g

L LS S

− − = =

+ +

( )2

2 22 6

12ALS Sa gL S

−=+

Differentiate with respect to S.

( )( ) ( )( )

( )( )

2 2 2

22 2

12 4 2 246

12A

L S L S LS S Sda gdS L S

+ − − −=

+

Page 100: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Set numerator equal to zero 3 2 2 3 2 34 12 48 24 48 0L SL S L S S L S− + − − + =

3 2 24 12 0L SL S L− − =

( )2 24 12 0L L SL S− − =

( )( )6 2 0L L S L S− + =

and 2 6L LS S= − =

(a) For , 2LS b L= − = and support was at B, impossible

For , 6 3L LS b= = this results in max Aa

3Lb = "

(b) Eq. 1 with 6LS =

22

136 6 1 2

912 6

L g g gL LL L

α α= = = +

3 16 2 2AL ga S g

Lα = = =

1Max:

2Aa g= "

( )eff:y yF F C mg maΣ = Σ − = −

C mg mSα− = −

36 2L gC mg m

L − = −

14

C mg mg− = −

34

mg=C "

Page 101: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 81.

(a) 2

2 21 119

4 3 12ABr

I mr mL m= + =

219

2 12zL mr

M mg mgr α⎛ ⎞Σ = = =⎜ ⎟⎝ ⎠

12

19

g

rα =

( )12 242

19 19Dg g

a rr

= = 24

19Dg−=a j!

(b)

4 12 4 16

3 19 3 19

r g gαπ π π

⎛ ⎞ = =⎜ ⎟⎝ ⎠

4 4

319G

g

π⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

a i j !

or:

Page 102: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 82.

/: = +B A B AKinematics a a a

aB = aA 2

Lα =

2

3

Lα 2

aG =

3

2 3x AE

mLF T

α⎛ ⎞Σ = =⎜ ⎟⎜ ⎟

⎝ ⎠

1

2 2y AE BFmL

F T T mgα⎛ ⎞Σ = + − = −⎜ ⎟

⎝ ⎠

21 1

2 2 2 12G AE BFL L

M T T mL α⎛ ⎞⎛ ⎞ ⎛ ⎞Σ = − + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Solve for, (a) 3

4

g

Lα = !

3( ) ,

2 8AE BFmg mg

b T T= = !

unknowns: , ,AE BFT T α

30°

3

2

Page 103: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 83.

We represent the effective forces of the disk by a couple DI αααα and the effective forces of the rod by vectors ( )R R tm a and ( )R R nm a attached at C and a couple .RI αααα We have,

2 3 21 (3 kg)(0.120 m) 21.6 10 kg m2DI −= = × ⋅

2 3 214 kg, (4 kg)(0.48 m) 76.8 10 kg m12

−= = = × ⋅R Rm I

( ) 0.12α=R ta

2( ) 0.12ω=R na

eff( ) :A AM MΣ = Σ

(0.12) 4 (0.12) ( ) (0.12)α α− = + +D R R R tP g I I m a

3 30.12( 4 ) 21.6 10 76.8 10 4(0.12 )(0.12)α α α− −− = × + × +P g

4 1.300α− =P g (1)

eff( ) : ( )x x x R R nF F A m aΣ = Σ = −

24(0.12 )xA ω= − 20.48xA ω= − (2)

eff( ) : 4 3 ( )Σ = Σ − − − =y y y R R tF F A P g g m a

7 4(0.12 )α= + +yA P g 7 0.48α= + +yA P g (3)

Page 104: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(a) making 236 rad/s in (1):α =

4(9.81) 1.3(36) 86.04 NP = + = 86.0 N=P "

(b) making 212 rad/s in (2) and 86.04, 36 rad/s in (3) :Pω α= = =

20.48(12) 69.12 NxA = − = − 69.1 Nx =A "

86.04 7(9.81) 0.48(36)yA = + + 172.0 N=yA "

Page 105: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 84.

(4 lb)(0.5 ft) (4 lb)(1.25 ft) 6 lb ftAMΣ = + − ⋅ 2 2

2 21 4 lb 4 lb2 (1 ft) (0.5 ft)

12 32.2 ft/s 32.2 ft/sα α

= +

2 2

2 24 lb 4 lb(1.25 ft) [0.5 ft(0.866)]

32.2 ft/s 32.2 ft/sα α

+ +

(7 6) lb ft (0.26915)α− ⋅ = 23.7154 rad/sα =

or 23.72 rad/s=αααα !

(a)

(b)

Page 106: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(4 lb)(0.25 ft) (1 ft)(sin 30 )Σ = − °BM T

22 2

1 4 lb 4 lb(1 ft) (1.25 ft)(0.25 ft)12 32.2 ft/s 32.2 ft/s

α α

= +

24 lb (0.5 ft)(cos.30 )(0.433 ft)

32.2 ft/sα

+ °

0.07246 (0.07246)(3.7154) 1 (0.5) 0.26922Tα= = = − =

1.462 lbT =

or 1.462 lbT = !

Page 107: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 85.

From P16.84

ABC, 7 0.26915AM M αΣ = − =

BC, 1 0.5 0.07246BM T αΣ = − =

1 (0.5)(0.45) 0.07246 α− =

(a) 210.695 rad/sα =

or 210.70 rad/sα = !

(b) 7 0.2695 4.12 ft lbM α= − = ⋅

or 4.12 ft lbM = ⋅ !

Page 108: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 86.

eff( ) :2 2

α Σ = Σ − = +

! !!A A AB ABM M mg B I ma

21 12 2 2 2

α α − = +

! !! ! ! AB ABmg B m m

21 12 3

α− =! ! ! ABmg B m (1)

Rod CD ( 0)CDω =

eff( ) :2 2 2

α Σ = Σ + = +

! ! !D D CD CDM M mg B I ma

21 1 12 2 2 2 2

α α + = +

! !! ! ! CD CDmg B m m

Multiply by 2: 22

3α+ =! ! ! CDmg B m (2)

Adding (1) and (2): 23 1 22 3 3

α α = +

! ! AB CDmg mg (3)

continued

Page 109: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

We rewrite eq. (3) as follows:

922

α α + = !AB CD

g (3')

Kinematics

we must have ( Ba ) ( B′= a )

2AB CDα α= !!

2α α= !AB CD (4)

substituting for ABα from (4) into (3'):

1 922 2

α α + = !CD CD

g

5 92 2

α = !CD

g 1.8α =!CDg (5)

(a) Acceleration of C:

(1.8)C CDga α = =

! !

! 1.8=C ga "

(b) Force on knob B:

substituting for CDα from (5) into (2):

22 (1.8)3

+ =

! ! !!gmg B m

1.2B mg mg= − 0.2= mgB "

Page 110: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 87.

( ) ( )eff:C C CM M M ma r I αΣ = Σ Σ = +

( )mr r Iα α= +

( )2CM mr I αΣ = +

But, we know that 2CI mr I= +

Thus: C CM I αΣ = (Q.E.D.) !

Page 111: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 88.

Kinematics:

/C G C= +a a a

( )/ /C G C G C= + × + × ×a α r ω ω r

or, since ω ⊥ /G Cr

2/ /C G C G Cω r= + × −a a α r

(1)

Kinetics:

( ) /eff:C C C G CM M I mΣ = Σ Σ = + ×M α r a

Recall Eq. (1): ( )2/ / /C G C C G C G CI m ω rαΣ = + × + × −M r a α r

( ) 2/ / / / /C G C C G C G C G C G CI r ma mr r mωαΣ = + × + × × − ×M α r r

But: / / 0G C G C× =r r and α ⊥ /G Cr

( ) 2/ / /G C G C G Cr m mr× × =α r α

Thus: ( )2/ /C G C G C CI mr mΣ = + + ×M α r a

Since 2/C G CI I mr= +

/C C G C CI mΣ = + ×M α r a (2)

Eq. (2) reduces to C CM I αΣ = when / 0;G C Cm× =r a that is, when /G Cr and Ca are collinear.

Referring to the first diagram, we note that this will occur only when points G, O, and C lie in a straight line.

(Q.E.D.) !

Page 112: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 89.

Kinematics: 20

1

2S v t at= +

( )215 m 0 40 s

2a= +

20.00625 m/s=a

Since 30 mm 0.03 mr = =

( )2; 0.00625 m/s 0.03 ma rα α= =

20.20833 rad/sα =

Kinetics:

( )eff:C CM MΣ = Σ

( ) ( )sin15mg r I ma rα° = +

( ) ( )2sin15mg r mk mr rα α° = +

( )2 2sin15gr k r α° = +

( )( ) ( ) ( )22 2 29.81 m/s 0.03 m sin15 0.03 m 0.20833 rad/sk⎡ ⎤° = +⎢ ⎥⎣ ⎦

2 20.36472 m 0.60392 mk k= ⇒ =

or 0.604 mk = !

Page 113: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 90.

2I mk=

m rα=

( ) ( ) ( )eff: sinC CM M mg r I ma rβ αΣ = Σ = +

2 2sinmg r mk mrβ α α= +

2 2

singr

r kα β=

+ (1)

eff : sinF F F mg maβΣ = Σ − = −

sinF mg mrβ α− = −

sinF mg mrβ α= −

eff : cos 0F F N mg βΣ = Σ − =

cosN mg β=

If slipping impends ors sF

F NN

μ μ= =

sinsin

cos coss

rgF mg mr

N mg

β αβ αμ

β β

−−= = =

Substitute for α from Eq (1)

2 2sin sin

coss

r gr

g r kβ β

μβ

− ⋅+=

2 2

2 2 2 2tan 1 tansr k

r k r kμ β β

⎡ ⎤ ⎡ ⎤= − =⎢ ⎥ ⎢ ⎥

+ +⎣ ⎦ ⎣ ⎦

2 2

2tan sr k

kβ μ +=

2

tan 1sr

kβ μ

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

!

Page 114: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 91.

General case: 2I mk a rα= =

( )effC CM MΣ = Σ

( )sinw r I marβ α= +

2 2sinmg r mk mrβ α α= +

2 2sinrg

r kβα =

+

(1)

For pipe: 2

2 21sin sin2P

rk r a g gr r

β β= = =+

For cylinder: 2

2 22

2

1 2sin sin2 3

2

Crk r a g g

rrβ β= = =

+

For sphere: 2

2 2

2 2

2 5sin sin25 75

Srk r a g g

r rβ β= = =

+

(a) Between pipe and cylinder

/2 1 1sin sin3 2 6C P C Pa a a g gβ β = − = − =

2 2/ /

1 1 1 sin2 2 6C P C Px a t g tβ = =

US units: ( ) ( )22/

1 1 32.2 ft/s sin 6 s 20.08427 ft2 6C Px β = =

/ 20.1 ftC Px = !

