buletin bsfj bil 3 2008

Upload: farahazura

Post on 14-Apr-2018

345 views

Category:

Documents


7 download

TRANSCRIPT

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    1/30

    "Menjadi pusat kecemerlangan senggara fasiliti jalanberteraskan kreativiti dan inovasi modalinsan serta teknologi terkini"

    CAWANGAN SENGGARA FASILITI JALANIb u Pejabat JKR MalaysiaBlok D, Tlngkat 2, Kompleks Kerja Raya, lalan Sultan Salahuddin, 50582 Kuala LumpurTe l : 03-2696 7725 Fax : 03-2694 7550http:/ /www.Jkr.gov.myDlaned& ~ n w e l by: QNine ErDiprlScn. Bhd.Llcl ln No. KDN.O.PQ1780/o078 : OS-!882 111101

    BULETIN Senggara

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    2/30

    PenasihatIr. Dr. SafiyKamalHj.Ahmad

    P e ~ ~ g a r a n gJr. MohdHizam Ha.runPenolong Pengarang

    FazleenHanim Ahmad KamarHanani MohdRadzi

    BULETIN SENGGARA FASlllTI JALANialah penerlritan suku tahunan CawanganSenggara Fasiliti Jalan, Ibu Pejabat JKRMalaysia, KualaLumpur. Ia diedarkan secarapercuma kepada semua pejabat JKR sertaagensi-agensi kcrajaan dan SWIISta yangberkaitan. Hak: Cipta Terpelihara. Petikandari Bu1eti.n ini boleh diterbitkan semuia.kccuali bagi tujuan komersi.al, dengan syaratponca petikan dinyatakan. Sidang Redaksimengalu-alukan sebmng bentuk ulasan dancadangan bagi memberi penamba.hbai.lom keatas kualiti penerbitanini.

    ~ ke hadmt Dahl kerana dengan izinNya kita dapatbetjumpa sekali lagi. lema Buletin SenggBlll Fasiliti Jalan padak:ali ini ialah 'Strategi PengurusanAset Jalan'. Tidak: dapat sayanafikan di antara caberan yang paling getir da1am pengurusanaset jalan ialah melalwnalcan program-program penyenggaraanyang telab dirancangdi awal tahun dan menyediakan penmtukanyang mencukupi bagi mencapai objektif rangkaian jalanrayayang selamat, selesa dan efisien. Namun begi:tu, mengikutpengalaman lepas, hanya 70-80% daripada program yangdirancang dapat dilaksanakan setiap tahun. Bahkan pada tahunini, peratusanpencapajanpelakssnaan program yangtelahdirancang itu adalah lebihrendahlagi di atas sebab-sebab tertentudi 1uar bidang kuasa Cawangan ini. Antara puncanya ialahpenmtukan belanja mengurus yang tidak mencukupi dan kerana terdapatnya perubahankeutamaan disebabkan faktor cuaca, alam sekitar, sosio-politik dan peningbtan beban

    trafikyangbaro. Untuk tahun 2008, Cawangan in imemohon peruntukan belanja mengurustahunan sebanyak RM800juta l:tapi yangdiluluskancumaRM506 uta sahaja. Tidak: cukupdengan masalah itu, Cawangan in i uga dibebani dengan permohonan kerja penyenggaraanyangbaru,bemilaiRM400 jutasetakatbulanOgosyang lepas sahaja. Oleh aebab itu. Cawangan ini terpaksa menentukan program tumpuandan senarai butamaannya, serta terpaksamenunda permoho:oan bam tersebut ke tahun hadapan. Program tmnpuan bagi tahun in iadalah yang berkaitan dengan keselamatan jalamaya sepert:i menaiktarafsimpang, memasang guardrail dan crash cushion, mengecat garisan jalan. memuang papantiDda tunjukanh dan menyenggara lorong motosilral. Bagi kerja pavemen, keutamaan lokasi yangdirawat ditentukanIDeDel'll8i perisianHDM-4.Cawangan in i juga sedang merancang untuk: meningkatkan keupayiiD mcnga.naliaia c1alam membuat pcnilaian ramalan sccara saintifik ke atas jumlah kemllangan danmangsa yang dapat diaelamatkan bagi ICtiap jeDis rawatan yang dijalankan. Bagi aet.i.apmwalall. yang tel.ah dilelcsanakan, Cawangan ini ada men,jaliDbn analisis ko ldU tahapkeberb.l811nya. SehubuDgan iDi, deagan rasa subcitan.ya, saya ingin me di sinibahawa program Rawatan LotaliKemalangan Secara KDs R.endah s ymg tel.ahdi1aporkan. etiD iDi edisi Jun 2008 yang lepas,bampir98% ymg tel.ahdirawat tidat Jaai bmalangan maut, perubabantrendduibmalanpn maut atau Melaluipenuunun ProeedurPclakJanunProsram atau. SOPyq olc:h CawaDpn. iDi, laponn. kebcr-bamm basi IICD11JII J110111111ll'llWidllll aka dlpat dipcml.chi.Alddrbta, adalahJllaljadihlnpan.. . ,a l lp l "Cawmgm iniabo lDh ClllllCil'bmg1lgidllalJDa18i11U1 uetJalmhrll!!l!!hilft eli:a . .abndatagdallm1!WC4Jeibbondlkpenaanajllamayaymg Ida ..........Klplda I I IDIII pembeca J1D1 benpma lllllm. 11.)'8 ~ D q U C ~ p l a m ll1iaDitberpuuadaD Se1amatBariItayaAhti1 Fitri.mufabirdiD batin.

