buoyancy, stability and masses subjected to acceleration

Upload: andreina

Post on 14-Jan-2016

21 views

Category:

Documents


3 download

DESCRIPTION

Fluidos I

TRANSCRIPT

  • ..

    >asses:eachormalrefore;enter

    urved

    gasISforceslrfacejected

    -rtiallyA net:orcesanbeesonlersedrawaNote)f theghtof~rtingmcel,

    :2.21)

    dEq.

    2.22)V2.6

    :ctionhown

    'eight

    I

    2.11Buoyancy,Flotation,andStability 75

    11"'-'.: :--: ::::::-::_-:::::~ -:: :-:--:-:'=:-:::::::::~~~::::::::::::::I ~1

    h2l

    [~ - --- B

    ;L,I --I III Y~ I xJ

    --

    Centroidof displaced

    volume

    (d)

    D c

    (a)Centroid

    A

    .FIGURE 2.24Buoyantforceonsubmergedandfloat-ingbodies.

    F3-+-

    D(e)

    c

    (b)

    of thefluid displacedby thebodyandis directedverticallyupward.This resultis commonlyreferredto asArchimedes'principle in honorof Archimedes(287-212B.C.),a Greekmech-anicianandmathematicianwho firstenunciatedthebasicideasassociatedwithhydrostatics.

    The locationof theline of actionof thebuoyantforcecanbedeterminedby summingmomentsof theforcesshownon thefree-bodydiagramin Fig. 2.24bwith respectto someconvenientaxis.For example,summingmomentsaboutanaxis perpendicularto thepaperthroughpointD wehave .

    FBYe =F2YI - FIYI - 'WY2andonsubstitutionforthevariousforces

    VYe= VTYI - (VT - V)Y2 (2.23)

    whereVT is thetotalvolume(h2- hI)A.Theright-handsideofEq.2.23isthefirstmomentof thedisplacedvolumeV withrespecttothex-zplanesothatYcis equaltotheYcoordinateof thecentroidof thevolumeV. In asimilarfashionit canbeshownthatthex coordinateof thebuoyantforcecoincideswiththex coordinateof thecentroid.Thus,weconcludethatthebuoyantforcepassesthroughthecentroidofthedisplacedvolumeasshowninFig.2.24c.Thepointthroughwhichthebuoyantforceactsis calledthecenterofbuoyancy.

    Thesesameresultsapplyto floatingbodieswhichareonlypartiallysubmerged,asillustratedin Fig.2.24d,if thespecificweightof thefluidabovetheliquidsurfaceis verysmallcomparedwiththeliquidin whichthebodyfloats.Sincethefluidabovethesurfaceisusuallyair,forpracticalpurposesthisconditionis satisfied.

    In thederivationspresentedabove,thefluidis assumedtohavea constantspecificweight,y.If abodyisimmersedin afluidinwhich'Yvarieswithdepth,suchasinalayeredfluid,themagnitudeof thebuoyantforceremainsequaltotheweightof thedisplacedfluid.However,thebuoyantforcedoesnotpassthroughthecentroidof thedisplacedvolume,butrather,it passesthroughthecenterof gravityof thedisplacedvolume.

  • 76 Chapter2 / Fluid Statics

    EXAMPLE2.10

    A sphericalbuoyhasadiameterof 1.5m,weighs8.50kN, andis anchoredtotheseafloorwithacableasis showninFig.E2.l0a.Althoughthebuoynormallyfloatsonthesurface,atcertaintimesthewaterdepthincreasessothatthebuoyis completelyimmersedasillus-trated.Forthisconditionwhatis thetensionof thecable?

    Pressureenvelope

    (a) (b) (c) .. FIGURE E2.10

    SOLUTION

    Wefirstdrawa free-bodydiagramof thebuoyasis shownin Fig.E2.1Ob,whereFEis thebuoyantforceactingonthebuoy,OWis theweightof thebuoy,andT is thetensionin thecable.Forequilibriumit followsthat

    T =FE - OW

    FromEq.2.22

    FE = ')IV

    and for seawaterwith ')I = 10.1kN/m3andV = 1Td3/6then

    FE = (10.1 X 103N/m3)((1T/6)(lSm)3] = 1.785X 104N

    Thetensionin thecablecannowbecalculatedas

    T =1.785X 104N - 0.850X 104N =9.35kN (Ans)

    Notethatwereplacedtheeffectofthehydrostaticpressureforceonthebodybythebuoyantforce,FE,Anothercorrectfree-bodydiagramof thebuoyis showninFig.E2.1Oc.Theneteffectof.thepressureforcesonthesurfaceof thebuoyis equaltotheupwardforceof magnitude,FE(thebuoyantforce).Donotincludeboththebuoyaritforceandthehydro-staticpressureeffectsin yourcalculations-useoneortheother.

