cadarache sensitivity analysis of an advanced …

27
MAŁGORZATA WRÓBLEWSKA NCBJ - CEA – AMU [email protected] ANIMMA 2021 Prague, Wednesday, June 23 th 2021 | PAGE 1 CADARACHE SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM. M. WRÓBLEWSKA, D. BLANCHET, A. LYOUSSI, P. BLAISE, Z. MARCINKOWSKA, A.BOETTCHER, J. JAGIELSKI, JHR, France MARIA, Poland

Upload: others

Post on 14-Mar-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

MAŁGORZATA WRÓBLEWSKA NCBJ - CEA – AMU

[email protected]

ANIMMA 2021 Prague, Wednesday, June 23th2021| PAGE 1

CADARACHE SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL

NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM.

M. WRÓBLEWSKA, D. BLANCHET, A. LYOUSSI, P. BLAISE, Z. MARCINKOWSKA, A.BOETTCHER, J. JAGIELSKI,

JHR, FranceMARIA, Poland

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021

• Poisoning effect in MTRs

• Experimental setup

• Sensitivity analysis

• Conclusion

2

ANIMMA 2021, Prague, June 23 2021

Beryllium damage mechanisms

3

6Li , 3He -> thermal neutron absorbers

3He, 4He, Tgases

Surface corrosion Defects, γ and

n0 heating

Pollution of coolant

MECHANICAL DAMAGE

REACTIVITY DECREASE

Water coolant γ and n0 flux

OVERAL DESTRUCTION

Mechanical failure examples

ATR

BR2

View of the SM and MIR reactors beryllium blocks irradiated to fast neutron fluence of F~6·1022 сm-2

V. Chakin et al., 1st International Symposium

on Material Testing Reactors. Japan. 2008.

4

JMTR samples corrosionE. H. Smith. Et. al. Symposium on material performance in operating nuclear systems. August 1973.

F. Joppen, E. Koonen, S. Van Dijck. International

Atomic Energy Agency (IAEA)

ANIMMA 2021, Prague, June 23 2021 4

Mechanical failure examples

ATR

BR2

View of the SM and MIR reactors beryllium blocks irradiated to fast neutron fluence of F~6·1022 сm-2

V. Chakin et al., 1st International Symposium

on Material Testing Reactors. Japan. 2008.

5

JMTR samples corrosion

The main criteria for mechanical damage is FAST NEUTRON FLUENCE

SAFARI ATR HFIR MARIA MIR BR-2 JMTR JHR

Max Power

[MWth]20 250 85 30 100 100 50 100

𝐁𝐞 𝚽𝒇 𝒎𝒂𝒙

[1022 n.cm-2]0.9 5.5 3.4

2.0

(>0.5MeV)

6 .0

(>0.1MeV)6.4 1.1 5.0

Be function R R R M M/R M/R R R

> 1.0MeV

~80dpa

E. H. Smith. Et. al. Symposium on material performance in operating nuclear systems. August 1973.

F. Joppen, E. Koonen, S. Van Dijck. International

Atomic Energy Agency (IAEA)

NO DETAILED IRRADIATION HISTORY

ANIMMA 2021, Prague, June 23 2021 5

Poisons production (n,α)

Thermal neutrons

6

Fast neutronsPOISONS

ANIMMA 2021, Prague, June 23 2021 6

Realistic scenario in MARIA

1 CYCLE = 100h on power + 68h off power10.5 YEARS OPERATION + 27 YEARS OFF

7

6Li saturation

off power periods 3He concentration increases

After 37.5 years

SPECIFIC ACTIVITY: ~1GBq /1g of Be

Simplifying assumptions; for detailed information: neutronic tools

ANIMMA 2021, Prague, June 23 2021 7

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021

• Poisoning effect in MTRs

• Experimental setup

• Sensitivity analysis

• Conclusion

8

Experiment, analysis and validation

9

POISONS CONTENT = f-1 (DETECTOR RESPONSE)

