calibraon of the electromagnec calorimeter of the cms ... · calibraon of the electromagnec...

1
Calibra’on of the Electromagne’c Calorimeter of the CMS experiment Stefano Argirò Università di Torino and INFN for the CMS Ecal collabora;on Abstract The electromagne.c calorimeter (ECAL) of the CMS experiment is an homogeneous, herme.c detector with high granularity. Its poten.al performances are outstanding in terms of energy resolu.on, dynamic range and noise level. These characteris.cs make the calorimeter the most powerful device in the search of the decay in two photons of the Higgs par.cle. However, the energy resolu.on depends crucially on the channel to channel intercalibra.on precision. Therefore, great aGen.on must be given to the calibra.on process. In this contribu.on we will describe the strategy that the ECAL group has devised to calibrate the detector. We will report on the pre‐calibra.on processes that have already been performed, the strategies for intercalibra.on at startup and those foreseen when sufficient sta.s.cs will be accumulated to use W and Z events. For the normal data taking regime, an intercalibra.on precision of 0.5% should be reached, while the response of the detector will be monitored regularly. Precalibra’ons with electron beam and cosmic muons Intercalibra’on with first data Medium and long term strategy Summary The electromagne.c calorimeter of the CMS experiment will start data taking with a calibra.on between 1.5% and 2.5% in the barrel and between 10% and 15% in the endcap. The level of precision reached in the barrel is such to not affect the width of the Z. A few hours of running will allow to consolidate intercalibra.on constants in the barrel and significantly improve in the endcap using azimuthal symmetry, soon to be complemented by inter‐ring intercalibra.on provided by Z‐>ee. A few days of running should be sufficient to lower the intercalibra.on precision in the barrel to 0.5% with π 0 ‐>γγ. Studies are ongoing to apply this method to the endcaps as well. With about 5 X ‐1 , isolated electrons from W‐>eν will intercalibrate most of the barrel at a 0.5 % level and the whole calorimeter below 1.5%. With more sta.s.cs, levels well below 0.5 % in the barrel and 1% in the endcap can be reached. The energy scale will be set by Z‐>ee and Z‐>μμγ . The laser monitoring system will be used to properly take into account the varia.on of the transparency of the crystals with accumulated dose. Energy Resolu’on Before installa.on in the CMS detector, 9 of the 36 supermodules of the barrel were precisely calibrated using the H4 electron beamline at Cern, using electrons of 90 and 120 GeV with a momentum spread around 0.09%. The intercalibra.on precision achieved with this technique is 0.3%. The plot on the right shows the reproducibility of the calibra.on as the distribu.on of the difference between the inter‐calibra.on constants from a supermodule exposed to beam in two occasions at one month interval. In the energy reconstruc.on process, the main correc.on to be applied is the one accoun.ng for dependence of the crystal response on the point of impact. The remaining 27 supermodules will rely on the calibra.on performed using cosmic ray muons. The inter‐calibra.on precision is between 1.5% and 2.5% depending on the pseudorapidity. The plot on the led shows the inter‐calibra.on precision as a func.on of eta index for one of the supermodules. The precision is defined as the RMS spread of the difference between inter‐calibra.on coefficients obtained from the test beam and cosmic ray data. For this measurement, the coincidence of two planes of scin.llator was used to trigger the data acquisi.on system. The first scin.llator covered the full supermodule surface on the underside, the second was placed in the focus of the quasi‐projec.ve geometry of the crystals, therefore selec.ng muons directed along the axis of the crystals. For the endcaps, intercalibra.ons at startup will rely on laboratory measurements of light yield and photodetector (VPT) gain, giving a precision around 9%. Impact of Calibra’on Errors The most promising method to intercalibrate the calorimeter with about 5 X ‐1 is the one using the E/p peak for isolated electrons from the W‐>eν decay . The track momentum is compared with the calorimetric energy in the 5x5 crystal matrix. Electrons which radiate a small frac.on of their energy must be selected. This method requires a fully func.onal tracker . The plot on the right shows the inter‐calibra.on precision as a func.on of pseudorapidity with 5 X ‐1 in the barrel and 7X ‐1 in the endcap. The precision is mostly between 0.4% and 1.5%. With 30 X ‐1 , a precision below 0.5% everywhere in the barrel and below 1% in the endcap will be achievable. Barrel: 5 X ‐1 Endcap: 7 X ‐1 Intercalibra’on with isolated electrons Absolute energy scale with Z‐>μμγ Crystal stability Inter‐calibra.on precision plays a crucial role in the detec.on of the H‐>γγ decay, where the constant term dominates. The picture on the right shows the effect of mis‐ calibra.on on the width of the Higgs. Excellent mass resolu.on is needed to dis.nguish the resonance from the background. Zμμγ S/B~80 DY+jets The transparency of the crystals will change in the course of the LHC cycle due to radia.on damage, and is partly recovered over a few hours without beam. A laser system will accurately monitor the transparency of each crystal by injec.ng light during the LHC abort gaps. The plot on the led shows the expected evolu.on of the transparency based on test beam data. The plot on the right illustrates the stability ader laser correc.ons measured during dedicated irradia.on runs at the test beam. • Corrected response • Raw response Time (hours) ADC χ 2 /ndf =73.9/68 Test beam data Inter‐calibra’on with π 0 ‐>γγ A powerful calibra.on method uses unconverted photons pairs that are reconstructed in fixed arrays of crystals and form a π 0 decay candidate, based on shower shape and kinema.cal cuts. Simula.ons show that a 0.5% calibra.on precision can be achieved in a few days even at startup luminosi.es. This method requires a special sodware trigger, since the transverse energy of the calibra.on π 0 is of the order of a few GeV. Inter‐calibra’on with azimuthal symmetry of energy deposi’on The azimuthal symmetry of energy deposits from minimum bias events can be exploited to intercalibrate rings of crystals at constant pseudorapidity. Conversions and radia.on in the tracker material define the systema.c limit to this method. In contrast, the method is very fast, allowing to obtain calibra.on constants in a few hours with 1 kHz of minimum bias trigger rate, even at low luminosi.es. The plots on the led show the intercalibra.on precision obtained with 18 millions of simulated minimum bias events in blue, while the limit on precision, assuming no knowledge of tracker material, is in red. Limit on precision Minimum bias full simula.on Intra‐ring precision: 1.5‐3.5% Precision with 18 Mevents Limit precision Barrel Endcap Z‐>ee Z decays are valuable in a number of tasks, such as tuning of correc.ons, selng the absolute energy scale or intercalibrate regions of the calorimeter. In par.cular, it can provide ring by ring inter‐calibra.on to be used in conjunc.on with azimuthal symmetry. The picture on the right shows the inter‐ring calibra.on precision as a func.on of integrated luminosity. Fiducial region Preshower region Full simula.on (preliminary) Inter‐ring calibra.on precision: • 3% @ 10 pb ‐1 1% @ 100 pb ‐1 References CMS Collabora.on, “The Electromagne.c Calorimeter Technical Design Report”, CERN/LHCC 97‐33 (1997) CMS Collabora.on, “The CMS experiment at the CERN LHC”, J. Inst. 3 S08004 (2008) M. Bonesini et al , “Intercalibra.on of the electromagne.c calorimeter with cosmic rays”, CMS NOTE – 2005/023 L. Agos.no et al, “Inter‐calibra.on of the CMS electromagne.c calorimeter with isolated electrons”, J. Phys. G 33(2007) N67‐N84 P. Adzic et al, “Energy resolu.on of the barrel of the CMS electromagne.c calorimeter”, J. Inst. 2 P04004 (2007) The energy resolu.on of the CMS electromagne.c calorimeter (ECAL) can be parametrized in the form : (σ/E) 2 = (3.37%/√E) 2 + (0.108/E) 2 + (0.25%) 2 The first term is sta.s.cal, the second is the noise term and the constant term is the one affected by correc.ons and inter‐ calibra.ons. A method to determine the absolute energy scale that is independent of the calorimeter, uses a nearly background‐free signal and does not need to rely on brehm recovery correc.ons is the one relying on the Z‐>μμγ decay . The expected rate is 1 γ/crystal at 1 X ‐1. The plot on the right shows the number of photons as a func.on of photon energy for the Z‐>μμγ process and Drell‐Yan process for different cuts. The ECAL barrel consists of 18+18 supermodules (one in yellow above) of 1700 crystals of Lead Tungstate (PbWO 2 ) each The ECAL endcacap consists of 4 “D” of 3662 PbWO 2 crystals CA‐CS (Δη=0.0175)