    2.11.2 Stability

    Anotherinterestingandimportantproblemassociatedwithsubmergedorfloatingbodiesisconcernedwiththestabilityofthebodies.A bodyissaidtobeinastableequilibriumpositionif, whendisplaced,it returnsto its equilibriumposition.Conversely,it is in anunstableequilibriumpositionif,whendisplaced(evenslightly),itmovestoanewequilibriumposition.Stabilityconsiderationsareparticularlyimportantforsubmergedorfloatingbodiessincethecentersof buoyancyandgravitydonotnecessarilycoincide.A smallrotationcanresultineithera restoringor overturningcouple.For example,for thecompletelysubmergedbody

  • )r

    v,

    s-

    hehe

    1S)

    theDc.rcero-

    ;isionbleon.thetin)dy

    I

    ~ -~~_u_--~-_u_~--------

    V2.7

    :=-=-=-=-==-~:~=:=====:-~-:-=-=-=-=-~cY=-:-=-:-=-=-:==:=:::.:=:~:=:

    Stable

    Restoringcouple

    . FIGURE 2.25Stabilityof a completelyim-mersedbody-centerof gravitybelowcentroid.

    2.11 Buoyancy,Flotation,andStability 77

    -:-:~~-= =-:-=-:-:-~c-:-=:.:_=-:--_'!:-=::====:=====:=:::==:=c

    Unstable

    Overturningcouple

    . FIGURE 2.26Stabilityofa completelyim-mersedbody-centerof gravityabovecentroid.

    shownin Fig.2.25,whichhasacenterof gravitybelowthecenterofbuoyancy,a rotationfromitsequilibriumpositionwillcreatearestoringcoupleformedbytheweight,OW,andthebuoyantforce,FE,whichcausesthebodytorotatebacktoitsoriginalposition.Thus,forthisconfigurationthebodyis stable.It is tobenotedthataslongasthecenterof gravityfallsbelowthecenterofbuoyancy,thiswill alwaysbetrue;thatis, thebodyis in astableequi-libriumpositionwithrespecttosmallrotations.-However,asis illustratedinFig.2.26,if thecenterof gravityis abovethecenterofbuoyancy,theresultingcoupleformedbytheweightandthebuoyantforcewillcausethebodytooverturnandmovetoanewequilibriumposition.Thus,acompletelysubmergedbodywithitscenterof gravityaboveitscenterofbuoyancyis in anunstableequilibriumposition.

    Forfloatingbodiesthestabilityproblemis morecomplicated,sinceasthebodyrotatesthelocationof thecenterof buoyancy(whichpassesthroughthecentroidof thedisplacedvolume)maychange.As isshowninFig.2.27,afloatingbodysuchasabargethatrideslowinthewatercanbestableeventhoughthecenterofgravityliesabovethecenterofbuoyancy.Thisistruesinceasthebodyrotatesthebuoyantforce,FE,shiftstopassthroughthecentroidof thenewlyformeddisplacedvolumeand,asillustrated,combineswiththeweight,OW,toformacouplewhichwill causethebodytoreturntoitsoriginalequilibriumposition.How-ever,fortherelativelytall,slenderbodyshowninFig.2.28,asmallrotationaldisplacementcancausethebuoyantforceandtheweighttoformanoverturningcoupleasillustrated.

    It is clearfromthesesimpleexamplesthatthedeterminationof thestabilityof sub-mergedorfloatingbodiescanbedifficultsincetheanalysisdependsinacomplicatedfashionontheparticulargeometryandweightdistributionof thebody.Theproblemcanbefurthercomplicatedbythenecessaryinclusionofothertypesofexternalforcessuchasthoseinducedbywindgustsorcurrents.Stabilityconsiderationsareobviouslyof greatimportancein thedesignof ships,submarines,bathyscaphes,andsoforth,andsuchconsiderationsplayasig-nificantroleintheworkofnavalarchitects(see,forexample,Ref.6).

    c =centroidoforiginaldisplacedvolume

    n . FIGURE 2.27Stabilityof a float-ingbody-stableconfiguration.

    c' =centroidofnewdisplacedvolume

    Restoringcouple

    Stable

  • I"

    78 Chapter2 / Fluid Statics

    ()c =centroidoforiginal c' =centroidof new Overturning

    displacedvolume displacedvolume coupleUnstable

    . FIG U R E 2.28 Stabilityofa float-ingbody-unstableconfiguration.