NEUTRON SOURCE,DETECTOR,FRESH VS IRRADIATED

BERYLIUM ELEMENT,

DETECTOR RESPONSE AT GIVEN MEASURED POSITION

EXPERIMENT

MONTE-CARLO SIMULATION NEUTRON TRANSPORT

SERPENT2, JEFF3.1

SIMULATION MODEL

INVERSE PROBLEM

CALIBRATION OF THE SURROGATE MODEL

NEUTRON TRANSMISSION CONFIGURATION

DETECTOR RESPONSE = f1 (POISONS CONTENT)

ANIMMA 2021, Prague, June 23 2021 9

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 10

Neutronsource detector

polyethylene Σ1

or

Σ2

SCATTERING

ABSORPTION

Irradiated

Non-irradiated

MEASUREMENT OF THERMAL NEUTRONS ATTENUATION IN FRESH /IRRADIATED BERYLLIUM

𝑴𝒐𝒏𝒕𝒆 − 𝑪𝒂𝒓𝒍𝒐𝒕𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔

𝑰𝟏𝑰𝟐= 𝒇(𝜮𝒑𝒐𝒊𝒔𝒐𝒏𝒔)

ANIMMA 2021, Prague, June 23 2021

Experiment – transmission method

Beryllium block

Neutron sourceDetector

11

polyethylene

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 12

Neutron transmission

Neutron SOURCE

Neutron detector Moderator

Beryllium

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021

• Poisoning effect in MTRs

• Experimental setup

• Sensitivity analysis

• Neutron source

• Moderator

• Detector

• Conclusion

13

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 14

PuBe (239Pu/ 238Pu)

AmBe (241Am)

AmB(241Am)

SbBe (124Sb)

252Cf

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-11 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

Ne

utr

on

flu

x(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

ISO reference spectra

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 15

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-11 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

Ne

utr

on

flu

x(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

ISO reference spectra

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-09 1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01

Neu

tro

n f

lux

per

un

it le

thar

gy(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

124SbBe

No moderator

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 16

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-11 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

Ne

utr

on

flu

x(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

ISO reference spectra

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-09 1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01

Neu

tro

n f

lux

per

un

it le

thar

gy(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

124SbBe

No moderator

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

²³⁹PuBe ²⁴¹AmBe ²⁴¹AmB ²⁵²Cf ¹²⁴SbBe

Rea

ctio

n r

ates

(s-1

)

Type of the neutron source

Fission chamber He3 LiF BF3

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 17

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-11 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

Ne

utr

on

flu

x(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

ISO reference spectra

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

1.00E-09 1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01

Ne

utr

on

flu

x p

er u

nit

leth

argy

(n/s

-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe239PuBe

252Cf·104

241AmB124SbBe

4.5 cm polyethylene

Moderator

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 18

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.00E-11 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

Ne

utr

on

flu

x(n

/s-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe

239PuBe

252Cf·104

241AmB

ISO reference spectra

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

1.00E-09 1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01

Ne

utr

on

flu

x p

er u

nit

leth

argy

(n/s

-1·c

m-3

)

Neutron energy (MeV)

Neutron sources spectra

241AmBe239PuBe

252Cf·104

241AmB124SbBe

4.5 cm polyethylene

Moderator

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

²³⁹PuBe ²⁴¹AmBe ²⁴¹AmB ²⁵²Cf ¹²⁴SbBe

Rea

ctio

n r

ates

(s-1

)

Type of the neutron source

Fission chamber He3 LiF BF3

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021

• Poisoning effect in MTRs

• Experimental setup

• Sensitivity analysis

• Neutron source

• Moderator

• Detector

• Conclusion

19

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 20

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

PuBe sourceU H LI B

U H LI B

2 differentsource spectra

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

AmBe sourceU H LI B

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

AmB sourceU H LI B

0.0E+0

1.0E+11

2.0E+11

3.0E+11

4.0E+11

5.0E+11

6.0E+11

7.0E+11

8.0E+11

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

CF sourceU H LI B

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 21

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

PuBe sourceU H LI B

U H LI B

2 differentsource spectra

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

AmBe sourceU H LI B

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

AmB sourceU H LI B

0.0E+0

1.0E+11

2.0E+11

3.0E+11

4.0E+11

5.0E+11

6.0E+11

7.0E+11

8.0E+11

0.00 2.00 4.00 6.00 8.00 10.00

Rea

ctio

n r

ates

(s-1

)