    ') Life cycle costs analysis for periodic ld Cold-in-place pavement recycling::J pavement rehabilitation Does it guarantee performance?r Road asset management system ~ J j Pengurusan trafik d.i tapak binaJ

    Pengurusan aset Jalan Persekutuan: ' ) r Asphalt & pavements: FAQs. . . : . . ~ UiJ Strategi pelaksanaan & cabaranv Nota Penyenggaraan Jalan ~ v Mesyuarat pemeriksaan & baikpulihjambatan tahun 2008 peringkatzoo selatan.I') Pengurusan & penyenggaraan jambatan

    _ . . . : . . ~ panel k.eluli bermodular

    Buletin S ara Fasiliti Jalan S t 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    3/30

    Prioritising Maintenance WorksHDM-4 is the upgraded version of the original HDM-IIIomputer program developed by the World Bank foranalysing road management and investment strategies

    (Kerali, 1999). The HDM-4 program is a decision supportool that can be used for the allocation of funds for roadaintenance and rehabilitation works. HDM-4 incorpoates three main cost analysis models, namely:) Road Deterioration and Works Effects (RDWE);i) Road User Economic (RUE), and;ii) Socio-Economic Costs (SEC).n running the HDM-4, the analysis models interface

    between three different modules, i.e. Program Manager,ehicle Fleet Manager and Project Analysis. The resultsill be the prioritisation of road sections within a networkor maintenance, and rehabilitation within limited funds.DM-4 estimates the total life cycle costs for a number ofser-specified alternatives and discounts future costs tourrent values at the specified discount rate. It assists theser in finding a set of design and maintenance options,hich minimises total discounted transport costs. Thusaximising the net present value for a given highwaysystem under various budget scenarios. The HDM-4

    program is based on the concept of life cycle cost to simuate and evaluate various strategies of road construction,aintenance and rehabilitation to produce an optimisedstrategy using economic indicators, namely; the Internalate of Return (IRR), Net Present Value (NPV) andenefit-Cost-Ratio (B-C Ratio). The economic evaluationsnclude the costs of capital investment, maintenance,ehicle operations, and travel time. Comparisons are

    ade between various strategies by specifying investent programmes, design standards and maintenancealternatives.

    Life cycle analysishe concept of life cycle costs has been adopted in mostountries as the basis for decision making. It is used withegard to road design, construction and maintenance ofighway networks. HDM-4 models pavement perforance by applying deterioration models for bituminous,igid and unsealed pavements. The robustness of assessent of the life cycle costs depends upon the quality of

    data input to the appropriate model and the accuracy ofraffic predictions, as well as growth forecasts (PIARC,999). In addition, for accurate predictions in the modesof deterioration and performance of materials, informaion needs to be constantly updated to ensure sounddecisions are made.The three main components of life cycle costs are,amely costs due to; (i) construction, (ii) annual roadaintenance, and (iii) the road user costs. Within HDM-4he analysis involves running of various models to

    perform the economic analysis that requires various inputnformation necessary for the execution of program. Theanalysis requires the initial inputs pertaining to vehicleypes, traffic volume and growth, vehicle mechanicalproperties and the physical attributes of roadway sections

    UFE CYClE COSTSANALYSIS FOR

    PERIODICPAVEMENT

    RE IUTATIONby Ir. Dr. Safry Kamal Hj. Ahmad

    that include pavement thickness, and geometry. The unitcost for each component attribute is assigned. The hourlyvolume of traffic based on the percentage of AADT isdetermined by the flow frequency distribution.Similarly, the Road Deterioration and WorksEffects (RDWE) model will require inputs such as pavement types and strength, equivalents standard axles(ESA), pavement age and condition, as well as maintenance strategy. The outputs from this model includevarious pavement condition measures, including cracking, ravelling, potholes, ru t depth for bituminous pavements and gravel thickness for unsealed pavements, aswell as roughness and maintenance quantities. TheSocial and Environmental Cost (SEC) model requiresinputs such as road geometry, surface texture, andvehicle characteristics to estimate levels of emissions andenergy consumption including the number of accidents.The level of emissions, traffic noise and the number ofaccidents are outputs from this model. The EconomicAnalysis model involves making economic comparisonsbetween various alternatives, taking account of interrelationships between construction standards and maintenance operations to calculate the costs of construction,maintenance and vehicle operations. The basis for theeconomic evaluation is the difference in costs betweenone "base" alternative compared against the others.Currently, the HDM-4 Road User Costs (RUC)model analyses inter-urban road links based on roadgeometry, roughness, vehicle speed, vehicle types, andcongestion effects. The resulting outputs are the associated costs due to fuel consumption, lubricants, tyres,vehicle maintenance, depreciation, speed, and traveltime. Quantification in the effects of varying junctiontypes and lane closure strategies on road user costswould provide information required in evaluatingbenefits in terms of infrastructure investments for urbanand peri-urban conditions. Road user costs in urbanconditions are associated with speed change cycles due tothe proximity of different types of junctions, within thenetwork. The additional road user costs are in this type ofsituation, is independent of any pavement characteristics