    2.12 PressureVariationin a Fluid withRigid-BodyMotion

    Althoughin thischapterwehavebeenprimarilyconcernedwithfluidsatrest,thegeneralequationofmotion(Eq.2.2)

    - Vp - -yk =pa

    wasdevelopedfor bothfluidsatrestandfluidsin motion,withtheonly stipulationbeingthattherewerenoshearingstressespresent.Equation2.2in componentform,basedonrectangularcoordinateswiththepositivez axisbeingverticaUyupward,canbeexpressedas

    - apax= pax

    ap-ay=pay - ap= l' + pazaz

    (2.24)

    Eventhoughafluid.maybein.motion,if..' ..j. .,. , ,it moves'asa rigidbodytherewillbe

    ,noshearlngstressespresent.

    A generalclassof problemsinvolvingfluidmotionin whichthereareno shearingstressesoccurswhenamassoffluidundergoesrigid-bodymotion.Forexample,if acontainerof fluidacceleratesalongastraightpath,thefluidwill moveasarigidmass(aftertheinitialsloshingmotionhasdiedout)witheachparticlehavingthesameacceleration.Sincethereisnodeformation,therewill benoshearingstressesand,therefore,Eq.2.2applies.Similarly,if afluidiscontainedinatankthatrotatesaboutafixedaxis,thefluidwill simplyrotatewiththetankasarigidbody,andagainEq.2.2canbeappliedtoobtainthepressuredistributionthroughoutthemovingfluid.Specificresultsforthesetwocases(rigid-bodyuniformmotionandrigid-bodyrotation)aredevelopedin thefollowingtwosections.Althoughproblemsrelatingtofluidshavingrigid-bodymotionarenot,strictlyspeaking,"fluidstatics"problems,theyareincludedin thischapterbecause,aswewill see,theanalysisandresultingpressurerelationshipsaresimilartothoseforfluidsatrest.

    2.12.1 Linear Motion

    Wefirstconsideranopencontainerofaliquidthatis translatingalongastraightpathwithaconstantaccelerationa asillustratedin Fig. 2.29.Sinceax=0 it followsfromthefirstofEqs. 2.24thatthepressuregradientin thex directionis zero (ap/ax = 0). In they andzdirections

    ap-ay- - pay

    apaz = -peg + az)

    (2.25)

    (2.26)

  • ,a float-

    -meral

    gthat19u1ar

    [2.24)

    ~aringtainerinitialtereis

    Harly,~with}utionlotionblemsJlems,~ssure

    withairstofandz

    (2.25)

    (2.26)

    I

    --

    2.12PressureVariationinaFluid with Rigid-Body Motion 79

    Freesurfaceslope=dzldy a'L~:

    ayPI Constantpz pressureP3 lines . FIGURE 2.29

    Linearaccelerationofa liquidwitha freesurface.

    Thechangeinpressurebetweentwocloselyspacedpointslocatedaty,z,andy + dy,z + dzcanbeexpressedas

    ap apdp =- dy + - dzay az

    or in termsof theresultsfromEqs.2.25and2.26

    dp = - paydy - p(g + az)dz (2.27)

    Alonga lineof constantpressure,dp = 0,andthereforefromEq.2.27it followsthattheslopeof thislineis givenbytherelationship

    dz = -~dy g + az

    (2.28)

    'ressuredistri-

    inafluidatisaccel-alonga

    htpathisnot'static.

    Alongafreesurfacethepressureis constant,sothatfortheacceleratingmassshowninFig.2.29thefreesurfacewillbeinclinedif ay0;6O.In addition,alllinesofconstantpressurewillbeparalleltothefreesurfaceasillustrated.

