calculus of variations summer term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c daria...

24
Calculus of Variations Summer Term 2016 Lecture 8 Universität des Saarlandes 31. Mai 2016 c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 1 / 24

Upload: others

Post on 23-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Calculus of VariationsSummer Term 2016

Lecture 8

Universität des Saarlandes

31. Mai 2016

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 1 / 24

Page 2: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson

Purpose of Lesson:

To discuss Newton’s aerodynamic problem.

To discuss necessary and sufficient conditions for extrema

To introduce the Legendre condition

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 2 / 24

Page 3: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

Problem 8-1 (Newton’s aerodynamic problem)Finding the profile of a body that gives the minimal (aerodynamicor hydrodynamic) resistance to the motion is one of the firstproblems in the theory of the calculus of variations.

Consider finding the optimal shape of a rocket’s nose cone inorder that it creates the least resistance when passing through air.

In 1685 Sir Isaac Newton studied this problem and presented avery simple model to compute the resistance of a body movingthrough an inviscid and incompressible medium.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 3 / 24

Page 4: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Sir Isaac Newton (1642-1727)

In his words "..If in a rare medium, consisting of equal particles freelydisposed at equal distances from each other, a globe and a cylinderdescribed on equal diameter move with equal velocities in the directionof the axis of the cylinder, (then) the resistance of the globe will be halfas great as that of the cylinder. ...I reckon that this proposition will benot without application in the building of ships.."

(I.Newton, Principia Mathematica)

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 4 / 24

Page 5: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Problem 8-1 (Newton’s aerodynamic problem)Assumptions:

1 As the rocket may rotate along its length, the nose cone must becircularly symmetric, and so we reduce the problem to one ofdetermining the optimal profile of the nose cone.

2 The rocket’s nose cone must have radius R at its base, and lengthL, and its shape should be convex.

3 Air is thin, and composed of perfectly elastic particles.

4 Particles will bounce off the nose cone with equal speed, and equalangle of reflection and incidence.

5 We ingnore tangential friction.

6 We ignore „non-Newtonian“ affects such as those fromcompression of the air.

These assumptions are realistic for high-altitude, supersonic flight.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 5 / 24

Page 6: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

 

!

! RL

!

! L/2R! > 5 : 1

Variational Methods & Optimal Control: lecture 06 – p.17/32

θ

y

R

L

θ

θ

v

v

x

Variational Methods & Optimal Control: lecture 06 – p.18/32

Force= ma

! m=! a=

a= v! s= 2vsin2θ.

2vm= 1,

Force= sin2θ=1

1+ cot2θ=

11+ y"2

.

Variational Methods & Optimal Control: lecture 06 – p.19/32

!= 1/(1+ y"2)

!! x

2πxdx.

!

F{y} =! R

0

x1+ y"2

dx,

! y(0) = L y(R) = 0y" # 0 y"" $ 0

Variational Methods & Optimal Control: lecture 06 – p.20/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 6 / 24

Page 7: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

Force = ma

m = mass

a = acceleration = change in velocity

a = 2v sin2 θ

Scale constants so that2vm = 1

and thenForce = sin2 θ =

11 + cot2 θ

=1

1 + y ′2

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 7 / 24

Page 8: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

Previous calculation gives force per particle

=1

1 + y ′2

Need to integrate over surface area

Surface area at radius x is

2πxdx

Scaling to remove irrelevant constants, the functional describingthe resistance

J[y ] =

R∫0

x1 + y ′2

dx ,

subject to y(0) = L and y(R) = 0 and y ′ 6 0 and y ′′ > 0.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 8 / 24

Page 9: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

Problem 8-1 (Newton’s aerodynamic problem)Find extremal of ”air resistance”

J[y ] =

R∫0

x1 + y ′2

dx ,

subject to y(0) = L and y(R) = 0 and y ′ 6 0 and y ′′ > 0.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 9 / 24

Page 10: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

The Euler-Lagrange equation is

∂F∂y− d

dx

(∂F∂y ′

)= − d

dx

(2xy ′

(1 + y ′2)2

)= 0.

Rearranging we get

2xy ′ = C(

1 + y ′2)2

which isn’t much fun to solve directly.

Alternative: define a new variable u, and constrain it

u = −y ′

Add Lagrange multiplier λ(x) to the functional

H[y ,u, λ] =

∫ R

0

(x

1 + u2 + λ(y ′ + u)

)dx .

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 10 / 24

Page 11: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Now we solve this new problem with three dependent variables(y ,u, λ) of x . So, we expect three Euler-Lagrange equations.

The Euler-Lagrange equations

∂H∂y− d

dx

(∂H∂y ′

)= 0

∂H∂u− d

dx

(∂H∂u′

)= 0

∂H∂λ− d

dx

(∂H∂λ′

)= 0

gives the DEsλ = const

λ− 2xu(1 + u2)2 = 0

y ′ + u = 0

(8.1)

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24

Page 12: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

If λ = 0, then for x > 0 we get u = 0, and hence y = const .