SI units: ( ) ( )22/

1 1 9.81 m/s sin 6 s 611884 m2 6C Px β = =

/ 6.12 mC Px = !

continued

Page 115: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(b) Between sphere and cylinder

/5 2 1sin sin7 3 21S C S Ca a a g gβ β = − = − =

2 2/ /

1 1 1 sin2 2 21S C S Cx a t g tβ = =

US units: ( ) ( )22/

1 1 32.2 ft/s sin12 6 s 5.7384 ft2 21S Cx = ° =

or / 5.74 ftS Cx = !

SI units: ( ) ( )22/

1 1 9.81 m/s sin12 6 s 1.7482 m2 21S Cx = ° =

or / 1.748 mS Cx = !

Page 116: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 92.

Kinematics:

(a)

12 in. = 1 ftr =

22

80 lb 80lb s /ft

32.232.2 ft/sm = = ⋅

80

50 80 sin 15 (1)32.2x

F F mrα α⎛ ⎞∑ = − ° − = = ⎜ ⎟⎝ ⎠

80 cos 15 0, 80 cos 15 77.274 lbyF N N∑ = − °= = °=

2 21 3

50(1) (80 sin 15 )(1) ( )2 2

α α α∑ = − ° = + =CM mr mr r mr

27.8607 rad/s, = 7.86 ft/sGaα = 15° !

(b)

80

50 80 sin 15 (1)(7.8607) 9.7648 lb32.2

F = − °− =

9.7648

0.1263777.274s

F

Nμ = = = 0.1264sμ = !

Page 117: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 93.

( )8ft 0.66667 ft

12a rα α α⎛ ⎞= = =⎜ ⎟

⎝ ⎠

2

22

10 lb 6ft

1232.2 ft/sI mk

⎛ ⎞= = ⎜ ⎟⎝ ⎠

20.07764 lb ft s= ⋅ ⋅

( ) ( ) ( )eff

8: 5 lb ft

12C CM M ma r I α⎛ ⎞Σ = Σ = +⎜ ⎟⎝ ⎠

( )2

22

10 lb 83.3333 lb ft ft 0.07764 lb ft s

1232.2 ft/sα α

⎛ ⎞⎛ ⎞⋅ = + ⋅ ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

215.4558 rad/sα = or 215.46 rad/sα = !

(a) ( )2 28ft 15.4558 rad/s 10.3039 ft/s

12a rα ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

or 210.30 ft/s=a !

(b) 0 10 lb 0 10 lbyF N NΣ = − = =

( ) ( )22eff

10 lb: 5 lb 10.3039 ft/s

32.2 ft/sx xF F F ma

⎛ ⎞Σ = Σ − = = ⎜ ⎟

⎝ ⎠

1.800 lbF =

Now ( )min

1.800 lb0.180

10 lbsF

Nμ = = =

or ( )min0.18sμ = !

Page 118: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 94.

( )8ft 0.66667 ft

12a rα α α⎛ ⎞= = =⎜ ⎟

⎝ ⎠

2

22

10 lb 6ft

1232.2 ft/sI mk

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

20.07764 lb ft s= ⋅ ⋅

( ) ( )eff

12: 5 lb ft

12C CM M mar I α⎛ ⎞Σ = Σ = +⎜ ⎟⎝ ⎠

( )( ) ( )22

10 lb 85 lb ft 0.66667 ft ft 0.07764 lb ft s

1232.2 ft/sα α

⎛ ⎞ ⎛ ⎞⋅ = + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

( )2 25 lb ft 0.21567 ft s , 23.1839 rad/sα α⋅ = ⋅ =

or 223.2 rad/s=α !

(a) ( )2 28ft 23.1839 rad/s 15.4559 ft/s

12a rα ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

or 215.46 ft/s=a !

(b) 0: 10 lb 0 10 lbyF N NΣ = − = =

( ) ( )22eff

10 lb: 5 lb 15.4559 ft/s

32.2 ft/sx xF F F ma

⎛ ⎞Σ = Σ − = = ⎜ ⎟

⎝ ⎠

0.20 lbF =

( )min

0.200.020

10sF

Nμ = = =

( )min0.020sμ = !

Page 119: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 95.

8ft 0.66667

12a rα α α⎛ ⎞= = =⎜ ⎟

⎝ ⎠

2

22

10 lb 6ft

1232.2 ft/sI mk

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

20.07764 lb ft s= ⋅ ⋅

( ) ( )eff

4: 5 lb ft

12C CM M mar I α⎛ ⎞Σ = Σ = +⎜ ⎟⎝ ⎠

( )21.6667 lb ft 0.21567 ft s α⋅ = ⋅

27.7280 rad/sα =

or 27.73 rad/sα = !

(a) ( )2 28ft 7.7280 rad/s 5.1520 ft/s

12a rα ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

or 25.15 ft/s=a !

(b) 0: 10 lb 0, 10 lbyF N NΣ = − = =

( ) ( )22eff

10 lb: 5 lb 5.1520 ft/s

32.2 ft/sx xF F F ma

⎛ ⎞Σ = Σ − = = ⎜ ⎟

⎝ ⎠

3.3999 lbF =

( )min

3.3999 lb0.39999

10 lbsF

Nμ = = =

( )min0.340sμ = !

Page 120: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 96.

( )8ft 0.66667 ft

12a rα α α⎛ ⎞= = =⎜ ⎟

⎝ ⎠

2

22

10 lb 6ft

1232.2 ft/sI mk

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

20.07764 lb ft s= ⋅ ⋅

( ) ( )eff

4: 5 lb ft

12C CM M mar I α⎛ ⎞Σ = Σ = +⎜ ⎟⎝ ⎠

( )21.6667 lb ft 0.21567 ft s α⋅ = ⋅

27.7280 rad/sα =

or 27.73 rad/s=α !

(a) ( )2 28ft 7.7280 rad/s 5.15201 ft/s

12a rα ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

or 25.15 ft/s=a !

(b) 0: 5 10 lb 0 5 lbyF N N= + − = =

( ) ( )22eff

10 lb: 5.15201 ft/s

32.2 ft/sx xF F F ma

⎛ ⎞Σ = Σ = = ⎜ ⎟

⎝ ⎠

1.600 lbF =

( )min

1.600 lb0.32

5 lbsF

Nμ = = =

or ( )min0.32sμ = !

Page 121: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 97.

Assume disk rolls: ( )0.16 ma rα α= =

( )( )22 5 kg 0.12 mI mk= =

20.072 kg m= ⋅

( ) ( )( ) ( )eff: 20 N 0.16 mC CM M ma r I αΣ = Σ = +

( )( ) ( )2 23.2 N m 5 kg 0.16 m 0.072 kg mα α⋅ = + ⋅

216 rad/sα =

or 216 rad/s=α !

( )( )2 20.16 m 16 rad/s 2.56 m/sa rα= = =

or 22.56 m/s=a !

( )eff: 20 Nx xF F F maΣ = Σ − + =

( )( )220 N 5 kg 2.56 m/sF− + =

7.2 NF =

( ) ( )( )2

eff: 0 5 kg 9.81 m/sy yF F N mg NΣ = Σ − = =

49.05 N=

( )0.25 49.05 N 12.2625 Nm sF Nμ= = =

Since ,mF F< disk rolls with no sliding !

Page 122: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 98.

Assume disk rolls:

( )0.16a r mα α= =

( )( )22 25 kg 0.12 m 0.072 kg mI mk= = = ⋅

( ) ( )( ) ( )eff: 20 N 0.24 mC CM M ma r I αΣ = Σ = +

( )( ) ( )2 24.8 N m 5 kg 0.16 m 0.072 kg mα α⋅ = + ⋅

224.0 rad/sα = or 224.0 rad/sα = !

( )( )2 20.16 m 24 rad/s 3.84 m/sa = =

23.84 m/s=a !

( )eff: 20 Nx xF F F maΣ = Σ − + =

( )220 N 5 kg 3.84 m/s , 0.8 NF F− + = =

( )20: 0 5 kg 9.81 m/s 49.05 NyF N mg NΣ = − = = =

( )0.25 49.05 12.2625 Nm sF Nμ= = =

Since ,mF F< disk rolls with no sliding !

Page 123: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 99.

(a)

Assume disk rolls:

( )0.16 ma rα α= =

( )( )22 5 kg 0.12 mI mk= =

20.072 kg m= ⋅

( ) ( )( ) ( )2eff : 20 N 0.08 mC CM M I mr αΣ = Σ = +

( )( )221.6 N m 0.072 kg m 5 kg 0.16 m α ⋅ = ⋅ +

28 rad/sα =

( )( )2 20.16 m 8 rad/s 1.28 m/sa rα= = =

( )eff : 20 Nx xF F F maΣ = Σ − =

( )( )220 N 5 kg 1.28 m/s ; 13.6 NF F− = =

( )( )20: 0; 5 kg 9.81 m/s 49.05 NyF N mg NΣ = − = = =

( )0.25 49.05 N 12.263 Nm sF Nµ= = =

,mF F> Disk slides !

(b) Since disk slides, ( )0.20 0.20 49.05 N 9.81 Ns mFµ = ⇒ = =

( ) ( ) ( )( )eff : 0.16 m 20 N 0.08 mG GM M F I αΣ = Σ − =

( )( ) ( )( ) ( )29.81 N 0.16 m 20 N 0.08 m 0.072 kg m α− = ⋅

20.42222 rad/sα = −

or 20.422 rad/sα = !

continued

Page 124: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( )eff : 20 N 9.81 Nx xF F ma∴ Σ = Σ − =

( ) 210.19 N 5 kg 2.038 m/sa a= =

or 22.04 m/s=a !

Page 125: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 100.

Assume disk rolls: ( )0.16 ma rα α= =

( )( )22 5 kg 0.12 mI mk= =

20.072 kg m= ⋅

( ) ( )( ) ( )eff: 20 N 0.08 mC CM M ma r I αΣ = Σ = +

( )( ) ( )2 21.6 N m 5 kg 0.16 m 0.072 kg mα α⋅ = + ⋅

28 rad/sα = or 28 rad/sα = !

( )( )2 20.16 m 8 rad/s 1.28 m/sa rα= = =

or 21.28 m/s=a !

( ) ( )( )2eff

: 5 kg 1.28 m/s 6.40 Nx xF F F maΣ = Σ = = =

( )( )20 20 N 0, 20 N 5 kg 9.81 m/s 0yF N mg NΣ = + − = + − =

29.05 NN =

( )0.25 29.05 N 7.2625 Nm sF Nμ= = =

Since ,F Fm< disk rolls without sliding !

Page 126: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 101.

(a)

10 832.2 12

ma α =

where α is angular acceleration of bar AD and bar BE about fixed axes of rotation. The plate is translating so A Ba a=

Plate: 2 30;∑ = = −GM R R

Bar AD: 2

24 8 1 3 8(3 lb) ft (cos 45 ) ft ft

12 12 3 32.2 12DM R α ∑ = ° − =

20.7071 0.6667 0.01380R α− = (1)

Note for bar BE EM∑ would yield

40.7071 0.6667 0.01380R α− =

Therefore 4 2 1 3;= =R R R R

210 82 (10 lb) (cos 45 ) = ft

32.2 12F R α Σ = + °

22 7.0711 0.20704R + = (2)

Solve eq (1) and (2) for α and 2R

20.6667 0.01380 0.70711R α+ = (3)

22 (0.20704) 7.0711R α− = − (4)

continued

Page 127: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

From equations (3) and (4):

237.00 rad/sα =

2 28 8ft ft (37.00 rad/s ) 24.667 ft/s10 12

a α = = =

or 224.7 ft/sa = 45° !