    Forthespecialcircumstanceinwhichay= 0,az0;60,whichcorrespondstothemassof fluidacceleratingin theverticaldirection,Eq.2.28indicatesthatthefluidsurfacewillbehorizontal.However,fromEq.2.26weseethatthepressuredistributionis nothydrostatic,butis givenbytheequation

    dpdz = - p(g + az)

    For fluidsof constantdensitythisequationshowsthatthepressurewill varylinearlywithdepth,butthevariationis duetothecombinedeffectsof gravityandtheexternallyinducedacceleration,p(g + az),ratherthansimplythespecificweightpg.Thus,for example,thepressurealongthebottomof aliquid-filledtankwhichis restingonthefloorof anelevatorthatis acceleratingupwardwill beincreasedoverthatwhichexistswhenthetankis atrest(ormovingwitha constantvelocity).It is tobenotedthatfor afreelyfalling fluidmass(az=- g),thepressuregradientsin all threecoordinatedirectionsarezero,whichmeansthatifthepressuresurroundingthemassiszero,thepressurethroughoutwill bezero.Thepressurethroughouta "blob" oforangejuicefloatinginanorbitingspaceshuttle(aformoffreefall)is zero.Theonlyforceholdingtheliquidtogetheris surfacetension(seeSection1.9).

  • 80 Chapter2 / Fluid Statics

    EXAMPLE2.11

    Thecrosssectionfor thefueltankof anexperimentalvehicleis shownin Fig. E2.ll. Therectangulartankis ventedtotheatmosphere,andapressuretransduceris locatedin itssideasillustrated.Duringtestingof thevehicle,thetankis subjectedtoaconstantlinearaccel-eration,ay.(a)Determineanexpressionthatrelatesayandthepressure(in lb/ft2)atthetransducerforafuelwithaSG =0.65.(b)Whatisthemaximumaccelerationthatcanoccurbeforethefuelleveldropsbelowthetransducer?

    ay .ZL

    Y

    I--0,75ft---+--- 0,75ft--! . FIGURE E2.11

    SOLUTION

    (a) Foraconstanthorizontalaccelerationthefuelwill moveasarigidbody,andfromEq.2.28theslopeof thefuelsurfacecanbeexpressedas

    dz ay

    dy g

    sinceaz =O.Thus,forsomearbitraryay,thechangein depth,z\,of liquidontherightsideof thetankcanbefoundfromtheequation

    z ay1-- = --0.75ft g

    or

    z\ = (0.75ft) (~)Sincethereis noaccelerationin thevertical,z, direction,thepressurealongthewallvarieshydrostaticallyasshownbyEq.2.26.Thus,thepressureatthetransducerisgivenbytherelationship

    p =yhwhereh is thedepthof fuelabovethetransducer,andtherefote

    p = (0.65)(62.4lb/ft3)[0.5ft - (0.75ft)(ay/g)]

    ay= 20.3- 30.4-g

    forz\ :S0.5ft.As written,p wouldbegivenin lb/ft2.

    (Ans)

  • Theside

    ccel-t theIccur

    Eg.

    ght

    allen

    s)

    2.12 PressureVariationin a Fluid withRigid-Body Mot/on 81

    (b) Thelimitingvalueforay(whenthefuellevelreachesthetransducer)canbefoundfromtheequation

    0.5ft = (0.75ft) [(aY~max]or

    2g(~)max=3

    andforstandardaccelerationof gravity

    (ay)max=1(32.2ft/s2) = 21.5ft/s2 (Ans)Notethatthepressurein horizontallayersis notconstantin thisexamplesinceap/ay=- pay' O.Thus,forexample,PI 'P2'

    2.12.2 Rigid-BodyRotation

    Afteraninitial"start-up"transient,a fluidcontainedin atankthatrotateswithaconstantangularvelocitywaboutanaxisasis showninFig.2.30will rotatewiththetankasarigidbody.It is knownfromelementaryparticledynamicsthattheaccelerationofa fluidparticlelocatedatadistancer fromtheaxisofrotationisequalinmagnitudetorw2,andthedirectionof theaccelerationistowardtheaxisofrotationasis illustratedin thefigure.Sincethepathsof thefluidparticlesarecircular,it isconvenienttousecylindricalpolarcoordinatesr, e,andz,definedin theinsertin Fig.2.30.It will beshowninChapter6thatin termsofcylindricalcoordinatesthepressuregradientV'pcanbeexpressedas

    t'7 ap A 1apA apAvp =- e + - - Ce+ - Car r r ae azZ

    Thus,in termsof thiscoordinatesystem

    (2.29)

    ar = - rw2er ae=0 az =0andfromEq.2.2

    apar = prw2 ap= 0ae

    ap-az- - 'Y (2.30)

    I Axisof, rotation

    I,I,

    ~a,= r(JJ2

    y

    e'"

    r i?/e

    '\'"e,

    x . FIGURE 2.30Rigid-bodyrotationof a liquidin a tank.