Upload: dinhduong

Post on 02-May-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Calibra'onoftheElectromagne'cCalorimeteroftheCMSexperiment

StefanoArgirò

UniversitàdiTorinoandINFNfortheCMSEcalcollabora;on

Abstract

Theelectromagne.ccalorimeter(ECAL)oftheCMSexperimentisanhomogeneous,herme.cdetectorwithhighgranularity.Itspoten.alperformancesareoutstandingintermsofenergyresolu.on,dynamicrangeandnoiselevel.Thesecharacteris.csmakethecalorimeterthemostpowerfuldeviceinthesearchofthedecayintwophotonsoftheHiggspar.cle.However,theenergyresolu.ondependscruciallyonthechanneltochannelintercalibra.onprecision.Therefore,greataGen.onmustbegiventothecalibra.onprocess.Inthiscontribu.onwewilldescribethestrategythattheECALgrouphasdevisedtocalibratethedetector.Wewillreportonthepre‐calibra.onprocessesthathavealreadybeenperformed,thestrategiesforintercalibra.onatstartupandthoseforeseenwhensufficientsta.s.cswillbeaccumulatedtouseWandZevents.Forthenormaldatatakingregime,anintercalibra.onprecisionof0.5%shouldbereached,whiletheresponseofthedetectorwillbemonitoredregularly.