(b)

21 ( 7.0711 lb) (0.20704)(37.00) 0.2946 lb2

R = − + =

Now 2 3cos 45 ( ) cos 45 2(0.2946) (0.707)= °+ − °=BF R R

0.417 lb= 0.417 lbBF = !

Page 128: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 102.

From 16.101, For BE, equation (1)

20.7071 0.6667 0.01380R α− = (1)

30 0GM R∑ = ⇒ =

210 8

(10)(cos 45 )32.2 12

F R α⎛ ⎞ ⎛ ⎞∑ = + ° = ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2)

Solving equations (1) and (2)

20.6667 (0.01380) 0.7071R α+ = (3)

2 0.20704 7.0711R α− = − (4)

Take 1.5 ∗ (3) – (4) and solve for α:

28(35.706) 23.804 ft/s

12α ⎛ ⎞= =⎜ ⎟

⎝ ⎠

or 223.8 ft/sa = 45° !

And

2 7.0711 (0.20704) (35.706) 0.321 lbR = − + =

or 2 0.321 lbR = 45° !

Page 129: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 103.

Kinematics:

Since gear D is fixed, we have for point E of gear C:

( ) = 0E ta But /E B E B= +a a a

/( ) ( ) ( )E t B t E B ta a a= +

0 0.2 0.1α α= −AB C 12

α α=AB C (1)

Kinetics—gear C:

eff( ) :B BM M∑ = ∑

(0.1 m) α= C CQ I

2(5 kg)(0.075m) α= C

0.28125α= CQ (2)

Page 130: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Bar AB and gear C

212AB ABI m L=

21 (3 kg)(0.2 m)12

=

(a) eff( ) :A AM M∑ = ∑

(0.1) (0.1) (0.2) ( ) 0.1 ( )0.2α α− + = + + +AB C AB AB AB C B C CW Q W m a I m a I

21(3) (0.1) (0.1) (5 ) (0.2) (3)(0.1 ) (0.1) (3)(0.2)12AB ABg Q g α α− + = +

25(0.2 )0.2 5(0.075)α α+ +AB C

(1.3) 0.1 0.24 0.028125ABg Q α α− = −

Substituting for ABα and Q from (2) and (1):

11.3 0.1(0.28125 ) 0.24 0.0281252

α α α − = +

C C Cg

1.3 0.17625 α= Cg 7.3759(9.81)α =C

72.36α =C 72.4 rad/sC =α "

(b) 10.2 0.2 0.1 0.1(72.36)2

α α α = = = =

B AB C Ca

27.24 m/s=Ba "

Note: The same numerical values are obtained for Cα and Ba in Prob. 16.104

Page 131: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 104.

Kinematics:

Since gear D is fixed, we have for point E of gear C:

( ) = 0E ta But /E B E B= +a a a

/+ ( ) ( ) ( )E t B t E B ta a= + a

0 0.2 0.1α α= −AB C

12AB Cα α= (1)

Gear C

eff( ) :B BM M∑ = ∑

(0.1m) α= C CQ I

2(5 kg) (0.075 m) Cα=

0.28125 α= CQ (2)

Page 132: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Bar AB and gear C

(a) eff( ) :A AM MΣ = Σ

(0.1) (0.2) (0.3) ( ) 0.1 ( )0.2α α+ − = + + −AB C AB AB AB C B C CW W Q m a I m a I

21(3) (0.1) (5) (0.2) (0.3) 3(0.1 )0.1 (3)(0.2)12AB ABg g Q α α+ − = +

25(0.2 )0.2 5(0.075)α α+ −AB C

(1.3) 0.3 0.24 0.028125α α− = −AB Cg Q

Substituting for ABα and Q from (2) and (1):

11.3 0.3(0.28125 ) 0.24 0.0281252

α α α − = −

C C Cg

1.3 0.17625 α= Cg 7.3759(9.81)α =C

72.36Cα = 272.4 rad/s=Cαααα !

(b) 10.2 0.2 0.1 0.1(72.36)2B AB C Ca α α α = = = =

27.24 m/s=Ba !

Note: The same numerical values were obtained for cα and Ba in Prob. 16.103

Page 133: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 105.

Let 2

2 23 2 83,

8 5 320= − = − =r mr

OG r I mr mr

2sin ( ) ( )ρ θ α αΣ = − = + −M mg r r I m r r

2

( ) sin

( )

mg r r

I m r r

θα −=+ −

22

5sin

8

83 5320 8

rmg

mr rm

θα

⎛ ⎞⎜ ⎟⎝ ⎠=

⎛ ⎞+ ⎜ ⎟⎝ ⎠

25 sin

26

g

r

θα = !

Page 134: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 106.

Let 2 24 1,

3 2π= = = −r

OG r I mr mr

( )2

2 1 169 32

2 9 18

mrmr π

π π2

2 2⎛ ⎞= − = −⎜ ⎟⎝ ⎠

From Prob 16.105:

( )

( )2

sinmg r r

I m r r

θα

−=

+ −

( )22

4sin

3

49 32

318

rmg r

mr rm r

θπα

πππ

22

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞− + − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

41 sin

33 82 3

g

r

θπα

π

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎛ ⎞−⎜ ⎟⎝ ⎠

( )

( )2 3 sin

9 16

g

r

π θα

π− 4

=−

!

Page 135: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 107.

2

22

2

2 41G

rI mr m mr

π π⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2

1xF F mrαπ

⎛ ⎞Σ = = −⎜ ⎟⎝ ⎠

2 2

2

4 2 21 1 1

2Dr

M P mr mrα απ ππ

⎛ ⎞ ⎛ ⎞⎛ ⎞Σ = = − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2 2 2 22 2

4 2 42mr mr mr mr mrα α

ππ π⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2 22 2mr mr α

π⎛ ⎞= −⎜ ⎟⎝ ⎠

(a) 2

4 1

P

mrα

π

=⎛ ⎞−⎜ ⎟⎝ ⎠

or 0.688P

mrα = !

(b)

21

2 44 1

PP

F mrmr

π

π

⎛ ⎞−⎜ ⎟⎝ ⎠= =⎛ ⎞−⎜ ⎟⎝ ⎠

0:yF N mg PΣ = = +

and ( )4sF P

N mg Pμ = =

+ or ( )

0.25s

P

mg Pμ =

+ !

Page 136: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 108.

22

41GI mr

π⎛ ⎞= −⎜ ⎟⎝ ⎠

2

1xF F P mrαπ

⎛ ⎞Σ = − + = −⎜ ⎟⎝ ⎠

22 2

2

3 4 21 1

2Dr

M P r mr mrα αππ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Σ = − = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

3 4 2

1 2 2 12

P mr mrα απ π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

(a) 2 3

84

P

mrα

π

⎛ ⎞⎜ ⎟−= ⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠

!

0.1843

or P

mrα⎛ ⎞=⎜ ⎟

⎝ ⎠

(b) 2 2 3

18

4

PF P mr

mrππ

⎛ ⎞⎜ ⎟−⎛ ⎞= − − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟−⎜ ⎟⎝ ⎠

3

1 , or 0.9332 2

PF P

⎛ ⎞= + =⎜ ⎟⎜ ⎟

⎝ ⎠

0, yF N mgΣ = =

Minimum

31

2

2s

PF

N mgμ

⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠= = s0.933

or P

mgμ = !

Page 137: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 109. Kinematics: ω = 0 / 0 [ α= + = +O A O A ra a a ]

/= = +G O G Oa a a a

[ α= r ] + [ αx ]

Thus x rα=a , y xα=a (1)

Kinetics:

( ) ( ) ( )eff : αΣ = Σ = + +A A x yM M Wx ma r ma x I

( ) ( ) 2mg x mr r mx x mkα α α= + +

2 2 2gx

r x kα =

+ + (2)

Page 138: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( )eff : ;x x xF F F ma F mrαΣ = Σ = =

( )eff: ;y y yF F N W ma N mg mxαΣ = Σ − = − = −

minF mrN mg x

αµα

= =−

minr

g xαµ

α=

− (3)

For a hemisphere

38

x OG r= = 2

2 22 35 8

= − = −

OI I mx mr m r

2 22 95 64

I mr mr= − 2 22 95 64

Ik rm

= = −

Substituting into (2)

2 2 2

3 3158 8

79 2 9 56564 5 64

g rg gr rr r r

α

= = = + + −

(a) Substituting into (3)

min

150.2678656

3 15 0.8995518 56

µ = = −

min 0.298µ = "

(b) ( ) ( ) 3015256 56B

gga r rr

α = = 2 = 0.536=B ga "

Note: In this Problem and the next we cannot use the equation ,A AM I α∑ = since points A, O, and G are not aligned.

Page 139: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 110.

Kinematics: Choose positive Bv and Ba to left

Trans. with B + Rotation Abt. B = Rolling motion

2Ba rω = + a B

r aR +

Kinetics:

( )eff :C CM MΣ = Σ

( ) ( )y xPR Wr ma r ma R I α− = + +

( )2 2 BB B

r aPR mgr m a r m a r R mkR R

ω − = + + +

22 2

BB

r k vma R mr RR R r

= + + +

2 2

22 21B B

r r k rP mg ma m vR R R

+ = + + + (1)

Page 140: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Substitute: 23.5 lb3.5 lb,

32.2 ft/smg m= =

0.9 ft 0.075 ft12

r = =

3 ft 0.25 ft12

R = =

2.2 ft 0.18333 ft12

k = =

( )20.075 ft 3.5 lb3.5 lb0.25 ft 32.2 ft/s BP a = +

( ) ( )( ) ( )

2 22

2 2 20.075 ft 0.18333 ft 3.5 lb 0.75 ft 1

32.2 ft/s0.25 ft 0.25 ftBv

+ × + +

( ) ( )2 2 2 21.05 lb 1.7693 lb/ft s 0.13043 lb/ft sB BP a v= + ⋅ + ⋅

Substitute: 1.05 ft/sBv = ; 1.05 ft/sBv = +

23.6 ft/sBa = ; 23.6 ft/sBa = +

( )( ) ( )( )22 2 2 21.05 lb 0.17693 lb/ft s 3.6 ft/s 0.13043 lb/ft s 1.05 ft/sP = + ⋅ + ⋅

1.05 lb 0.63695 lb 0.14380 lb 1.83075 lb= + + =

1.831 lbP = "

Page 141: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 111.

Kinematics:

= aA + Lα, 0.7071Aa Lα=

aG = aA + 2

Lα = 0.7071 Lα + 2

Lα =

PM m+ ∑ = ( )0.70712

Lg

1

12m= 2L mα +

2 2

L Lα ⎛ ⎞⎜ ⎟⎝ ⎠

3

0.70712

g

Lα ⎛ ⎞= ⎜ ⎟⎝ ⎠

232.2 ft/s , 3 ft,g L= = (a) 211.38 rad/s=α !