  • ap apdp = - dr + - dzar az

    82 Chapter2 / Fluid Statics

    Theseresultsshowthatforthistypeof rigid-bodyrotation,thepressureis afunctionof twovariablesrandz,andthereforethedifferentialpressureis

    or

    dp =prul dr - 'Ydz (2.31) ~

    Alongasurfaceof constantpressure,suchasthefreesurface,dp = 0,sothatfromEq.2.31(using'Y = pg)

    w2r2

    z =2g + constant(2.32)

    dz rw2---dr g

    urfaceinliquidis'herthan

    and,therefore,theequationfor surfacesof constantpressureis

    Thisequationrevealsthatthesesurfacesof constantpressureareparabolicasillustratedinFig.2.31.

    IntegrationofEq.2.31yields

    I dp =pW2 I r dr - 'YI dz

    or

    pw2r2p =~ - 'YZ+ constant

    (2.33)

    wheretheconstantof integrationcanbeexpressedin termsof aspecifiedpressureatsomearbitrarypointro,zoThisresultshowsthatthepressurevarieswiththedistancefromtheaxisofrotation,butatafixedradius,thepressurevarieshydrostaticallyintheverticaldirectionasshowninFig.2.31.

    PI

    Constant P2'pressure

    lines P3

    P4

    r~

    P3- I~

    (j)2r2

    2g

    ry . FIG U R E 2. 3 1 Pressure

    distributionin a rotatingliquid.x

    I

  • 2.12 PressureVariationin a Fluid with Rigid-Body Motion 83

    }ftwo XAMPLE2.12

    It hasbeensuggestedthattheangularvelocity,w,ofarotatingbodyorshaftcanbemeasuredbyattachinganopencylinderof liquid,asshowninFig.E2.l2a,andmeasuringwithsometypeofdepthgagethechangein thefluidlevel,H - ho'causedbytherotationof thefluid.Determinetherelationshipbetweenthischangein fluidlevelandtheangularvelocity.

    ~R---1

    (2.31)

    1111

    dr

    1.2.31

    (2.32)

    (a)

    SOLUTION

    (b) . FIGURE E2.12

    atedin Theheight,h,of thefreesurfaceabovethetankbottomcanbedeterminedfromEq.2.32,andit followsthat

    w2r2h =- + ho

    2g

    Theinitialvolumeof fluidin thetank,Vi, is equalto

    Vi = l7R2H

    (2.33)

    Thevolumeof thefluidwiththerotatingtankcanbefoundwiththeaidof thedifferentia]elementshowninFig.E2.l2b.Thiscylindricalshellis takenatsomearbitraryradius,r, aneitsvolumeis

    dV = 21T1"hdrIt some'omtheirection

    Thetotalvolumeis,therefore

    IR

    (w2r2 )

    l7W2R4

    V =217 r - + ho dr =- + l7R2ho 2g 4g

    Sincethevolumeof thefluidin thetankmustremainconstant(assumingthatnonespilloverthetop),it followsthat

    l7W2R4l7R2H =- + l7R2h(l

    4g .

    orw2R2

    H-ho=- 4g

    Thisis therelationshipwewerelookingfor.It showsthatthechangein depthcouldinde(beusedtodeterminetherotationalspeed,althoughtherelationshipbetweenthechangedepthandspeedis notalinearone.

    (An:

    Pressureliquid.