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    4/30

    Prioritising Maintenance Worksbut depend more on the changing effects of vehicle operations due to road geometry and physical characteristics.Data management in HDM-4The Data Manager in HDM-4 enables the manipulation ofinformation on road networks and vehicle fleets stored inthe Road Network and Vehicle Fleet Managers, respectively. The network referencing in HDM-4 is based on theconcept of links, sections and nodes. Links are specifiedin terms of their length, types of roadway and lane widthhaving a consistent geometric layout along which trafficcharacteristics would not vary substantially. A section isa segment of road within a link that is homogeneous interms of physical characteristics. In the logical design forHDM-4, nodes are defined as types of junctions or intersections within a road network, while an intermediatenode is usually the start or end of dual carriageways,administrative boundaries, dead-ends or cul-de-sacs.Delays, queue lengths, saturation flows and capacities areparameters that could be analysed as a measure of theeffects on traffic performance and road user costs.Vehicles and traffic flowHDM-4 categorises vehicles into five different classes,namely: motorcycles, passenger cars, utilities, trucks, andbuses. Each of these classes are then further categorisedinto different vehicle types. For example, passenger carsare categorised as small, medium or large cars; utilities aslight delivery vehicles, light goods, and four-wheel drivevehicles. The program currently includes sixteen basevehicle types that can be calibrated to define an unlimitednumber of vehicle types in the fleet. The parametersrequired to define each vehicle type include: physicalattributes, utilisation, loading, and unit cost for items suchas vehicle purchase, replacement tyres, fuel, passengerand cargo travel time, etc.Traffic hourly flow frequency distributionIn undertaking congestion analysis, a representativehourly traffic flow level for five flow periods is aggregated that represents a full year traffic flow. The hourlyflows that are distributed over 8760 hours of the year (i.e.24 x 365 hours) and aggregated for each flow period arecalculated as a percentage of the Annual Average DailyTraffic (AADT), to reflect the effects of peaking duringpeak hours. This takes into consideration the occurrenceof congestion delays and costs that are greatest during thehighest-hourly flow. Conventional capacity analysisprocedure considers only the highest-traffic period of theyear by adopting the 30th, 50th, or 100th highest hour asthe design speed and identifying a k-factor that relates tothe AADT (AASHTO, 1990; ISOHDM, 1997). Based onthis, congestion analysis can be undertaken for a numberof user-specified hourly traffic flow levels, with congestion delays and costs greatest during the highest flowhours. These results are then combined to represent a fullyear flow for different types of road use such as seasonal,commuter, and inter-city.

    Road user costs componentsThe RUC module in HDM-4 models the effects of speedsand vehicle operations in relation to road pavement andgeometric conditions. The condit ion of the road is determined by the surface characteristics of the pavement.This influences the riding quality, comfort, safety, VOCand environment through tyre/road interaction. TheHDM-4 current road user cost calculations comprisesthree main components, namely: (i) vehicle operatingcosts, (ii) travel t ime costs, and (iii) accident costs.Vehicle operating costs (VOC)The components of vehicle operating costs include theresource costs of fuel and lubricant consumption, tyrewear, vehicle maintenance and repairs, depreciation, andinterest costs. The HDM-4 program incorporates separatemodels for estimating the VOC components as a functionof road geometry, surface types and conditions bothunder free flow and congested traffic conditions. Additionally, VOC depends on vehicle operating speed, trafficflow and driver behaviour. Operating costs are obtainedby multiplying the different resource quantities by theunit costs, specified by the user in financial or in economicterms. The resource costs for each VOC componentinclude labour hours; tyre, oil, and parts consumption,and; capital and overhead costs. These are calculated foreach vehicle type and for each traffic flow period, with theaverage annual consumption expressed in terms of unitspe r 1,000 vehicle-kilometres.Separate models are currently used in HDM-4 tocalculate the rate of fuel consumption for uphill anddownhill directions. The average of these two valuesrepresents the fuel consumption for the road section. Dueto the level gradient at junctions, uphill and downhillterms in the model would no longer be appropriate.Instead, an average value to represent parameters used inthe calculations of the rate and total tyre consumptionwould suffice.Travel time costsThree components of delays are due to road works,congestion, and at intersections. The effects of delays atroad works due to lane closures at work zones and atjunctions are currently not being incorporated within theHDM-4 program. An earlier proposal, made by Bennettand Greenwood (2001), was based on the use of an external program to obtain certain work zone parameters torun HDM-4 in order to obtain user costs due to delays andadditional fuel consumption.Accident costsA tabular approach is being adopted in HDM-4 to implement the analysis of road safety as recommended throughthe International Study of Highway Development andManagement (ISOHDM, 1997). A system in the programallows the user to define a series of "look-up" tables foraccident rates, which are grouped into different roadtypes and intersections. These rates, defined by fatal,