( )0.70712x

m LmLF T

α∑ = = = ( )0.5 3

2

g

L

3

8mg

⎛ ⎞=⎜ ⎟⎝ ⎠

(b) 5.63 lb=T !

3 5

,8 8yF N mg mg N mg∑ = − = − =

(c) 9.38 lb=N !

aB

2

Lα 45°

Page 142: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 112.

y components

16

sin 30 sin 60Ga α°= °12

( ) 16 30.5

2Ga α=12

From Kinematics ⇒ 16

3Ga α=12

L 16

Note: ft;2 12

= 32

ft;12

PA = 16

3 ft12

PG =

( )2

2

16 1 16 lb 3216 lb ft cos30 ft

12 12 1232.2 ft/sPM α

⎛ ⎞⎛ ⎞ ⎛ ⎞∑ = ° = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( )2

2

16 lb 16ft 3 3

1232.2 ft/sα

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )18.4752 0.29446 2.6501 α= +

(a) 26.2744 rad/sα =

26.27 rad/s=α !

(b) ( )2

22

16 1 16 lb 32ft cos30 ft 6.2744 rad/s

12 2 1232.2 ft/sG AM N⎛ ⎞⎛ ⎞ ⎛ ⎞∑ = ° =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

1.600 lbAN =

or 1.600 lbAN = !

Page 143: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 113.

2

1 2b PG rπ

⎛ ⎞= = −⎜ ⎟⎝ ⎠

2

2 22

rI mr mα α

π⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

2 81mr α

π2⎛ ⎞= −⎜ ⎟⎝ ⎠

PM m∑ = g r2

22

2 8 21 1 2 1mr α

π ππ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

m= 2r8

3απ

⎛ ⎞−⎜ ⎟⎝ ⎠

(a)

21

,8

3

g

r

πα

π

⎛ ⎞−⎜ ⎟⎝ ⎠=⎛ ⎞−⎜ ⎟⎝ ⎠

231.4 rad/s=α !

(b)

22

12

18

3x B

mgF N mb mr

α παπ

π

⎛ ⎞−⎜ ⎟⎝ ⎠⎛ ⎞∑ = = = − =⎜ ⎟⎝ ⎠ ⎛ ⎞2 −⎜ ⎟⎝ ⎠

5.71 NBN = !

Page 144: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 114.

From 16.113:

22 8

1 3PM mg r Fr mr απ π

⎛ ⎞ ⎛ ⎞∑ = − − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

227.5 rad/s=α !

Page 145: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 115.

Kinematics: Assume αααα ( )0ω =

/= +A B A Ba a a

aA 25° = aB + 1.5 α 35°

Law of sines:

1.5sin 60 sin 65

Ba α=° °

1.4333Ba α=

/ 1.4333 α= = + =G B G Ba a a a 0.75 α+ 35°

0.75 cos 35α= °xa 0.61436 α=

1.4333 α= −ya 0.75 sin 35α+ ° 1.0031 α=

Kinetics:

Law of sines: ( )sin 60, 1.5 m 1.4333 msin 60 sin 65 sin 65

°= = =° ° °

EB AB EB

Page 146: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( )1.4333 m 0.75 m cos55 1.0031 mED EB DB= − = − °=

0.75 sin 55 0.61436 mDG = °=

(a) ( ) ( ) ( ) ( )eff : α∑ = ∑ = + +E E x yM M W ED I ma DG ma ED

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )216 9.81 1.0031 6 1.5 6 0.61436 0.6143612

α α= +

( ) ( ) ( )6 1.0031 1.0031α+

( )59.04 1.125 2.2646 6.3778 α= + +

59.04 9.427 6.263,α α= = + 26.26 rad/s=α "

( ) 20.61436 6.263 3.848 m/sxa = =

( ) 21.0031 6.263 6.282 m/sya = =

(b) ( )eff :A AM M∑ = ∑

( ) ( )0.75 cos55 1.5 sin 55W B° − °

( ) ( )0.75 cos55 0.75 sin 55y xI ma maα= + ° − °

( ) ( ) ( )6 9.81 0.75 cos55 1.5 sin 55B° − °

( ) ( ) ( ) ( ) ( ) ( ) ( )21 6 1.5 6.263 6 6.282 0.75 cos55 6 3.848 0.75 sin 5512

= + ° − °

25.321 1.2287 7.046 16.214 14.184− = + −B

16.245 1.2287B= 13.22 N=B "

Page 147: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 116. Kinematics: 24 m/sB =a ( )0ω =

/A B A B= +a a a

aA 25° = 4 + 1.5 α 35°

Law of sines:

1.5 4sin 65 sin 60

α =° °

22.7907 rad/s=αααα

/ 4G B A B= = + =a a a a ( )0.75 2.7907+ 35°

( )0.75 2.7907 cos35x = °a 21.7145 m/s=

4y =a ( )0.75 2.7907 sin 35+ ° 22.7995 m/s=

Kinetics: ( )( )22 21 1 6 kg 1.5 m 1.125 kg m12 12

I m= = = ⋅!

Law of sines:

( )sin 60 1.5, 1.4333 m

sin 60 sin 65 sin 65EB AB EB

°= = =

° ° °

Page 148: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

1.4333 0.75 cos55 1.0031 mED EB DB= − = − °=

0.75 sin 55 0.61436 mDG = °=

( ) ( ) ( ) ( ) ( )eff :E E x yM M P EB W ED I ma DG ma EDα∑ = ∑ − = + +

( ) ( ) ( ) ( ) ( ) ( ) ( )1.4333 6 9.81 1.0031 1.125 2.7907 6 1.7145 0.61436P − = +

( ) ( ) ( )6 2.7995 1.0031+

1.4333 59.0425 3.1395 6.3199 16.8491P − = + +

1.4333 85.531P =

59.5 N=P "

Page 149: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 117.

Kinematics: Crank AB:

12 rad/sAB =ωωωω , 280 rad/sABα =

( ) ( )22 23 ft 12 rad/s 36.0 ft/s12B na rω = = =

( ) ( )2 23 ft 80 rad/s 20.0 ft/s12B ta rα = = =

Rod BD Velocities:

( ) ( )3 12 3 ft/s12B ABAB= = =v ωωωω

3 ft/s0.5 ft

BBD

vBC

= =ωωωω

6 rad/sBD =ωωωω

Accelerations:

Page 150: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Translation with B and rotation about D = Planar motion

/D B D B= +a a a

Da = 20 + 36 ( )/D B na+ ( )/D B t

a+ (1)

Where ( ) ( ) ( )22 2/

10 6 30 ft/s12D B BDn

a BD ω= = =

And ( ) ( )/1012D B BD BDt

a BD α α= =

x components:

( )4 3 1020 30 05 5 12 BDα − − + =

1 20 24 44.02 BDα = + =

288 rad/sBDα =

Since ( )/ is directedB D ta :

288.0 rad/sBD =αααα

/ /12G B G B B D B= = + = +a a a a a a

20=a + 36 ( )1 302

+ ( )1 10 882 12 +

( ) ( )4 320 15 36.667 10.005 5xa = − − + = −

210.00 ft/sx =a

( ) ( ) 23 436 15 36.667 74.33, 74.33 ft/s5 5y ya = + + = =a

continued

Page 151: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Kinetics: 21 3 10 0.17361

12 12I

g g = =

( )eff6 4 4 3: ft ft

12 12 12 12B B y xM M D W I ma maα ∑ = ∑ − = + −

( ) ( ) ( )1 0.17361 3 3 110.5 3 88 74.33 103 3 4

Dg g g

− = + −

( )10.5 1 82.108 , 7.10 lb32.2

D D− = = 7.10 lb=D "

Page 152: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 118.

Kinematics: 12 rad/sAB =ωωωω , 280 rad/sAB =αααα Same analysis as for Prob. 16.117 except that ABαααα ,

Resulting in ( )B ta Eq. (1) must be replaced by,

Da = 20 + 36 ( )/D B n+ a ( )/D B n

+ a (1)

Where we have again ( ) 2/ 30 ft/sD B n

a =

and ( )/ /1012D B B Dt

a α=

x components:

( )4 3 1020 30 05 5 12 BDα − + =

1 20 24 4.002 BDα = − + =

28.00 rad/sBDα =

Since ( )/ is directedD B ta :

28.00 rad/sBD =αααα

/ /12G B G B B D B= = + = +a a a a a a

20=a + 36 ( )1 302

+ ( )1 10 8.002 12 +

( ) ( ) 24 320 15 3.333 10.00 ft/s5 5xa = − + = +

( ) ( ) 23 436 15 3.333 47.67 ft/s5 5ya = + + = +

Thus: 210.00 ft/sx =a , 247.67 ft/sy =a

continued

Page 153: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Kinetics:

21 3 10 0.17361

12 12I

g g = + =

( )eff6 4 3 4: ft ft ft ft

12 12 12 12B B y yM M D W I ma maα ∑ = ∑ + = + +

( ) ( ) ( )1 0.17361 3 3 110.5 3 8.00 10 4.7673 4 3

Dg g g

− = + +

( )10.5 1 56.556 , 5.513 lb32.2

D D− = =

5.51 lb=D "

Page 154: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 119.

Kinematics: Since ( ) 0,D n =v

( ) ( )cos60 cos30D Dx yv v° = °

( ) ( ) ( ) ( )( )0.75 m 6 rad/sD B BAx xv v AB ω= = =

( ) ( ) cos60cos30D Dy xv v °=

°

( )( ) ( )1

0.75 620.75 633

2

= =

But ( ) ( )D BDyv BDω=

( ) ( )0.75 6 6 rad/s

0.75 3 3D y

BD

v

BDω = = =

( ) ( )22 20.75 m 6 rad/s 27 m/sB BAAB ω= = =a

/D B D Ba a a= + 2136 1 rad/s3BDα = +

256.7846 rad/s=

continued

Page 155: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( )eff :B BM M∑ = ∑ ( )( ) ( )39.24 N 0.375 m cos30 0.75 mBM∑ = − + °D

( )( ) ( )( ) 10.1875 56.7846 54 0.375 1 N m3

= − − ⋅

( )0.64952 14.1715 10.6471 8.5587 N m= + − ⋅D

25.87 N=D 60°

or 25.9 N=D 60° "

Page 156: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 120.

Kinematics:

Velocity

( )sin 30B AB ABAB CDω= = °v ω

( )( )0.45 m sin 30 5 rad/s= °

1.125 m/s=

sin 30CD BCB = °vω

( )1.125 m/s sin 30

0.45 mCD

°=ω

1.25 rad/sCD =ω

( )( )1.125 m/s cos30 0.97428r = ° =&

Acceleration

( ) ( )( ) ( )( )2 20.45 2 13.5 m/s sin 30 5.625 m/s cos30CD CDr+ = ° + °α ω

220.4127 rad/sCD =α

Kinetics: C C CDM I∑ = α

( ) ( ) ( ) ( )39.24 N cos30 0.45 m 0.45 mCM N∑ = ° +

( ) ( )214 kg 0.9 m

3 CDα=

( ) ( )0.45 m 15.292 22.0457 N mN = − + ⋅

15.01 NN = or 15.01 N=N 60° !

Page 157: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 121.