Precalibra'onswithelectronbeamandcosmicmuons

Intercalibra'onwithfirstdata

Mediumandlongtermstrategy

Summary

Theelectromagne.ccalorimeteroftheCMSexperimentwillstartdatatakingwithacalibra.onbetween1.5%and2.5%inthebarrelandbetween10%and15%intheendcap.ThelevelofprecisionreachedinthebarrelissuchtonotaffectthewidthoftheZ.Afewhoursofrunningwillallowtoconsolidateintercalibra.onconstantsinthebarrelandsignificantlyimproveintheendcapusingazimuthalsymmetry,soontobecomplementedbyinter‐ringintercalibra.onprovidedbyZ‐>ee.Afewdaysofrunningshouldbesufficienttolowertheintercalibra.onprecisioninthebarrelto0.5%withπ0‐>γγ.Studiesareongoingtoapplythismethodtotheendcapsaswell.Withabout5X‐1,isolatedelectronsfromW‐>eνwillintercalibratemostofthebarrelata0.5%levelandthewholecalorimeterbelow1.5%.Withmoresta.s.cs,levelswellbelow0.5%inthebarreland1%intheendcapcanbereached.TheenergyscalewillbesetbyZ‐>eeandZ‐>μμγ.Thelasermonitoringsystemwillbeusedtoproperlytakeintoaccountthevaria.onofthetransparencyofthecrystalswithaccumulateddose.

EnergyResolu'on

Beforeinstalla.onintheCMSdetector,9ofthe36supermodulesofthebarrelwerepreciselycalibratedusingtheH4electronbeamlineatCern,usingelectronsof90and120GeVwithamomentumspreadaround0.09%.Theintercalibra.onprecisionachievedwiththistechniqueis0.3%.Theplotontherightshowsthereproducibilityofthecalibra.onasthedistribu.onofthedifferencebetweentheinter‐calibra.onconstantsfromasupermoduleexposedtobeamintwooccasionsatonemonthinterval.Intheenergyreconstruc.onprocess,themaincorrec.ontobeappliedistheoneaccoun.ngfordependenceofthecrystalresponseonthepointofimpact.

Theremaining27supermoduleswillrelyonthecalibra.onperformedusingcosmicraymuons.Theinter‐calibra.onprecisionisbetween1.5%and2.5%dependingonthepseudorapidity.Theplotontheledshowstheinter‐calibra.onprecisionasafunc.onofetaindexforoneofthesupermodules.TheprecisionisdefinedastheRMSspreadofthedifferencebetweeninter‐calibra.oncoefficientsobtainedfromthetestbeamandcosmicraydata.Forthismeasurement,thecoincidenceoftwoplanesofscin.llatorwasusedtotriggerthedataacquisi.onsystem.Thefirstscin.llatorcoveredthefullsupermodulesurfaceontheunderside,thesecondwasplacedinthefocusofthequasi‐projec.vegeometryofthecrystals,thereforeselec.ngmuonsdirectedalongtheaxisofthecrystals.

Fortheendcaps,intercalibra.onsatstartupwillrelyonlaboratorymeasurementsoflightyieldandphotodetector(VPT)gain,givingaprecisionaround9%.

ImpactofCalibra'onErrors

Themostpromisingmethodtointercalibratethecalorimeterwithabout5X‐1istheoneusingtheE/ppeakforisolatedelectronsfromtheW‐>eνdecay.Thetrackmomentumiscomparedwiththecalorimetricenergyinthe5x5crystalmatrix.Electronswhichradiateasmallfrac.onoftheirenergymustbeselected.Thismethodrequiresafullyfunc.onaltracker.Theplotontherightshowstheinter‐calibra.onprecisionasafunc.onofpseudorapiditywith5X‐1inthebarreland7X‐1intheendcap.Theprecisionismostlybetween0.4%and1.5%.With30X‐1,aprecisionbelow0.5%everywhereinthebarrelandbelow1%intheendcapwillbeachievable.

Barrel:5X‐1 Endcap:7X‐1

Intercalibra'onwithisolatedelectrons

AbsoluteenergyscalewithZ‐>μμγ

CrystalstabilityInter‐calibra.onprecisionplaysacrucialroleinthedetec.onoftheH‐>γγdecay,wheretheconstanttermdominates.Thepictureontherightshowstheeffectofmis‐calibra.ononthewidthoftheHiggs.Excellentmassresolu.onisneededtodis.nguishtheresonancefromthebackground.