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    5/30

    Prioritising Maintenance Worksinjury or damage-only accidents are expressed in terms of the number of accidents per million vehicle-kilometres or per100 million vehicles. They are specified in several different ways according to a particular set of road conditions andtraffic attributes. Examples of these occur in terms of road type, traffic levels and flow patterns, the presence of nonmotorised transport (NMT), and geometry class. The user has the additional option to define by "ALL" accidents, thisbeing the sum of the three different accident types. The accident rates vary according to changes in road or intersectiontypes. They are calculated as a function of the number of accidents and annual exposure to accidents.Computational procedure involves estimating the number of accidents by type for each road section, junctiontype or investment option based on traffic volume on the road section, the total traffic volume (AADT) entering theintersection, and traffic growth. The total accident cost is, then, the summation of the annual accident cost under eachinvestment option. The unit costs can be user-defined either by accident types or as the weighted-mean if the "ALL"accident is specified. The results are stored for economic analysis and for comparisons between alternatives.

    In modelling road safety effects, HDM-4 uses a system of "look-up" tables. These enable users to defineaccident rates for a particular set of road attributes to analysis of accident effects and costs as the result of improvementsto road sections or intersections. The components of road safety are (i) accident rate, (ii) road physical attributes, (iii)accident types, and (iv) accident costs.Speed prediction modelsSpeed effects in HDM-4 are analysed with the notion that speeds decline over time due to increased roughness and anincrease in traffic volume. Vehicle speeds will increase when road roughness is reduced due to resurfacing. They areestimated for each vehicle type based on hourly flows. Speeds are affected by increasing traffic flows and reduced to aminimum when the hourly flow reaches capacity during the highest hours of the year. The output from HDM-4 is therelationships of speed flow tables and graphs utilised for each road strategy and vehicle type, taking account of prevailing pavement conditions and the range of hourly flows used in the analysis (Hoban et al, 1994).SummaryRoad user costs are mainly affected by traffic operations and are usually independent of pavement characteristics. Theyare related to the Present Serviceability Index (Haas and Hudson, 1978) that could be categorised in terms of time costs,opera ting costs, discomfort and accidents at junctions. These com[onents forms the basis of economic considerationsfor the life cycle cost analysis of any rehabilitation works.

    Buletin Sen ara Fasiliti Jalan S t 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    6/30

    Prioritising Maintenance WorksROAD ASSETMANAGEMENTSYSTEM ( MS)In 2002, Malaysia adopted HDM-4 with the Roads AssetManagement System project. Thisprojectbuildson data and knowledge available within PAMS, andutilizes the latest models available in HDM-4. Thisproject was jointly completed by JKR, KumpulanI , ARRB Transport R and TRL, UK. Theprimary objective of RAMS is to provide JKR with anetwork level planning and progr g tool tomanage it s Federal Road network.

    Data Rams-DB HDM-4 Outputs-+ 0 -+ [[0Import Data AnalyseManage Data naadaExport to HDM-4

    Figure1 :RAMS Compcment

    PoliciesStrataglaeProgrammesProjects

    Program analysis in HDM-4 is an analysis of the roadnetworkfor identifying the candidate road sections referto deterioration and requiring treatment forparticular budget period. As the roughness is the factor in analysis of road deterioration, thesoftware has defined roughness as a model consists ofseveral components of roughness i.e cracking, disintegration, deformation and maintenance.The roughness model in HDM-4 is based on theHDM-m model an d has the same five components ofroughness. The total incremental roughness is the swnof those components as derived in equation below:* RI = Rls + Ric+ Rir + Rip + Rlewhere,RI = Total incremental change in roughness duringanalysis year, (IRl m/km)Ris "' Incremental change in roughness due to cracking

    during the analysis year, (IRI m/km)Ric = ental in roughness due to s aldeterioration during the analysis year, (IRI m/km)Rir "' Incremental in roughness due to ruttingduring the analysis year, (IRI m/km)Rip = Incrementalchange in roughness due to potholing

    during the analysis year, (IRI m/km)Rie "' Incremental change in roughness due to environmental during the analysis year, (IRI m/km)

    *Sources: Volume 6, HDM-4 Version 2 ManualBased on the analysis carried out, it was found

    that the variation of traffic loading and deflection sensitively affect roughness while thickness vice versa.

    Buletin Fasiliti Jalan t 2008

    Pen urusanAse JalanPersekutuan:Strategi pelaksanaan&abaranoleh Unit Penilaim dan Pemulihan Pavemen

    PengenalanJabatan Kerja Raya (JKR) adalah sinonim dengan jalan,begitulah tanggapan kebanyakan rakyat di Malaysia. Halin i k.erana JKR telah terlibat dengan pembinaan dan penyenggaraan infrastruktur jalan sejak dari sebelum merdekalagi. Antara jasa besar JKR kepada rakyat adalah pembinaan rangkaian jalan dalam kawasan pembangunanwilayah seperi Felda, Felcra, Ketengah dan lain-lain,Lebuhraya Timur - Barat (Gerik - Jeli), dan JalanSimpangPulai - Pos Selim- Lojing. Peranan)KR dalam pengurusanJalan Persekutuan juga telah termaktub dalam beberapaAkta seperti Akta Pengangkutan 1987 (Akta 333) danTraffic Rules and Regulation.Kepentingan Rangkaian JalanrayaRangkaian jalanraya adalah penting untuk pembangunanekonomi dan sosial. Di Malaysia. lebih 96% daripadaaktiviti pengangkutan barangan dilakukan melalui rangkaian jalanraya. Oleh itu, pengurusan aset jalan dengancekap adalah amat perlu kerana bagi setiap ringgit yangtidak dibelanjakan untuk penyenggaraan jalan akanmeningkatkan kos pengangkutan antara RM2 hinggaRM4. Pengurusan dan penyenggaraan jalan yang cekapjuga amat penting untukmen.geiakkan kejadian kemalangan. Dianggarkan kerugian akibat kemalangan jalan rayaadalah antara 1% hingga 3% Keluaran Dalam NegaraKasar (I