Kinematics: From Prob. 16.120

21.25 rad/sCDω = (1.125 m/s)(0.866) 0.97428 m/sr = =&

Acceleration

2 2(0.45 m) 2 (13.5 m/s )(sin 30 ) (5.625 m/s )(cos30 )CD CDrα ω+ = ° − °&

2(0.45 m)( ) (1.125 m/s)(0.866)(1.25 rad/s) 1.8786 m/sCDα − =

29.5873 rad/sCDα = Kinetics:

C C CDM I α=∑

21

( 39.24 N)(cos30 )(0.45 m) (0.45 m) (4 kg)(0.9 m)3C CDM N αΣ = − ° + =

Substituting 29.5873 rad/sCDα =

57.0 NN = !

Page 158: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 122.

2 ft/s2 rad/s

1 ftω = = Ga / :A G A= +a a

15

12rα α=

221 1 8.05 30

(3)12 12 32.2 12

m α ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

l

0.390625 lb ft= ⋅

8.056.25 1.5625 lb

32.2Gma⎛ ⎞= =⎜ ⎟⎝ ⎠

15 15

(0.6) (0.8) 0.39062512 12G AM N P

⎛ ⎞+Σ = − =⎜ ⎟⎝ ⎠

(a) 4.48 lb=P !

(b) 6.49 lbA =N !

0

23 rad/sα = 26.25 ft/sGa =

8.05 lb 1.5625 lby AF N+Σ = − = −

6.4875 lbAN =

Page 159: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 123.

Crank BC:

( ) ( ) ( )2 25 ft 15 rad/s 6.25 ft/s12B ta BC α = = =

( ) ( ) ( )2 2 25 ft 6 rad/s 15 ft/s12B na BC ω = = =

Rod ABD: 1 1 0.1 msin sin 300.2 m

BCAB

β − −= = = °

/A G A Ga a a= +

[ Aa ] [6.25= 15+ ] 1012

α+ β

100 15 cos3012

α= − °

( )2

215 ft/s

20.7846 rad/s10 ft cos3012

α = = °

Page 160: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Kinetics:

( ) ( ) 2eff

10 1: ft cos3012 12G GM M A I mLα α Σ = Σ ° = =

( ) ( )2

22

1 10 lb 200.72168 ft ft 20.7846 rad/s12 1232.2 ft/s

A =

2.07041 lbA =

2.07 lb=A !

Page 161: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 124.

Kinematics: Aa=a

where ( )/G A trα=a θ

Kinetics:

( ) ( ) ( )eff : 0 cosA A AM M I mr r ma rα α θΣ = Σ = + −

2 2 cosAmk mr ma rα α θ+ =

2 2 cosAa rk r

α θ=+

Setting ,ddωα ωθ

= and using 0.44 m, 0.25 mr k= =

( )( ) ( )2 2

0.44 mcos 1.7181 cos

0.44 m 0.25 mA

Aad a

dωω θ θθ

= =+

20 01.7181 cosf

Ad a dπω ω ω θ θ=∫ ∫

22 20

0

1 1.7181 sin 3.43622

f

A f Aa aπω

ω θ ω= ⇒ = (1)

Page 162: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Given 22 m/sAa =

( )2 3.4362 2 6.8724 2.6215 rad/sf fω ω= = ⇒ =

or 2.62 rad/sfω = !

Page 163: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 125.

Given data: 2 rad/sfω =

( )2 22 3.4362 1.1641 m/sA Aa a= ⇒ =

or 21.164 m/sAa = !

Page 164: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 126.

Kinematics:

Kinetics:

/B AB B Aa rα= =

Da 9= ←⎯⎯ + ( )0.9 , 0.9 0.866 4.5BD BDα α =

210rad/s

3BDα =

9Ga = ←⎯⎯ +

100.45

3=

4 kgm =

( )( )2 21 104 kg 0.9 m rad/s

12 3Iα

⎛ ⎞= ⎜ ⎟⎝ ⎠

2.7

N m3

= ⋅

Bar AB

( ) ( )( ) ( )2 210.9 m 4 kg 0.9 m 10 rad/s

3A xM BΣ = =

12.0 NxB =

Bar BD

( ) ( )0.939.24 N 0.45 m

sin 30EM F⎛ ⎞Σ = + −⎜ ⎟°⎝ ⎠

0.9

(12.0) N mtan 30

⎛ ⎞− ⋅⎜ ⎟°⎝ ⎠

( )( ) ( )4 4.52.7 0.9

4(9) 0.45 N mtan 303 3

⎡ ⎤⎛ ⎞= + + ⋅⎢ ⎥⎜ ⎟°⎝ ⎠⎣ ⎦

35.2 N=P !

4.5 3 9

9 M/S2

Page 165: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 127.

Kinematics:

Kinematics: 2 2/ 22.5 m/sB AB B Aa rω= =

4.5 5

rad/s rad/s0.9 3 3

BDω = =

Da = 22.5 + 20.9 7.550.93

BDα⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

+ ←⎯⎯⎯⎯⎯ =

2125 1 rad/s

3 3BDα ⎛ ⎞= −⎜ ⎟

⎝ ⎠

Ga = 22.5 + 1

(6.45)(25) 13 3

⎛ ⎞− +⎜ ⎟⎝ ⎠

=

2 21 1(4 kg)(0.9 m) 25 1 rad/s

12 3 3I α ⎛ ⎞= −⎜ ⎟

⎝ ⎠

1

4.6875 1 N m 5.45096 N m3 3

⎛ ⎞= − ⋅ = ⋅⎜ ⎟⎝ ⎠

Kinetics: Bar AB

0 since 0, 0A AB xM BαΣ = = =

Bar BD

(1.8 m) (39.24 N)(0.45 m) 0PM F= + +

3.75

5.45096 4(3.75)(0.9) 3 4 11.25 (0.45) N m3

⎡ ⎤⎛ ⎞= − + + + ⋅⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

13.567 NF = 13.57 N=F !

37.5

3.75

3.7511.25

3

⎛ ⎞+⎜ ⎟⎝ ⎠

Page 166: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 128.

Kinematics: 0BFω =

Therefore 2 ,AB AB BD BE AB BDl l l lω α= = 2 2225 rad/sBE ABα ω= =

Bar BE

aG = + (10/12) (15)2 =

Kinetics: :AB 105 ft lb ft12A xM B Σ = ⋅ +

2

21 4 lb 10 ft3 1232.2 ft/s ABα =

BE: 28 lb 10 ft

1232.2 ft/sy y ABF B α Σ = − =

(a) 25 24.84 rad/s0.1725 0.02875ABα = =

+

224.8 rad/sAB =αααα !!!!

2

22

1 4 lb 10 ft (225 rad/s )12 1232.2 ft/sDM =

4 lbD N= +

BE: 10 10ft (8 lb) ft12 12BM N Σ = −

22

21 8 lb 20 (225 rad/s )

12 1232.2 ft/sDM − =

25.469 NN = (b) 25.469 (4 lb)D = +

= 29.46 lb 29.5 lb=D !!!!

Radial acceleration of B/A is equal to the tangential acceleration of B/D,

( )10 /12 ABB α

10/12 (15)2

(10/12) αAB

Page 167: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 129.

From Prob. 16.128

2 20, 900 rad/sBE BE ABω α ω= = =

210 10ft ( ) ft (96 rad/s )

12 12G ABa α⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

280 ft/s=

AB: 10

ft12A xM M B⎛ ⎞Σ = + ⎜ ⎟⎝ ⎠

2

22

1 4 lb 10ft (96 rad/s )

3 1232.2 ft/s

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

BE: 2

2

8 lb(80 ft/s )

32.2 ft/sx xF B

⎛ ⎞Σ = − = ⎜ ⎟

⎝ ⎠

19.876 lbxB = −

(a) 2.761 16.563 19.324 ft lbM = + = ⋅

19.3 ft lbM = ⋅ !

Sleeve: 2

22

1 4 lb 10ft (900 rad/s )

12 1232.2 ft/sDM

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

6.470 ft lb, 4 lbDM D N= ⋅ = +

BE: 10 10

ft (8 lb) ft12 12BM N⎛ ⎞ ⎛ ⎞Σ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2

22

1 8 lb 20ft (900 rad/s )

12 1232.2 ft/sDM

⎛ ⎞⎛ ⎞− = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

77.876 lbN =

(b) (77.876 4) lb 81.876 lbD = + =

or 81.9 lb=D !

Page 168: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 130.

Kinematics:

Velocity

0ABω =

( )( )0.06 m 6 rad/sB Av v= =

( )0.18 m BCω=

2 rad/sBCω =

Acceleration

( )( )2 20.06 m 6 rad/s 2.16 m/sA = =a

( )( )2 20.18 m 2 rad/s 0.72 m/sB = =a

( )( )2 20.09 m 2 rad/s 0.36 m/sBC = =a

( ) ( ) 2 21 1 2.16 0.72 m/s 1.44 m/s2 2AB A Ba a a= + = + =

0.12A B ABa a α= +

( )2 22.16 m/s 0.72 m/s 0.12 m ABα= +

21.2 rad/sABα =

continued

Page 169: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Kinetics: ( )( )22 22 kg 0.12 m1 0.0024 kg m

12 12ABI mL= = = ⋅

Rod BC:

Since 0, 0BC aα = =

0CMΣ = yields 0xB =

Rod AB:

( )eff : 0x x xF F AΣ = Σ =

( ) ( ) ( ) ( )eff : 0.12 m 0.06 m 0.06 mA A y AB AB AB ABM M B mg I m aαΣ = Σ − = −

( ) ( )( )( )20.12 m 2 kg 9.81 m/s 0.06 myB −

( )( ) ( )( )( )2 2 20.0024 kg m 12 rad/s 2 kg 1.44 m/s 0.06 m= ⋅ −

8.61 NyB =

or 8.61 N=yB !

( )eff:y y y y AB ABF F A B mg m aΣ = Σ + − = −

( )( ) ( )( )2 28.61 N 2 kg 9.81 m/s 2 kg 1.44 m/syA = − + −

8.13 NyA =

or 8.13 N=yA !

Page 170: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 131.