    I

  • 84 Chapter2 / Fluid Statics

    References

    1. TheU.S.StandardAtmosphere,1962,U.S.GovernmentPrintingOffice,Washington,D.C.,1962.

    2. TheU.S.StandardAtmosphere,1976,U.S.GovernmentPrintingOffice,Washington,D.C.,1976.

    3. Benedict,R.P.,FundamentalsofTemperature,Pressure,andFlowMeasurements,3rdEd.,Wiley,NewYork,1984.

    4. Dally,J. W., Riley,W. F., andMcConnell,K. G., Instrumentationfor EngineeringMeasurements,2ndEd.,Wiley,NewYork, 1993.

    5. Holman,J. P.,ExperimentalMethodsforEngineers,4thEd.,McGraw-Hill,NewYork,1983.

    6. Comstock,J. P.,ed.,PrinciplesofNavalArchitecture,SocietyofNavalArchitectsand,MarineEngineers,NewYork,1967.

    7. Hasler,A. F., Pierce,H., Morris,K. R., andDodge,J., "MeteorologicalDataFields'In Perspective'", Bulletinof theAmericanMeteorologicalSociety,Vol. 66,No.7,July 1985.

    ReviewProblems

    Note:Problemsdesignatedwith(R)arereviewproblems.Thephraseswithinparenthesesrefertothemaintopicstobeusedin solvingtheproblems.Complete,detailedsolutionstothesereviewproblemscanbefoundin thesupplementtitledStudentSolutionManualfor Fundamentalsof Fluid MechanicsbyMunson,Young,andOkiishi(JohnWileyandSons,NewYork,1997).

    2.1R (Pressurehead) Comparethecolumnheightsofwater,carbontetrachloride,andmercurycorrespondingto apressureof50kPa.Expressyouranswerinmeters.(ANS:5.10m;3.21m;0.376m)

    2.2R(Pressure-depthrelationship) A closedtankis par-tiallyfilledwithglycerin.If theairpressurein thetankis 6Ib/in.2andthedepthof glycerinis 10ft,whatis thepressurein Ib/ff atthebottomof thetank?(ANS:1650Ib/ft2)

    2.3R(Gage-absolutepressure) OntheinletsideofapumpaBourdonpressuregagereads600Ib/ft2vacuum.Whatis thecorrespondingabsolutepressureif thelocalatmosphericpres-sureis 14.7psia? .(ANS: 10.5psia)

    2.4R(Manometer) A tankisconstructedofaseriesofcyl-indershavingdiametersof0.30,0.25,and0.15masshowninFig. P2.4R.Thetankcontainsoil, water,andglycerinanda

    mercurymanometerisattachedtothebottomasillustrated.Cal-culatethemanometerreading,h.(ANS:0.0327m)

    t0.1m

    +-0.1m

    t-0.1mt-0.1m.t

    Ih

    ~Mercury

    .FIGURE P2.4R2.5R(Manometer) A mercurymanometerisusedtomea-surethepressuredifferencein thetwopipelinesof Fig.P2.5R.Fuel oil (specificweight = 53.0 Ib/ft3) is flowing in A andSAE 30lubeoil (specificweight= 57.0Ib/ft3)is flowinginB. An airpockethasbecomeentrappedin thelubeoil asindi-cated.DeterminethepressureinpipeB if thepressureinA is15.3psi.(ANS: 18.2psi)

    i!j

    Ij

    ij,i

    IIjj!

    J

    '

    j

    I

    I

    I' J

    .,;~1

    I ~

    I

    11i ~Ii

    I j

  • Airbubble-m,

    m, SAE36 oil

    rd

    ng

    ok,P2.5R

    lld 2.6R (Manometer) Determine theangle8 of theinclinedtubeshownin Fig. P2.6R if thepressureatA is 1 psi greaterthanthatat B. .

    ds

    7,

    B.Air

    . FIGURE P2.6R

    - 2.7R(Forceonplanesurface) A swimmingpoolis18mlongand7 m wide.Determinethemagnitudeandlocationoftheresultantforceof thewaterontheverticalendof thepoolwherethedepthis 2.5m.(ANS:214kN oncenterline,1.67mbelowsurface)

    11-

    2.8R(Forceonplanesurface) Theverticalcrosssectionofa7-m-longclosedstoragetankis showninFig.P2.8R.Thetankcontainsethylalcoholandtheairpressureis 40kPa.De-terminethemagnitudeoftheresultantfluidforceactingononeendof thetank.