If λ 6= 0, then the second equation in (8.1) implies

x(u) =Cu

(1 + u2)2 = C(

1u

+ 2u + u3)

for C constant.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 12 / 24

Page 13: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

From the last equation in (8.1) (which we insisted on at the start),we get

dydx

= −u.

Now note that from the chain rule

dydu

=dydx

dxdu

= −udxdu

= C(

1u− 2u − 3u3

)which we can integrate with respect to u to get

y(u) = const − C(− ln u + u2 +

34

u4).

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 13 / 24

Page 14: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

Thus, we have

x(u) = C(

1u

+ 2u + u3)

=Cu

(1 + u2

)2> 0 for all u

y(u) = const − C(− ln u + u2 +

34

u4)

End-point conditions take the form

y(u1) = L y(u2) = 0

x(u1) = x1 x(u2) = R

but we don’t know x1, u1 or u2.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 14 / 24

Page 15: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

y(u) = const − C(− ln u + u2 +

34

u4).

At u1 we have y(u1) = L. For convenience we write

y(u) = L− C(−A− ln u + u2 +

34

u4).

So, at u1 we get

L = L− C(− ln u1 − A + u2

1 +34

u41

)0 = −C

(− ln u1 − A + u2

1 +34

u41

)A = − ln u1 + u2

1 +34

u41

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 15 / 24

Page 16: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Thus, we get

y(u) = L− C(−A− ln u + u2 +

34

u4)

x(u) =Cu

(1 + u2)2

Now at u2 we have x(u2) = R and y(u2) = 0. So

L = C(−A− ln u2 + u2

2 +34

u42

)R =

Cu2

(1 + u2

2

)2(8.2)

Dividing the first equation in (8.2) by the second one, we get.....

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 16 / 24

Page 17: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

LR

= u2

(−A− ln u2 + u2

2 +34

u42

)(1 + u2

2)−2 (8.3)

The function on the RHS of (8.3) is increasing. So, we can solve(8.3) numerically and obtain a value for u2.

We can find C using x(u2) = R.

R =Cu2

(1 + u2

2

)2

C =u2R

(1 + u22)2

All we need to know now is u1, which gives us A and x(u1) whichgives us u2, which gives us C.

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 17 / 24

Page 18: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Newton’s aerodynamic problem

 

ddx

∂ f∂y!

" ∂ f∂y

=ddx

2xy!

(1+ y!2)2= 0

c

2xy!

(1+ y!2)2= c.

2xy! = c(1+ y!2)2

Variational Methods & Optimal Control: lecture 06 – p.21/32

x(u) = c!1u

+2u+u3"

=cu(1+u2)2

y(u) = L" c!" lnu" 7

4+u2+

34u4

"

dydx

=dydu

dudx

=dydu

/dxdu

= "u

Variational Methods & Optimal Control: lecture 06 – p.22/32

!

0 0.5 10

0.5

1

1.5

2

0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

Variational Methods & Optimal Control: lecture 06 – p.23/32

Variational Methods & Optimal Control: lecture 06 – p.24/32c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 18 / 24

Page 19: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Alternatives: cylinder (R = L = 1)

y ′ = 0

J[y ] =

1∫0

xdx =12

 

y! = 0

F{y} =! R

0xdx

=R2

2

R= 1

F = 1/2

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.500

Variational Methods & Optimal Control: lecture 06 – p.25/32

y! = "L/RF{y} =

! R

0

x1+(L/R)2

dx

=R2

2(1+(L/R)2)

R= L= 1

F = 1/4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.26/32

R= L= 1

x2+ y2 = 1y! = "x/y

= "x/!1" x2

F{y} =! 1

0

x1+ y!2

dx

=! 1

0x(1" x2)dx

=14

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.27/32

a

y! =

"0 x# a"L/(R"a) x$ a

F{y} =! a

0xdx+

! R

a

x1+ y!2

dx

=a2L2+R2(R"a)22(L2+(R"a)2)

a

a=(L2+2R2)"L%L2+4R2

2R0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F = 0.191

Variational Methods & Optimal Control: lecture 06 – p.28/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 19 / 24

Page 20: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Alternatives: sphere (R = L = 1)

x2 + y2 = 1

y ′ = −xy

= − x√1− x2

J[y ] =

1∫0

x1 + y ′2

dx =

1∫0

x(1− x2)dx =14

 

y! = 0

F{y} =! R

0xdx

=R2

2

R= 1

F = 1/2

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.500

Variational Methods & Optimal Control: lecture 06 – p.25/32

y! = "L/RF{y} =

! R

0

x1+(L/R)2

dx

=R2

2(1+(L/R)2)