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    7/30

    Prioritising Maintenance Works

    mengurus aset }alan Persekutuailbagi pihak JKR, sentiasaberusaha untuk menambahbaik amalan pengurusan asetdengan memahat prinsip-prinsip pengurusan aset. Secaraamnya, pengurusan aset boleh didefinisi sebagai 'asystematic process of maintaining, upgrading, and operating physical assets cost-effectively, combining the use ofsound engineering principles, accepted business practices, and economic theory to improve the decisionmaking process'. Rajah 1 menunjukkan fasa-fasa dala.mproses pengurusan aset.

    Rajah 1: Proses pengurusanaset.PROSES PERANCANGANSTRATEGIK TINDAKAN PENILAIAN

    Objektif utama pengurusan Jalan Persekutuan ialahuntuk menyediakan rangkaian jalan yang selamat, selesadan efisien. Objektif in i boleh dicapai dengan mencernastrategi jangka panjang dan pendek bagi menyediakantahap perkhidmatan yang diinginkan pada kos yangminima serta mampu memberi kebajikan kepada komuniti dan menepati kehendak pengguna jalanrayaStrategi-strategi berkenaan dirumus berdasarkan'pemyataanmasalah"yangdihadapi olehkerliljaan berkaitan Jalan Persekutuan. Pelaksanaan strategi-strategiberkenaan melibatkan beberapa pihak seperti lJnit Perancang }alan (Kementerian Kerja Raya)(ICawangan Jalan,Cawangan Kejuruteraan w a ~ Groteknik dan CSFJdengan menggunakan p e r u n ~ ~ g u n a n danbelanja mengurus. Artikel selanjulny_!.. uan untukmemaklumkan strategi dan r o g r a m ~ olehCFSJ dalam pengurusan aset alan Perseku-tuan belanja mengurus.Bagi pengurusan ~ Persekutuan,CSFJ tumpuan kepada bebeiapa strategiyang dapat meningkatkan aksesibiliti dan mobiliti, mengurangkan kemalangan dan kematian disebabkan kema-

    Iangan, pengekalan nilai aset dan penyenggaraan kecemasan.InputBag:i ProgramDalam menjana program-program kerja tahunan, CSFJmenerima input daripada pelbagai punca dan pihak.Antaranya ialah aduan orang ramai yang disalurkansamada melalui akhbar, emel, sistem aduanSMS DAPAT,surat dan telefon. Turut dijadikan input ialah laporanpemeriksaan rutin dan Pemberitahuan Kecacatan(Notification of Defects) yang dimajukan oleh syarikatkonsesi program penswastaan penyenggaraan JalanPersekutuan. Di samping itu, CSFJ turut menerimacadangan kerja daripada Jurutera-Jurutera Daerah danJKR Negeri. Input seterusnya diperolehi daripadakutipan data yang dilaksanakan oleh CSFJ sendiri darisemasa ke semasa menggunakan Road Surface Profilerdan pemeriksaan audit yang dijalankan oleh kakitangannya.Cabaran-CabaranAntara cabaran paling getir yang dihadapi oleh CSFJialah melaksanakan program-program yang telah dirancang dan menyediakan peruntukan yang mencukupi.Berbanding dengan program projek pembangunan dimana butiran projek ditentukan setiap lima tahunmenerusi Rancangan Lima Tahun Malaysia (termasukkajian semula setengah penggal), program penyenggaraan boleh dibahagikan kepada dua iaitu yang dirancang(planned) and yang tidak dirancang (unplanned).Perkara in i berlaku kerana rangkaian jalan raya sedia adaadalah 'alive and dynamic', sentiasa terdedah kepadaperubahan faktor-faktor cuaca, alam sekitar, sosio-politik,dan pertambahan beban trafik yang baru. Berlatarbelakangkan peruntukan yang terhad, tidak semuaprogram yang dirancang pada awal tahun akhimyadapat dilaksanakan kerana berlakunya perubahan keutamaan yang disebabkan faktor-faktor yang berkenaan.Berdasarkan pemerhatian CSFJ, hanya 70-80% daripadaprogram penyenggaraan yang dirancang (planned main-tenance) daPft cij1aksana setiap tahun. Pada tahun 2008,p e n c : a ~ ~ a n program yang telah dirancang(planned ~ ieiah menurun lagi atas faktor-faktordi luar bidang kuasa CSFJ.Dalam masa yang sama, CFSJ tidak menerimakesemua peruntukan tahunan yang dipohon. Sebagaicontoh,CSFJ telah m.emohon peruntukan belanja menguru s tahunan sebanyak RM800 juta untuk 2008 dan 2009tetapihanya RMS06 juta telah diluluskan bagi tahun2008.Hal yang demikian akan menyebabkan 'backlog' kepadaprogram-program penyenggaraan yang telah dirancang.Kelewatan kepada kerja pavemen umpamanya akanmenirigkatbn tahap roughness keseluruhan rangkaian~ dan seterusnya akan meningkatkan kos operasikenderaanatau vehicle operating cost (VOC) yang menggunakan rangkaian jalan raya. Kesan peningkatan rougnness disebabkan kekurangan peruntukan boleh dikesan