Z→µµγ

S/B~80

DY+jets

ThetransparencyofthecrystalswillchangeinthecourseoftheLHCcycleduetoradia.ondamage,andispartlyrecoveredoverafewhourswithoutbeam.Alasersystemwillaccuratelymonitorthetransparencyofeachcrystalbyinjec.nglightduringtheLHCabortgaps.Theplotontheledshowstheexpectedevolu.onofthetransparencybasedontestbeamdata.Theplotontherightillustratesthestabilityaderlasercorrec.onsmeasuredduringdedicatedirradia.onrunsatthetestbeam.

•  Corrected response •  Raw response

Time (hours)

ADC

χ2/ndf =73.9/68

Test beam data

Inter‐calibra'onwithπ0‐>γγ

Apowerfulcalibra.onmethodusesunconvertedphotonspairsthatarereconstructedinfixedarraysofcrystalsandformaπ0decaycandidate,basedonshowershapeandkinema.calcuts.Simula.onsshowthata0.5%calibra.onprecisioncanbeachievedinafewdaysevenatstartupluminosi.es.Thismethodrequiresaspecialsodwaretrigger,sincethetransverseenergyofthecalibra.onπ0isoftheorderofafewGeV.

Inter‐calibra'onwithazimuthalsymmetryofenergydeposi'on

Theazimuthalsymmetryofenergydepositsfromminimumbiaseventscanbeexploitedtointercalibrateringsofcrystalsatconstantpseudorapidity.Conversionsandradia.oninthetrackermaterialdefinethesystema.climittothismethod.Incontrast,themethodisveryfast,allowingtoobtaincalibra.onconstantsinafewhourswith1kHzofminimumbiastriggerrate,evenatlowluminosi.es.Theplotsontheledshowtheintercalibra.onprecisionobtainedwith18millionsofsimulatedminimumbiaseventsinblue,whilethelimitonprecision,assumingnoknowledgeoftrackermaterial,isinred.

Limitonprecision

Minimumbiasfullsimula.onIntra‐ringprecision:1.5‐3.5%

• Precisionwith18Mevents• Limitprecision

Barrel Endcap

Z‐>ee

Zdecaysarevaluableinanumberoftasks,suchastuningofcorrec.ons,selngtheabsoluteenergyscaleorintercalibrateregionsofthecalorimeter.Inpar.cular,itcanprovideringbyringinter‐calibra.ontobeusedinconjunc.onwithazimuthalsymmetry.Thepictureontherightshowstheinter‐ringcalibra.onprecisionasafunc.onofintegratedluminosity.

Fiducialregion

Preshowerregion

Fullsimula.on(preliminary)Inter‐ringcalibra.onprecision:

• 3%@10pb‐1• ≤1%@100pb‐1

References

CMSCollabora.on,“TheElectromagne.cCalorimeterTechnicalDesignReport”,CERN/LHCC97‐33(1997)CMSCollabora.on,“TheCMSexperimentattheCERNLHC”,J.Inst.3S08004(2008)M.Bonesinietal,“Intercalibra.onoftheelectromagne.ccalorimeterwithcosmicrays”,CMSNOTE–2005/023L.Agos.noetal,“Inter‐calibra.onoftheCMSelectromagne.ccalorimeterwithisolatedelectrons”,J.Phys.G33(2007)N67‐N84P.Adzicetal,“Energyresolu.onofthebarreloftheCMSelectromagne.ccalorimeter”,J.Inst.2P04004(2007)

Theenergyresolu.onoftheCMSelectromagne.ccalorimeter(ECAL)canbeparametrizedintheform:

(σ/E)2=(3.37%/√E)2+(0.108/E)2+(0.25%)2

Thefirsttermissta.s.cal,thesecondisthenoisetermandtheconstanttermistheoneaffectedbycorrec.onsandinter‐calibra.ons.

Amethodtodeterminetheabsoluteenergyscalethatisindependentofthecalorimeter,usesanearlybackground‐freesignalanddoesnotneedtorelyonbrehmrecoverycorrec.onsistheonerelyingontheZ‐>μμγdecay.Theexpectedrateis1γ/crystalat1X‐1.Theplotontherightshowsthenumberofphotonsasafunc.onofphotonenergyfortheZ‐>μμγprocessandDrell‐Yanprocessfordifferentcuts.

TheECALbarrelconsistsof18+18supermodules(oneinyellowabove)of1700crystalsofLeadTungstate(PbWO2)each

TheECALendcacapconsistsof4“D”of3662PbWO2crystals

CA‐CS

(Δη=0.0175)