Kinematics: Velocity of all elements C= Acceleration:

( )( )2 20.06 m 18 rad/s 108 m/sB A= = =a a

26 rad/s0.18 m

BBC BC

aα α= ⇒ =

( )( )2 20.09 m 6 rad/s 0.54 m/sBCa = =

21.08 m/sAB A Ba a a= = =

Kinetics: ( ) ( )( )2 2 21 1 3 kg 0.18 m 0.0081 kg m12 12BC BCI m BC= = = ⋅

Rod BC:

( ) ( ) ( )eff : 0.18 m 0.09 mA A x BC BC BC BCM M B I m aαΣ = Σ = +

( ) ( )( ) ( )( )( )2 2 20.18 m 0.0081 kg m 6 rad/s 3 kg 0.54 m/s 0.09 mxB = ⋅ +

1.08 NxB =

on AB, 1.08 NxB =

continued

Page 171: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Rod AB:

( )eff :x x x x AB ABF F A B m aΣ = Σ − =

( )( )21.08 N 2 kg 1.08 m/s , 3.24 Nx xA A− = =

( ) ( )0: 0.12 m 0.06 m 0A yM B mgΣ = − =

( )( )2 0.06 m2 kg 9.81 m/s 9.81 N0.12 myB

= =

0: 0y y yF A B mgΣ = + − =

( )( )22 kg 9.81 m/s 9.81 N 9.81 NyA = − =

"

Page 172: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 132.

Kinematics: Crank AB:

2600 rpm 62.832 rad/s60ABπω = =

( ) ( )22 24 ft 62.832 rad/s 1315.9 ft/s12B ABa AB ω = = =

Also: ( ) ( )4 ft 62.832 rad/s 20.944 ft/s12B ABv AB ω = = =

Connecting rod BD: Velocity Instant, center at D.

2

220.944 ft/s 25.133 rad/s10 ft12

BBD

vBD

ω = = =

Acceleration:

/D B D B Ba= + = a a a ( ) 2BDBD ω +

21315.9 ft/sD = a ( )210 ft 25.133 rad/s12

+ 2789.53 ft/s =

( ) [1 1 1315.92 2BD B Da a= + =a 789.53+ ] 21052.7 ft/s=

Kinetics of piston:

( )22

4.5 lb 789.53 ft/s 110.34 lb32.2 ft/sD = =a

110.3 lbD =

Force exerted on connecting rod at D is: 110.3 lbD =

continued

Page 173: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Kinetics of connecting rod (neglect weight)

( )eff :x xF FΣ = Σ

( )22

3 lb110.34 lb 1052.7 ft/s32.2 ft/s

B − =

208.42 lbB =

or 208 lb=B "

110.3 lb=D "

Page 174: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 133.

Kinematics: Crank AB:

2600 rpm 62.832 rad/s60ABπω = =

( ) ( )22 24 ft 62.832 rad/s 1315.9 rad/s12B ABa AB ω = = =

Also: ( ) ( )4 ft 62.832 rad/s 20.944 ft/s12B ABv AB ω = = =

Connecting rod BD:

Velocity Instant center at D:

20.944 ft/s 25.133 rad/s10 ft12

BBD

vBD

ω = = =

Acceleration

/D B D B Ba a a= + = a ( ) 2BDBD ω +

21315.9 ft/sD = a ( )210 ft 25.133 rad/s12

+ 21842.3 ft/s =

( ) (1 1 1315.92 2BD B Da a= + =a 1842.3+ ) 21579.1 ft/s=

Kinetics of piston:

( )22

4.5 lb 1842.3 ft/s 257.46 lb32.2 ft/sD = =a

257.46 lbD =

Force exerted on connecting rod at D is: 257.46 lbD =

continued

Page 175: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Kinetics of connecting rod (neglect weight)

( )eff :x xF FΣ = Σ

BD BDB D m a− =

( )22

3 kg257.46 lb 1579.1 ft/s32.2 ft/s

B − =

404.581 lbB =

or 405 lb=B "

257 lb=D "

Page 176: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 134.

Kinematics:

( 520 mm)BD = aD =

0.48Da α∴ = and 0.20Ba α=

so that DEα α= and ABα α= G = Midpoint of BD: 0.2Ga α= + 0.26α

aG =

210.2 (0.2)

3A x AM B I mα αΣ = = =

0.2 0.06673xB m mα α= =

(0.48) (0.24)E y EM D mg I αΣ = + =

21 (0.48)

3m α=

0.16 0.5yD m mgα= −

continued

0.1 α0.24

Kinetic analysis

aB+ Where BDα α=

Page 177: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

0.0667PM mΣ = − (0.2) [0.16 mα − 0.5 mα − ](0.48)g

m+ 1(0.24)12

g m= 2(0.52) 0.1mα + (0.1) 0.24 mα + (0.24)α

0.48 0.180273g α=

2 29.81 m/s , 26.1 rad/sg α= =

226.1 rad/sA =αααα !

226.1 rad/sBD =αααα !

226.1 rad/sDE =αααα !

Page 178: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 135.

Kinematics: We resolve the acceleration of G into the acceleration of A and the acceleration of G relative to A:

/G A G A= = +a a a a

/A G A= +a a a

where /12G Aa Lα= (1)

Kinetics: eff( ) :A AM MΣ = Σ

/0 ( )2G ALI maα = +

( cos )2ALma β −

But, from (1)

/12G Aa Lα=

and 2112

I mL=

Thus: 21 1 ( cos ) 012 2 2 2A

L LmL m L maα α β + − =

2cos3Aa Lβ α= (2)

eff( ) :x xF FΣ = Σ

/sin ( )cosA G AW ma maβ β= −

1sin cos2Amg ma m Lβ α β = −

1sin cos2Aa g Lβ α β= + (3)

continued

Page 179: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Substitute for Aa from (3) into (2):

21 2sin cos cos2 3

g L Lβ β α β α+ =

21sin cos (4 3cos )6

g Lβ β α β= −

26 sin cos

4 3cosg

Lβ βα

β=

− (4)

Substitute for α into (2) and solving for :Aa

2 22 6 sin cos 4 sin,

3cos 4 3cos 4 3cosA AL g ga

Lβ β β

β β β= =

− −a β

(5)

We note that the senses of αααα and aA are always as indicated, since 24 3cos 0.β− >

eff /( ) : cos siny y G AF F A W maβ βΣ = Σ − = −

1cos sin2

A mg m Lβ α β = −

Substitute for α the expression obtained:

2sin 6 sin coscos2 4 3cos

L gA mg mL

β β βββ

= −−

2 2 2

2 23sin 4 3cos 3sincos 1 cos

4 3cos 4 3cosmg mgβ β ββ β

β β − −= − = − −

2cos

4 3cosmg β

β=

−A β (6)

Given data: 24 kg, 1.5 m, 20 , 9.81 m/sm L gβ= = = ° =

(a) Substitute into equation (4):

26(9.81) sin 20 cos 20 0.3213939.24 9.3354

1.5 1.350934 3cos 20α ° °= = =

− °

29.34 rad/s=αααα !

Page 180: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(b) Substitute data into equation (5):

24(9.81)sin 20 13.4209 9.9345

1.350934 3cos 20Aa °= = =− °

29.93 m/sA =a 20° ! (c) Substitute data into equation (6):

2cos 20 36.875(4)(9.81) 27.295

1.350934 3cos 20A °= = =

− °

27.3 N=A 70° !

Page 181: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 136.

Kinematics:

Kinetics:

Disk: eff( ) : (58.86 N) (cos 45 ) (6 kg) (0.25 m)x xF F B F αΣ = Σ − + ° −

eff 2( ) : (58.86 N)(sin 45 ) = 0y yF F N BΣ = Σ + − °

2

eff1

( ) : (0.25 m) = (6 kg) (0.25 m)2G GM M F αΣ = Σ

Bar: x-Dir 1: (19.62 N) cos 45 (2 kg) (0.25 m) (cos 45 ) (2 kg) (0.375m) BDB α α− + °= + °

y-Dir 2: (19.62 N) sin 45 = sin 45 (2 kg) (0.375 m) BDB α+ ° °

Six equations and six unknowns: 13.1967 N, = 48.3878 NF N=

(a)

50.2 N= 60.3° !

(b) 13.1967

0.27348.3878

F

N= = !

13.1967 48.3878

45° = 24.884

43.547 = N + F

Page 182: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 137. Kinematics: Assume Aα and Bα 0A Bω ω= =

D Arα=a

E D Aa rα= =a

/B E B Ea a= +a

( )A Br rα α= +

( )B A Br α α= +a

Kinetics: Disk A:

( )eff :A AM MΣ = Σ

ATr I α=

212 ATr mr α=

2A

Tmr

α = (1)

Disk B: ( )eff :B BM MΣ = Σ

BTr I α=

212 BTr mr α=

2B

Tmr

α = (2)

continued

Page 183: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

From (1) and (2) we note that A Bα α=

( ) ( )eff :E E B BM M Wr I ma rαΣ = Σ = +

( )212 B A BWr mr mr rα α α= + +

:A Bα α= 252 AWr mr α= (a) 2

5Agr

=α "

25B

gr

=α "

Substitute for Aα into (1):

2 25

g Tr mr

= (b) 15

T mg= "

( ) ( ) 22 25B A B A

ga r r rr

α α α = + = =

(c) 45B g=a "

Page 184: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 138. Kinematics: Cylinder: 0ω =

Rolling without sliding ( ) 0C xa = ( ) /A C A Cx= +a a a

0 Arα= +

A Arα=a

AA

ar

α =

Rod AB: 2A AB ABLa aα= −

Kinetics: Cylinder: ( )eff :C CM MΣ = Σ

x A AA r ma r I α= +

212

Ax A

aA r ma r mrr

= +

32x AA ma=

32 2x AB AB

LA m aα = −

(1)

continued

Page 185: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Rod AB: ( )eff :A AM MΣ = Σ

2AB ABLPL ma I α= +

2

2 12AB ABL mPL ma L α= + (2)

( )eff :x x x ABF F P A maΣ = Σ + =

Substitute from (1): 32 2 AB AB AB

LP m a maα + − =

5 32 4AB ABP ma mLα= − (3)

Multiply by :9L 21 5 1

9 18 12AB ABLPL ma mL α= − (4)

(4) + (2): 10 1 5 79 2 18 9AB ABPL mLa mLa = + =

107AB

Pam

= (5)

(5) (3) 5 10 32 7 4 AB

PP m mLm

α = −

25 37 4 ABP P mLα= −

18 37 4 ABP mLα− = 24

7ABP

mL=α

24 102 2 7 7A AB ABL L P Pa a

mL mα = − = −

12 10 ;7 7A

Pam

= −

27A

Pm

=a "

24 102 2 7 7B AB ABL L P Pa a

mL mα = + = +

12 10 ;7 7B

Pam

= +

227B

Pm

=a "

Page 186: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 139.