    Buletin S ara Fasiliti Jalan S t 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    8/30

    Prioritising Maintenance Worksmelalui perisian HDM-4 seperti di Rajah 2 manakalaRajah 3 pula menunjukkan peningkatan VOC disebabkanroughness. CSFJ yakin jika peruntukan yang diterimaadalah mencukupi dan semua program yang dirancangdapat dilaksanakan, kesan backlog akan dapat dimini-makan dan program-program khas adhoc tidak perludiwujudkan lagi seterusnya keadaan ]alan Persekutuanakanmenjadi lebih selamat dan selesa.

    Di samping tidak dapat melaksanakan programyang diranc:ang, CSFJ juga dibebani dengan permohonankerja baru dan aduan-aduan semasa. Setakat Ogos 2008sahaja,CSFJ telah menerima permohonantambahan kerjapenyenggaraan berjumlah RM400 juta. Permohonantambahan ini tidak dapat dipertimbangkan dan terpaksaditunda hingga ke tahun hadapan sekiranya CSFJ tidakmenerima penmtukan tambahan.

    Bagi mengesan justifikasi permohonan kerja dan impakkeberkesanannya, CSFJ telah membangunkan ProsedurPelak.sanaan Program (Standard Operating Procedures -SOP) bagi program kerja tahunannya. SOP ini juga telahmemperincikan tugas dan tanggungjawab (roles andresponsibilities) pihak-pihak yang berkaitan dalampelaksanaan program penyenggaraanJalanPersekutuan.Borang-borangSOP boleh dimuat turun daripada IamanwebCSFJ.6.0

    Target : 3.5 IRI

    2004 2006 200& 1lt1lfP 2008 2009 2010Rajah 2:Kesan kel

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    9/30

    Nota Penyenggaraan JalanNOTA PENYENGGARAAN JALAN BIL 1 TAHUN 2008 4.0 TARIKH KUATKUASAPenyenggaraan Rutin Di Dalam Tempoh Tanggungan 4.1 Nota Penyenggaraan Jalan ini berkuatkuasa sertaKecacatan Bagi Projek-pro jek Jalan merta dan digunapakai bagi semua projek jalan (kecuali di1.0 PENDAHULUAN1.1 Terdapat banyak projek-projek jalan yang telahsiap serta berada di dalam tempoh Tanggunggan Kecacatan tidak mempunyai program penyenggaraan rutin.Keadaan in i telah membuatkan jalan-jalan tersebut sepertitidak diurus dengan baik. Untuk memastikan jalan-jalandiurus dengan baik serta sentiasa kelihatan kemas padasepanjang masa, penambahbaikan dalam peraturan sediaada amatlah perlu untuk menangani masalah ini.2.0 LATAR BELAKANG2.1 Penyenggaraan rutin melibatkan kerja-kerjapenyenggaraan seperti pemotongan rumput, pencucian

    Sabah dan Sarawak) yang masih belum dikeluarkan SijilPerakuan Siap Kerja sekiranya projek tersebut t idak diperuntukkan skop penyenggaraan rutin di dalam kontrak.4.2 Selain daripada projek-projek yang dinyatakan dipara 4.1, Jurutera Daerah boleh meneruskan penyenggaraan rutin sedia ada yang menggunakan Bajet BelanjaMengurus Tahun Semasa yang telah diluluskan kepadaJurutera Daerah ataupun diserahkan kepada syarikatkonsesi melalui Cawangan Senggara Fasiliti Jalan bagi tiga(3) kategori kerja penyenggaraan seperti yang dinyatakanpada para 3.1 sehingga jalan tersebut diserahkan kepadaCawangan Senggara Fasiliti Jalan untuk skop penyenggaraan penuh di bawah syarikat konsesi.Nota: Nota Penyenggaraan ]alan Bil 2 tidak dipamerkan di sini.longkang dan sebagainya yang dilaksana secara rutin ---------------------mahupun berkala. Lazimnya, penyenggaraan rutin bagi NOTA PENYENGGARAAN JALAN BIL 3 TAHUN 2008

    jalan yang baru disiap mahupun dinaiktaraf diperuntukkan di dalam kontrak secara kuantiti sementara, wangperuntukan sementara atau dinyatakan sebagai sebahagian skop kontrak tersebut.2.2 Apabila kos penyenggaraan rutin tidak diperuntukkan di mana-mana bahagian kontrak, penyenggaraanrutin akan dilaksana oleh Jurutera Daerah berkenaanmenggunakan Bajet Belanja Mengurus tahun semasa.2.3 Walau bagaimanapun, peraturan di para 2.2kadang kala tidak dapat dilaksanakan kerana ketiadaanperuntukan penyenggaraan rutin ataupun tidak dipohonoleh pihak yang berkaitan.3.0 TATACARA PELAKSANAAN3.1 Bagi projek-projek jalan yang tidak diperuntukkan sebarang kos penyenggaraan rutin di dalam kontraksama ada kontrak konvensional mahupun kontrak rekadan bina, penyenggaraan rutin akan dilaksana oleh syarikat konsesi selepas Sijil Perakuan Siap Kerja dikeluarkanbagi kategori kerja penyenggaraan rutin seperti berikut:3.1.13.1.23.1.3