R= L= 1

F = 1/4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.26/32

R= L= 1

x2+ y2 = 1y! = "x/y

= "x/!1" x2

F{y} =! 1

0

x1+ y!2

dx

=! 1

0x(1" x2)dx

=14

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.27/32

a

y! =

"0 x# a"L/(R"a) x$ a

F{y} =! a

0xdx+

! R

a

x1+ y!2

dx

=a2L2+R2(R"a)22(L2+(R"a)2)

a

a=(L2+2R2)"L%L2+4R2

2R0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F = 0.191

Variational Methods & Optimal Control: lecture 06 – p.28/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 20 / 24

Page 21: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Alternatives: cone (R = L = 1)

y ′ = − LR

= −1

J[y ] =

1∫0

x2

dx =14

 

y! = 0

F{y} =! R

0xdx

=R2

2

R= 1

F = 1/2

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.500

Variational Methods & Optimal Control: lecture 06 – p.25/32

y! = "L/RF{y} =

! R

0

x1+(L/R)2

dx

=R2

2(1+(L/R)2)

R= L= 1

F = 1/4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.26/32

R= L= 1

x2+ y2 = 1y! = "x/y

= "x/!1" x2

F{y} =! 1

0

x1+ y!2

dx

=! 1

0x(1" x2)dx

=14

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.27/32

a

y! =

"0 x# a"L/(R"a) x$ a

F{y} =! a

0xdx+

! R

a

x1+ y!2

dx

=a2L2+R2(R"a)22(L2+(R"a)2)

a

a=(L2+2R2)"L%L2+4R2

2R0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F = 0.191

Variational Methods & Optimal Control: lecture 06 – p.28/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 21 / 24

Page 22: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Alternatives: frustrum of cone (R = L = 1, corner at a)

y ′ =

0, x 6 a

− 11− a

, x > a, a =

3−√52

J[y ] =

a∫0

xdx +

1∫a

x1 + y ′2

dx =a2 + (1− a)2

2(1 + (1− a)2)

 

y! = 0

F{y} =! R

0xdx

=R2

2

R= 1

F = 1/2

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.500

Variational Methods & Optimal Control: lecture 06 – p.25/32

y! = "L/RF{y} =

! R

0

x1+(L/R)2

dx

=R2

2(1+(L/R)2)

R= L= 1

F = 1/4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.26/32

R= L= 1

x2+ y2 = 1y! = "x/y

= "x/!1" x2

F{y} =! 1

0

x1+ y!2

dx

=! 1

0x(1" x2)dx

=14

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.250

Variational Methods & Optimal Control: lecture 06 – p.27/32

a

y! =

"0 x# a"L/(R"a) x$ a

F{y} =! a

0xdx+

! R

a

x1+ y!2

dx

=a2L2+R2(R"a)22(L2+(R"a)2)

a

a=(L2+2R2)"L%L2+4R2

2R0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F = 0.191

Variational Methods & Optimal Control: lecture 06 – p.28/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 22 / 24

Page 23: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Alternatives: optimal (R = L = 1)

Optimal profile: J computed numerically

 

F

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.187

Variational Methods & Optimal Control: lecture 06 – p.29/32

http://en.wikipedia.org/wiki/Nose_cone_design

http://www.info-central.org/?article=125

http://mcfisher.0catch.com/other/mach1/mach1.htm

http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF

F

0 0.5 10

0.2

0.4

0.6

0.8

1

F1 = 0.187, F2 = 0.240

Variational Methods & Optimal Control: lecture 06 – p.30/32

!

!!

!

"

"

!

Variational Methods & Optimal Control: lecture 06 – p.31/32

Variational Methods & Optimal Control: lecture 06 – p.32/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 23 / 24

Page 24: Calculus of Variations Summer Term 2016 · = const 2xu (1 +u2)2 = 0 y0+u = 0 (8:1) c Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 11 / 24. Purpose of Lesson

Purpose of Lesson Newton’s aerodynamic problem

Bullets

 

F

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

F = 0.187

Variational Methods & Optimal Control: lecture 06 – p.29/32

http://en.wikipedia.org/wiki/Nose_cone_design

http://www.info-central.org/?article=125

http://mcfisher.0catch.com/other/mach1/mach1.htm

http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF

F

0 0.5 10

0.2

0.4

0.6

0.8

1

F1 = 0.187, F2 = 0.240

Variational Methods & Optimal Control: lecture 06 – p.30/32

!

!!

!

"

"

!

Variational Methods & Optimal Control: lecture 06 – p.31/32

Variational Methods & Optimal Control: lecture 06 – p.32/32

c© Daria Apushkinskaya (UdS) Calculus of variations lecture 8 31. Mai 2016 24 / 24