Kinematics: Assume ABα BCα and 0AB BCω ω= =

2AB ABL α=a

B ABLα=a

12 2BC B BC AB BCLa L Lα α α= + = +a

Kinetics: Bar BC ( )eff :B BM MΣ = Σ

( )2BC BCLPL I maα= +

2

12 2 2BC AB BCm L LL m Lα α α = + +

1 12 3AB BCP mL mLα α= + (1)

( )eff :x x x BCF F P B maΣ = Σ − =

12x AB BCP B m L Lα α − = +

(2)

continued

Page 187: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Bar AB: ( )eff :A AM MΣ = Σ

( )2x AB ABLB L I maα= +

2

12 2 2AB ABm L LL mα α = +

13x ABB mLα= (3)

Add (2) and (3): 4 13 2AB BCP mL mLα α= + (4)

Subtract (1) from (4)

5 106 6AB BCmL mLα α= +

5BC ABα α= − (5)

Substitute for BCα in (1): ( )1 1 752 3 6AB AB ABP mL mL mLα α α= + − = −

67AB

PmL

α = − (6)

Eq. (5) 657BC

PmL

α = − −

307BC

PmL

α = (7)

Data: 25 in. 2.0833 ftL = =

22

6 lb 0.18634 lb s /ft32.2 ft/s

m = = ⋅

5 lbP =

( )( )26 6 5 lb7 7 0.18634 lb s /ft 2.0833 ft

ABP

mLα = − = −

211.040 rad/s= −

211.04 rad/sAB =αααα "

( )( )230 30 5 lb7 7 0.18634 lb s /ft 2.0833 ft

BCP

mLα = =

255.201 rad/s=

255.2 rad/sBC =αααα "

Page 188: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 140.

Kinematics: We choose AB BCα α α= =

2ABL α=a

B Lα=a

32BC Lα=a

Kinetics: Bars AB and BC (Acting as rigid body)

2ABCm m=

( )( )21 2 212

I m L=

223

I mL=

( ) ( )eff :A A ABC ABC BM M P L b I m a LαΣ = Σ + = +

( ) ( )( )22 23

P L b mL m L Lα α+ = +

( ) 283

P L b mL α+ = (1)

continued

Page 189: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Bar BC: ( )eff :B BM MΣ = Σ

( )2BC BCLPb I maα= +

2 312 2 2m LL m Lα α = +

256

Pb mL α=

265

PbmL

α = (2)

Substitute for α into (1):

( ) 22

8 63 5

PbP L b mLmL

+ =

16 16 11; 15 5 5

PL Pb Pb L b b + = = − =

511

b L=

Eq. (2) 26 55 11

P LmL

α =

611

PmL

α =

Data: 25 in. 2.0833 ft,L = =

22

6 lb 0.18634 lb s /ft32.2 ft/s

m = = ⋅

5 lbP =

(a) ( )5 5 2.0833 ft 0.94695 ft11 11

b L= = =

0.947 ftb = "

(b) ( )( )( )2

5 lb6 611 11 0.18634 lb s /ft 2.0833 ft

PmL

α = =⋅

27.0254 rad/s=

27.03 rad/s=α "

Page 190: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 141.

Kinematics: Assume ABαααα , BCαααα , Ca , 0AB BCω ω= =

Since 0: ( ) ( ) ( ) ( )AB BC A x B x B x BC x Cω ω= = = = = =a a a a a

1( )2BC y BCLα=a ( )B y BCLα=a

1 1( ) ( )2 2AB y B y AB BC ABL L Lα α α = + = +

a a

( ) ( ) ( )A y B y AB BC ABL L Lα α α= + = +a a

Kinetics—entire system:

eff( ) : 0 ( ) ( )x x AB x BC xF F m a m aΣ = Σ = +

0 2 Cm a=

Thus: ( ) ( ) ( ) ( ) 0A x AB x B x BC x C= = = = =a a a a a

continued

Page 191: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Rod AB

eff1 1( ) : ( )2 2B B AB ABM M mg L I ma Lα Σ = Σ = +

21 1 1 1

2 12 2 2AB BC ABmgL mL m L L Lα α α = + +

1 1 12 3 2AB BCg α α= +

23 AB BCL gα α+ = (1)

eff( ) :y y ABF F B w m a+ Σ = Σ − = −

12BC ABB mg m L Lα α = − +

(2)

Rod BC

eff1 1( ) : ( )2 2C C BC BCM M BL W L I m a Lα Σ = Σ + = +

21 1 1 1

2 12 2 2BC BCBL mgL mL m L Lα α + = +

1 12 3 BCB mg mLα= − + (3)

Page 192: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Subtract (3) from (2)

3 4 102 3 2BC ABmg m L Lα α = − +

3 98 8AB BCL L gα α+ = (4)

Subtract (1) from (4): 3 2 18 3 8ABL gα − =

7 1 ,24 8ABL gα− = 3

7ABgL

α −=

Substitute in (1): 2 3 ,3 7 BC

gL L gL

α− + =

97BC

gL

α =

(a) 9 3 67 7 7A BC ABa L L g g gα α= + = − = 6

7A g=a "

(b) 97B BCa L gα= = 9

7B g=a "

Page 193: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 142.

Rod AB: 2La α=

( )effA AM MΣ = Σ

( )2LPL ma I α= +

212 2 12L Lm mLα α = +

3PmL

α = (1)

( )eff :x x xF F A P maΣ = Σ − = −

3 1; 2 2 2 2x xL L P PA P m P m A P

mLα = − = − = − =

Portion AJ of rod:

External forces: , ,x AJA W axial force ,JF shear ,JV and bending moment JM

Effective forces: Since acceleration at any point is proportional to distance from A, effective forces are linearly distributed. Since mass per unit length is m/L, at point J we find

( )Jm ma xL L

α =

Using (1): 3J

m m PaL L mL

=

23

Jm PxaL L

=

( ) 2eff1 3 2:2 3J J J x

Px xM M M A x xL

Σ = Σ − = −

32

1 12 2J

PM Px xL

= − (2)

Page 194: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

For 2max 2

3: 02 2

JdM P PM xdx L

= − =

3

Lx = (3)

Substituting into (2)

( )3

2max1 1 1 22 2 2 33 3 3J

PL P L PLML = − =

( )max 3 3JPLM = (4)

Note: Eqs. (3) and (4) are independent of W

Data: 0.9 m, 3.5 NL P= =

Eq. (3): 0.9 m 0.51962 m

3 3Lx = = =

0.520 mx =

Eq. (4): ( ) ( )( )max

3.5 N 0.9 m0.60622 N m

3 3jM = = ⋅

max 0.606 N m, 520 mm below M A= ⋅ "

Page 195: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 143. From answers to Prob. 16.79:

3 1 2 4Ba g A mg= =

We now find

32

Ba gL L

α = =

32J

ga x xL

α= =

Portion AJ of rod:

External forces: Reaction A, distributed load per unit length mg/L, shear ,JV bending moment .JM

Effective forces: Since : ,a x the effective forces are linearly distributed. The effective force per unit length at J is:

23 32 2J

m m g mga x xL L L L

= ⋅ =

( ) 2eff

1 3:4 2 2y y J

mg mg mgF F x V x xL L

Σ = Σ − + =

22

34 4J

mg mg mgV x xL L

= − +

( ) 2eff1 3:

2 4 2 32J J Jmg x mg mg xM M x x M x xL L

Σ = Σ − + =

2 32

1 14 2 4J

mg mg mgM x x xL L

= − +

Page 196: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Find min:V 23 20; 2 3

JdV mg mg x x Ldx L L

= − + = =

2

min min22 3 2 ;

4 3 4 3 12mg mg mg mgV L L V

L L = − + = −

Find maxM where 230: 04 4J J

mg mg mgV V x xL L

= = − + =

2 23 4 0x Lx L− + =

( )( )3 0 and 3Lx L x L x x L− − = = =

2 3

max1 1

4 3 2 3 4 3 27mg L mg L mg L mgLM

L L = − + =

2 3min

1 1 04 2 4

mg mg mgM L L LL L

= − + =

max 4mgV = "

max at from 27 3

mgL LM A= "

Page 197: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 144.

Links:

( ) ( )22 21.25 ft 6 rad/s 45 rad/sna rω= = =

( )( )2 21.25 ft 12 rad/s 15 rad/sta rα= = =

Bar AD is in translation B Ca a a= =

( ) ( ) ( )eff : sin 60 15 in. sin 60 15 in.G G CF BEM M F FΣ = Σ ° − °

CE BEF F=

( )eff :B BM MΣ = Σ

( ) ( )( ) ( ) ( )sin 60 30 in. 15 lb 15 in. sin 30 15 in. sin 60 15 in.CF t nF ma ma° − = ° + °

( ) ( )( )2 22

15 lb25.981in. 225 lb in. 15 in. 15 rad/s sin 30 45 rad/s sin 6032.2 ft/sCFF

− ⋅ = ° + °

21.1586 lbCFF =

or 21.2 lb TCF BEF F= = !

Page 198: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( ) ( )eff : cos60 cos30 cos60x x BE CF t nF F F F P ma maΣ = Σ + ° + = − ° + °

22 2

15 lb 15 rad21.1586 lb cos30 45 rad/s cos 6032.2 ft/s s

P + = − ° + °

21.1586 lb 4.4299 lbP+ =

16.7287 lbP = − or 16.73 lb=P !

Page 199: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 145.

Lever ABC: Static Equilibrium (Friction Force )

0.35 NkF Nμ= =

( ) ( ) ( )0: 0.20 m 0.04 m 300 N 0.18 m 0AM N FΣ = − − =

( )0.20 0.04 0.35 N 54 NN − =

290.32 NN =

( )0.35 290.32 N 101.61 NkF Nμ= = =

Drum:

0.160 mr =

02

360 rpm60

πω ⎛ ⎞= ⎜ ⎟⎝ ⎠

0 12 rad/sω π=

( )eff:D DM MΣ = Σ

( )( ) ( )2; 101.61 N 0.16 m 18 kg mFr I α α= = ⋅

20.9032 rad/s (deceleration)α =

2 20 2 ;ω ω αθ= +

( ) ( )20 12 2 0.9032π θ= + −

786.77094 radθ =

1

786.77094 125.22 rev.2

θπ

⎛ ⎞= =⎜ ⎟⎝ ⎠

125.2 rev. θ = !

Page 200: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 146.

(a) While slipping occurs, a friction force F is applied to disk A, and F to disk B.

Disk A:

212A A AI m r=

( )( )21 8 kg 0.11 m2

=

20.0484 kg m= ⋅

: 30 NF N PΣ = =

( )0.15 30 4.5 NF Nµ= = =

( )eff :A A A A AM M Fr I αΣ = Σ =

( )( ) ( )24.5 N 0.11 m 0.0484 kg m Aα= ⋅

10.227Aα = 210.23 rad/sA =αααα !

Disk B:

212B B BI m r=

( )( )21 4 kg 0.08 m2

=

20.0128 kg m= ⋅

( )eff :B B B B BM M Fr I αΣ = Σ =

( )( ) ( )24.5 N 0.08 m 0.0128 kg m Bα= ⋅

228.125 rad/sBα = 228.1 rad/sB =αααα !

continued

Page 201: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(b)

( ) 2480 rpm 16 rad/s60A Bπω π = =

Sliding stops when C C′=V V or A A B Br rω ω=

( )0A A A B Br t r tω α α − =

( ) ( ) ( )( )2 20.11 m 16 rad/s 10.227 rad/s 0.08 m 28.125 rad/st tπ − =

1.6383 st =

( ) ( )( )20 16 rad/s 10.227 rad/s 1.6383 s 33.511 rad/sA A Atω ω α π= − = − =

( ) 633.511 rad/s 320.00 rpm2A

aωπ

= =

or 320 rpmA =ωωωω !