    R03-R07-B

    Pemotongan rumput setiap bulanPencucian longkang 2 kali setahunPemeriksaan harian rutin 2 kali seminggu3.2 Skop penyenggaraan rutin yang penuh hanyaakan dilaksana oleh syarikat konsesi setelah penyerahansecara formal kepada Cawangan Senggara Fasiliti Jalandilaksanakan.3.3 Bagi projek-projek jalan yang diperuntukkan kospenyenggaraan rutin di dalam kontrak konvensionalmahupun kontrak reka dan bina, PegawaiPenguasa/Wakil Pegawai Penguasa hendaklah dikemukakan satu jadual penyenggaraan rutin yang disediakanoleh kontraktor kepada Cawangan Senggara Fasiliti Jalanuntuk makluman.

    Had Penyenggaraan Oleh Konsesi Di PersimpanganJalan1.0 TUJUAN1.1 Surat arahan ini adalah bagi menerangkan hadkawasan penyenggaraan yang perlu dilaksanakan olehkonsesi di persimpangan jalan antara Jalan Persekutuandan Jalan Negeri.2.0 LATAR BELAKANG2.1 Terdapat kekeliruan antara konsesi dan JKRNegeri mengenai had kawasan penyenggaraan yang perludilaksanakan oleh konsesi dan JKR Negeri di persimpangan jalan antara Jalan Persekutuan dan Jalan Negeri.3.0 TATACARA PELAKSANAAN3.1 Kes 1 : Persimpangan tiga, Jalan Negeri bertemuJalan Persekutuan.3.1.1 Had kawasan terlibat yang perlu disenggarakanoleh konsesi ialah dalam rezab Jalan Persekutuan sahaja.3.1.2 Manakala JKR Negeri perlu menyenggarakawasan dalam rezab jalan Negeri mulai dari sempadanpertemuan rezab Jalan Negeri dengan rezab Jalan Persekutuan.3.2 Kes 2 : Persimpangan tiga, Jalan Persekutuanbertemu Jalan Negeri.3.2.1 Had kawasan terlibat yang perlu disenggarakanoleh konsesi ialah dalam rezab Jalan Persekutuan mulaidari sempadan pertemuan rezab Jalan Persekutuandengan rezab Jalan Negeri.3.2.2 Manakala JKR Negeri perlu menyenggarakawasan dalam rezab Jalan Negeri sahaja.

    Buletin Sen ara Fasiliti Jalan Se t 2008 9

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    10/30

    Nota Penyenggaraan Jalan3.3 Kes 3 : Persimpangan empat, Jalan Persekutuanbertemu dan melintasi Jalan Negeri.3.3.1 Had kawasan terlibat yang perlu disenggarakanoleh konsesi ialah dalam rezab Jalan Persekutuan sahaja.3.3.2 Manakala JKR Negeri perlu menyenggarakawasan dalam rezab Jalan Negeri mulai dari sempadanpertemuan rezab Jalan Negeri dengan rezab PersekutuanJalan.3.4 Kes 4 : Persimpangan empat, Jalan Persekutuanbertemu tetapi tidak melintasi Jalan Negeri.3.4.1 Had kawasan terlibat yang perlu disenggarakanoleh konsesi ialah dalam rezab ]alan Persekutuan sahaja.3.4.2 Manakala JKR Negeri perlu menyenggarakawasan dalam rezab Jalan Negeri mulai dari sempadanpertemuan rezab Jalan Negeri dengan rezab Jalan Persekutuan.3.5 Kes 5 : Persimpangan bertingkat, tanpa sambungan (grade separated), Jalan Persekutuan melintasi JalanNegeri secara "underpass".3.5.1 JKR Negeri bertanggungjawab untuk menyenggara kawasan di dalam rezab Jalan Negeri manakalakonsesi perlu menyenggara kawasan dalam rezab JalanPersekutuan termasuk kawasan bertindih di bawah JalanNegeri tersebut. JKR Negeri juga bertanggungjawabuntuk melaksanakan kerja-kerja penyenggaraan ke atasstruktur di Jalan Negeri tersebut serta lampu jalan termasuk lampu di bawah struktur tersebut. Sekiranya berlakusebarang bencana ke atas struktur di Jalan Negeri tersebutseperti "abutment failure" yang merosakkan Jalan Persekutuan di bawah, segala kos pembaikan adalah di bawahtanggungjawab JKR Negeri.3.6 Kes 6 : Persimpangan bertingkat, tanpa sambungan (grade separated), Jalan Negeri melintasi Jalan Persekutuan secara "underpass".3.6.1 Begitulah kesnya jika Jalan Negeri melintasi JalanPersekutuan secara "underpass".3.7 Kes 7: Persimpangan dengan lebuhraya LembagaLebuhraya Malaysia.3.7.1 Bagi mana-mana ]alan Persekutuan atau/danJalan Negeri yang bertemu dengan lebuhraya di bawahbidang kuasa Lembaga Lebuhraya Malaysia, GarisPanduan Teknik GPT-HSP (1/94) "Had Sempadan Penyenggaraan Lebuhraya Dengan Jalan-Jalan Pihak BerkuasaLain" yang disediakan oleh Lembaga Lebuhraya Malaysiaseharusnya digunapakai.4.0 SKOPKERJA4.1 Skop kerja meliputi semua kategori kerja peny-enggaraan rutin yang perlu dilaksanakan oleh konsesiseperti termaktub dalam Perjanjian Penswastaan Penyenggaraan Jalan Persekutuan.