    (ANS:847kN)

    r-2 m1

    IAir

    a-{.IdIII]-is

    2m

    t4m

    1~4m~.FIGURE P2.8R

    I

    ReviewProblems 85

    2.9R(Centerofpressure) A 3-ft-diametercircularplateislocatedin theverticalsideofanopentankcontaininggasoline.Theresultantforcethatthegasolineexertsontheplateacts3.1in. belowthecentroidof theplate.Whatis thedepthof theliquidabovethecentroid?(ANS:2.18ft)

    2.10R(Forceonplanesurface) A gatehavingthetrian-gularshapeshowninFig.P2.lORis locatedintheverticalsideof anopentank.Thegateis hingedaboutthehorizontalaxisAB. Theforceof thewateronthegatecreatesamomentwithrespectto theaxisAB. Determinethemagnitudeof thismo-ment.

    (ANS:3890kN.m)

    T8m

    I

    T6m

    11--6 m-1-7 m l

    P2.10R

    2.11R(Forceonplanesurface) TherectangulargateCDof Fig P2.11Ris 1.8m wideand2.0m long.Assumingthematerialof thegatetobehomogeneousandneglectingfrictionatthehingeC, determinetheweightof thegatenecessarytokeepit shutuntilthewaterlevelrisesto2.0mabovethehinge.(ANS: 180kN)

    . FIGURE P2.11R

    2.12R(Forceoncurvedsurface) A gatein theformofapartialcylindricalsurface(calleda Taintergate)holdsbackwaterontopof adamasshownin Fig.P2.12R.Theradiusofthesurfaceis 22ft,andits lengthis 36ft.ThegatecanpivotaboutpointA, andthepivotpointis 10ft abovetheseat,C.

  • 86 Chapter 2/ FluidStatics

    Determinethemagnitudeof theresultantwaterforceon thegate.Will theresultantpassthroughthepivot?Explain.(ANS: 118,000Ib)

    Taintergate '>..

    A

    . FIGURE P2.12R

    2.13R(Forceoncurvedsurface) A conicalplugislocatedin thesideof atankasshowninFig.2.13R.(a)Showthatthehorizontalcomponentoftheforceofthewaterontheplugdoesnotdependonh.(b)Forthedepthindicated,whatis themag-nitudeof thiscomponent?(ANS:735Ib)

    . FIGURE P2.13R

    2.14R(Forceon curvedsurface) The9-ft-Iongcylinderof Fig.P2.14Rfloatsinoil andrestsagainstawall.Determinethehorizontalforcethecylinderexertsonthewallatthepointof contact,A.

    (ANS:2300Ib)

    II FIGURE P2.14R

    I

    2.1SR(Buoyancy) A hot-airballoonweighs500Ib, in-cludingtheweightof theballoon,thebasket,andoneperson.Theairoutsidetheballoonhasatemperatureof80of, andtheheatedairinsidetheballoonhasa temperatureof ISOof. As-sumetheinsideandoutsideairtobeatstandardatmosphericpressureof 14.7psia.Dete~minetherequiredvolumeof theballoonto supporttheweight.If theballoonhada sphericalshape,whatwouldbetherequireddiameter?(ANS:59,200ft3;48.3ft)

    2.16R(Buoyancy) An irregularlyshapedpieceof asolidmaterialweighs8.05lb in air and5.26Ib whencompletelysubmergedinwater.Determinethedensityof thematerial.(ANS:5.60slugs/ft3)

    2.17R(Buoyancy,forceonplanesurface) A cube,4ftona side,weighs3000Ib andfloatshalf-submergedin anopentankasshownin Fig.P2.17R.For a liquiddepthof 10ft,de-terminetheforceoftheliquidontheinclinedsectionAB ofthetankwall.Thewidthof thewallis 8 ft. Showthemagnitude,direction,andlocationof theforceonasketch.

    (ANS: 75,000Ib oncenterline,13.33ft alongwallfromfreesurface)

    1-4It-I

    A

    II FIGURE P2.17R

    2.18R(Rigid,bodymotion) A containerthatis partiallyfilledwithwateris pulledwithaconstantaccelerationalongaplanehorizontalsurface.Withthisaccelerationthewatersur-faceslopesdownwardatanangleof 40withrespectto thehorizontal.Determinetheacceleration.Expressyouranswerinm/s2.(ANS:8.23m/s2)

    2.19R(Rigid-bodymotion) An open,2-ft-diametertankcontainswaterto a depthof 3 ft whenatrest.If thetankisrotatedaboutitsverticalaxiswithanangularvelocityof 160rev/min,whatis theminimumheightof thetankwallstopre-ventwaterfromspillingoverthesides?(ANS:5.18ft)