Polyethylene thickness (cm)

CF sourceU H LI B

fresh poisoned

ANIMMA 2021, Prague, June 23 2021

Neutron detector and source choice

22

SO

UR

CES

IN T

HE

MEA

SUR

EMEN

T SE

T (n,) on 9Be ~2MeV ~6.81MeV

activation of irradiated beryllium ~106 Bq

from the neutron source SbBe ~2.7 10-3 Gy/hr

PuBe ~2.7 10-8 Gy/hr

from radiative capture polyethylene ~2.2MeV

(,n) reactions induced by the above 1.67MeV

PuBe + fission chamber

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 23

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

0.0E+0 2.0E+0 4.0E+0 6.0E+0 8.0E+0 1.0E+1 1.2E+1

Ne

utr

on

flu

x (n

/s-1·c

m-3

)

Neutron energy (MeV)

Various PuBe spectra

NZ010 NZ022

0.2-480 2-479

1.9-611a 4.7-555

37-425 178-461

85-701 M-99*

M-977* M-591*

M-930*

*

* Based on PuBe neutron source data from:1. M.E. Anderson, R.A. Neff, Neutron energy spectra of different size 239Pu-Be (α, n) sources. Nucl. Instr. and Meth. 99 (1972) 231-235.2. Lockhart, M.L. & McMath, G.E.. (2017). Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries. Physics Procedia. 90. 305-312. 10.1016/j.phpro.2017.09.016.

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

0.0E+0 2.0E+0 4.0E+0 6.0E+0 8.0E+0 1.0E+1 1.2E+1

Ne

utr

on

flu

x (n

/s-1·c

m-3

)

Neutron energy (MeV)

PuBe spectra for 70-96% of ²³⁹Pu

Thanks to BOULAND Oliviercode iSourceC

DES/IRESNE/DER/SPRC/Physics Studies Laboratory

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM

ANIMMA 2021, Prague, June 23 2021 24

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

0.0E+0 2.0E+0 4.0E+0 6.0E+0 8.0E+0 1.0E+1 1.2E+1

Ne

utr

on

flu

x (n

/s-1·c

m-3

)

Neutron energy (MeV)

Various PuBe spectra

NZ010 NZ022

0.2-480 2-479

1.9-611a 4.7-555

37-425 178-461

85-701 M-99*

M-977* M-591*

M-930*

*

* Based on PuBe neutron source data from:1. M.E. Anderson, R.A. Neff, Neutron energy spectra of different size 239Pu-Be (α, n) sources. Nucl. Instr. and Meth. 99 (1972) 231-235.2. Lockhart, M.L. & McMath, G.E.. (2017). Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries. Physics Procedia. 90. 305-312. 10.1016/j.phpro.2017.09.016.

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

0.0E+0 2.0E+0 4.0E+0 6.0E+0 8.0E+0 1.0E+1 1.2E+1

Ne

utr

on

flu

x (n

/s-1·c

m-3

)

Neutron energy (MeV)

PuBe spectra for 70-96% of ²³⁹Pu

Thanks to BOULAND Oliviercode iSourceC

DES/IRESNE/DER/SPRC/Physics Studies Laboratory

0.0E+0

1.0E+5

2.0E+5

3.0E+5

4.0E+5

5.0E+5

6.0E+5

7.0E+5

0.00 2.00 4.00 6.00 8.00 10.00

Re

acti

on

rat

es

(s-1

)

Polyethylene thickness (cm)

²³⁹PuBe + 235U

poliethylene density: 0.93 - 0.95 g/cm3

berylium density: 1.80 - 1.84 g/cm3

239PuBe + 235U Fission chamber

ANIMMA 2021, Prague, June 23 2021 25

SERPENT2JEFF3.1

Conclusions

• The chosen configuration of the neutron source-moderator-detector has been tested experimentally

• We obtained good signal resolution • We still need to verify the beryllium activation and total gammas in the system• And to perform more measurements

26

ANY QUESTIONS?

THANK YOU!

27