( )228.125 rad/s 1.6383 s 46.077 rad/sB Btω α= = =

( ) 6046.077 rad/s 440.226 rpm2Bωπ

= =

or 440 rpmB =ωωωω !

Page 202: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 147.

Disk: 21

2I mr=

( )eff:x xF FΣ = Σ

P ma=

P

m=a

( )effG GM MΣ = Σ

Pr I α=

21

2Pr mr α=

2P

mrα =

Since ; w P

m a gg w

= = 2P

gwr

α =

(a) 2

1 3AP P

r g r gw r w

α ⎡ ⎤⎛ ⎞= + = + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

a a

( )

20.75 lb3 12.075 ft/s

6 lb32.2 ft/s

= = 2or 12.08 ft/sA =a !

(b) 2

1BP P

r g r gw r w

α ⎡ ⎤⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

a a

( )2

2

0.75 lb4.025 ft/s

6 lb

32.2 ft/s

= − = − 2or 4.03 ft/sB =a !

Page 203: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 148.

Kinetics:

( ) ( ) ( )2 22 2 22

1 1 400 lb 6.6 ft 3.6 ft 58.509 lb ft s12 12 32.2 ft/s

I m a b = + = + = ⋅ ⋅

( )eff

400: 400y y A BF F T T ag

Σ = Σ + − =

400 1A BaT Tg

+ = +

(1)

( ) ( )( ) ( )2eff : 3.3 ft 58.509 lb ft sG G A BM M T T I α αΣ = Σ − = = ⋅ ⋅

( ) ( )217.73 lb sA BT T α− = ⋅ (2)

Kinematics:

( ) 3.3A ya a α= +

3 3.3a α= + (3)

( ) 3.3B ya a α= −

1 3.3a α= − (4)

Solving (3); (4) 22 ft/s ,a = 20.30303 rad/sα =

Page 204: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

From (1); (2) ( )2

22 ft/s400 lb 1 424.84 lb

32.2 ft/sA BT T

+ = + =

( )( )2 217.73 lb s 0.30303 rad/s 5.3727 lbA BT T− = ⋅ =

Solve 215.10636 lbAT = or 215 lbAT = !

209.73366 lbBT = or 210 lbBT = !

Page 205: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 149.

Statics: 1 21 12 2

T T W mg= = =

(a)

( )eff :2G GLM M T I α Σ = Σ =

21 12 2 12

Lmg mL α =

3gL

α = 3gL

=αααα !

( ) 1eff:y yF F W T maΣ = Σ − =

12

mg mg ma− =

1 1 2 2

a g g= =a

(b) Acceleration of A:

/A G A G= +a a a

12 2A

Lg α= −a

1 32 2

L ggL

= −

;Aa g= − A g=a !

Page 206: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

PROBLEM 16.149 CONTINUED (c) Acceleration of B:

/B G B G= +a a a

1 3 2 ;

2 2 2BL L ga a g g

Lα = + = + = +

2B g=a !

Page 207: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 150.

( ) ( )2

20.3 0.312C

mLM mg L m Lα αΣ = = +

0.3 451.730770.1733 26

g g gL L L

α = = =

(a) 360.826B

ga Lα= =

or 1813B

g=a !

(b) 0xR = 450.326y y

gF R mg mLL

Σ = − = −

135 25260 52y mg mg mg= − =R !

Page 208: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 149.

Statics: 1 21 12 2

T T W mg= = =

(a)

( )eff :2G GLM M T I α Σ = Σ =

21 12 2 12

Lmg mL α =

3gL

α = 3gL

=αααα !

( ) 1eff:y yF F W T maΣ = Σ − =

12

mg mg ma− =

1 1 2 2

a g g= =a

(b) Acceleration of A:

/A G A G= +a a a

12 2A

Lg α= −a

1 32 2

L ggL

= −

;Aa g= − A g=a !

Page 209: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

(c) Acceleration of B:

/B G B G= +a a a

1 3 2 ;

2 2 2BL L ga a g g

Lα = + = + = +

2B g=a !

Page 210: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 150.

( ) ( )2

20.3 0.3

12CmL

M mg L m Lα αΣ = = +

0.3 45

1.730770.1733 26

g g g

L L Lα = = =

(a) 36

0.826B

ga Lα= =

or 18

13Bg=a !

(b) 0xR = 45

0.326y y

gF R mg mL

L⎛ ⎞Σ = − = − ⎜ ⎟⎝ ⎠

135 25

260 52y mg mg mg= − =R !

Page 211: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 151.

2I mkα α=

ma mrα=

( ) ( ) ( )eff: sinC CM M W r ma r Iβ αΣ = Σ = +

( ) ( ) 2sinmg r mr r mkβ α α= +

( )2 2sinrg r kβ α= +

2 2

sinrg

r k

βα =+

2 2

sinrga r r

r k

βα= =+

2

2 2 sinr

a gr k

β=+

!

Page 212: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 152.

Kinematics: A rα=a , /B Aa rα=

B A=a a / B Aa+

B rα=a rα+

( )B xrα=a ( )B y

rα=a

Kinetics: 5h Bm m=

2 25h BI m r m r= =

(a) ( )eff:C CM MΣ = Σ

( ) ( )B h A B B B Bx yW r I m a r m a r m a rα= + + +

2 2 2 25 5B B B B Bm gr m r m r m r m rα α α α= + + +

212gr r α= 1

12

g

r=α !

(b) ( ) 1

12B xr gα= =a , ( ) 1

12B yr gα= =a !

Page 213: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 153.

(a) Kinematics:

/B A B A= +a a a

[ Ba ] [ Aa= ] [60 Lα° + ]20°

Law of Sines

sin 70 sin 50 sin 60A Ba a Lα= =

° ° °

1.0851A Lα=a 60°

0.88455B Lα=a

/ 2G ALa α= 20°

[/ 1.0851G A G Aa a a a Lα= = + = ]602L α° +

20 °

( ) ( )1.0851 cos60 0.5 sin 20xa L Lα α= ° + °

0.54254 0.17101 ; 0.71355xL L Lα α α= + =a

( ) ( )1.0851 sin 60 0.5 cos 20ya L Lα α= ° − °

0.93972 0.46985 ; 0.46985yL L Lα α α= − =a

continued

Page 214: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

We have: 0.71355x Lα=a

0.46985y Lα=a

Kinetics:

Triangle ABE: 70ABE∠ = °

70 , 50ABE BAE∠ = ° ∠ = °

Law of Sines AB L=

; 0.88455sin 50 sin 60

BE L BE L= =° °

( )effE EM MΣ = Σ

( ) ( ) ( )0.46985 0.71355 0.46985x ymg L I ma L ma Lα= + +

( )( ) ( )( )210.46985 0.71355 0.71355 0.46985 0.4698512

mgL mL m L L m L Lα α α= + +

( )0.46985 0.81325mgL mL α2=

2

29.81 m/s0.57775 0.57775 6.2975 rad/s0.90 m

gL

α = = =

26.30 rad/s=αααα !

(b) ( ) ( )eff : sin 60 0.71355x x xF F A ma m LαΣ = Σ ° = =

( )( )( )( )2sin 60 8 kg 0.71355 0.90 m 6.2975 rad/s 32.354A ° = =

37.3589 NA = or 37.4 N=A 30° !

Page 215: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 154.

Crank AB:

60 mmAB =

2300 rpm 10 rad/s60ABπω π = =

( ) ( )( )0.06 m 10 rad/s 1.8850 m/sB ABAB ω π= = =v

( ) ( )( )22 20.06 m 10 rad/s 59.2176 m/sB ABAB ω π= = =a

Rod BD:

Velocity: Instant CTR at C

( )B BDv BC ω=

( )1.8850 m/s 0.24 m BDω=

7.854 rad/sBDω =

Acceleration:

( ) ( ) ( )( )/ 0.30 mD B BD BDta BD α α= =

( ) ( ) ( )( )22 2/ 0.30 m 7.854 rad/s 18.507 m/sD B BDn

a BD ω= = =

[/ :D B D B Da= +a a a ] 259.2176 m/s= ( )0.30 ft α + 218.507 m/s +

( ) ( )24 30 0 0.30 ft 18.507 m/s5 5BDα= + −

246.266 rad/sBDα =

continued

Page 216: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

( ) ( ) ( )( )2 2/ 0.15 m 46.266 rad/s 6.9399 m/sG B BDt

a BD α= = =

( ) ( ) ( )( )22 2 2/ 0.15 m 7.854 rad/s 9.2533 m/sG B BDn

a BG ω= = =

( ) ( )/ / /B G B B G B G Bt na a a= + = + +a a a

259.218 m/sa = 26.9399 m/s + 29.2533 m/s +

2 23 459.217 6.9399 9.2533 m/s 70.785 m/s5 5xa = + + =

24 36.9399 9.2533 m/s 0

5 5ya = + =

Kinetics:

( )( )22 23 kg 0.3 m1 0.0225 kg m

12 12I mL= = = ⋅

( )eff :B BM MΣ = Σ

( ) ( ) ( )0.24 m 0.12 m 0.09 mxD mg I maα− = +

( ) ( )( )( ) ( )( ) ( )( )( )2 2 2 20.24 m 3 kg 9.81 m/s 0.12 m 0.0225 kg m 46.266 rad/s 3 kg 70.785 m/s 0.09 mD = + ⋅ +

( )( )

3.5316 1.04099 19.11195 N m98.6856 N

0.24 mD

+ + ⋅= =

or 98.7 N=D !

Page 217: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 16, Solution 155.

Kinematics: Bar AC Rotation about C

( ) ( )0.3 ma BC α α= =

Bar BC:

/D B Lα=a must be zero since Da

0 andBD BDa aα∴ = =

Kinetics: Bar BD

( ) ( )eff

: 0.3 my y yF F B mg m αΣ = Σ − = −

( )( ) 23 kg 9.81 0.3 m/syB α= − (1)

( ) ( ) ( ) ( )( )( )eff : 0.51962 m 0.15 m 0.3 m 0.15 mB BM M D mg m αΣ = Σ − = −

( ) 20.86603 kg 9.81 0.3 m/sD α= − (2)

continued

Page 218: Cap 16 Beer.pdf

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Bar AC:

( )( )2223 kg 0.6 m

0.09 kg m12 12

mLI = = = ⋅

( ) ( )( ) ( )( )eff : 0.3 0.3 0.3C C yM M mg B I mα αΣ = Σ + = +

Substituting by from Eq. (1)

( ) ( ) ( )0.09 3 0.33 9.81 3 9.81 0.3

0.3α α

α + + − =

228.029 rad/sα =

Eq. (2): ( )( )2 20.86603 kg 9.81 m/s 0.3 m 28.029 rad/sD = −

1.21356 ND =

or 1.214 N=D !