    Buletin Sen ara Fasiliti Jalan S t 2008

    HAD PENSWASTAAN PENYENGGARAAN RUTIN}ALAN PERSEKUTUAN

    1

    Rezab Jalan Negeri

    Rezab JalanPersekutuan

    Kes 1: Had Penyenggaraaan Di Persimpangan Jalan Negeri BertemuJalan Persekutuan

    !Had

    Rezab JalanPenekutuan

    Ieub JalanNegeri------ - - - -D Semuakalegorikmjapcoycnggaman rutinKes 2: Had Penyenggaraaan Di Persimpangan Jalan PersekutuanBertemu Jalan Negeri

    RezabJalan

    RezabJalanNegeri

    RezabJalanPerselrutuan

    Kes 3: Ha d Penyenggaraaan Di Persimpangan EmpatJalan PersekutuanBertemu Dan Melintasi Jalan Negeri.

    RezabJalanPcrsekutuan

    Remb JalanPenekutuan

    Rezab JalanNegeri

    Reub JalanNegeri

    D Scmua kalegori kmjapenyenggaraan rutinKes 4: Had Penyenggaraaan Di Persimpangan Empat ]alan PersekutuanBertemu Tetapi Tidak Melintasi Jalan Negeri.

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    11/30

    Nota Penyenggaraan J alanRezab Jalan

    Negeri

    1l

    I . . , / . 0 / " ' ' " ' " " " " ' Rezab JalanPersekutuan

    : lf&l = = ~ = ~ ~ s : : : : . t ~ , w :: bawahJalanNegeri.' 0 Semua kategori kerja penyenggaraan rutin di bawah! pengurusanJKRNegeri.Kes 5: Persimpa ngan Bertingkat, Tanpa Sambungan (Grade Separated),Jalan Persekut uan Melintasi Jalan Negeri Secara "Underpass".

    Rezab JalanNegeri

    lf&J ~ ~ 1 < , : ~ : . 0 ~ . penyenggaraan rutin di bawahD ~ . " ; . . l < , : ~ k ~ : : n = : : : . : ~di bawah Jalan Perselrutuan.

    Kes 6: Persimpanga n Bertingkat, Tanpa Sambungan (Grade Separated),Jalan Negeri Melintasi Jalan Persekut uan Secara "Underpass".NOTA PENYENGGARAAN JALAN BIL 4 TAHUN 2008Pelaksanaan Kerja Pembersihan Longkang TertutupOleh Konsesi Di J lan Persekutuan1.0 TUJUAN1.1 Surat arahan ini adalah bagi menerangkan pelaksanaan bagi kerja pembersihan longkang tertutup yangperlu dilaksanakan oleh konsesi di Jalan Persekutuan.2.0 LATAR BELAKANG2.1 Pelaksanaan kerja in i adalah di luar skop Perjanjian Penswastaan Penyenggaraan Jalan Persekutuan dibawah komponen R07 - 'Cleaning of Drains'. Penyenggaraan ini perlu dilaksanakan sama ada oleh konsesi secaraArahan Kerja atau pun JKR Negeri.3.0 TATACARA PELAKSANAAN3.1 Pelaksanaan penyenggaraan kerja ini sepertimanaterdapat di dalam Spesifikasi I Standard Agreed Performance bagi komponen R07 - 'Cleaning of Drains'.3.2 Arahan Kerja kepada konsesi dikeluarkanberdasarkan pelaksanaan kerja membuka dan meletakkansemula kedudukan asal penutup.3.3 Kadar harga bagi pelaksanaan kerja ini ditentukanberdasarkan 'Schedule Of Daywork Rates' sepertimanayang terdapat di dalam Perjanjian Penswastaan Penyenggaraan Jalan Persekutuan.4.04.1

    SKOPKERJAMembuka penutup longkang dengan cermat dan

    diletakkan di tempat yang selamat dan tidak mengganggulalulintas.4.2 Members ih longkang mengikut Spesifikasi I Stan-dard Agreed Perfomance bagi komponen R07.4.1 Meletak kembali dengan betul dan sempumatanpa merosakkan penutup.4.4 Pelaksanaan kerja ini perlu dilaksanakan dalamtempoh sehari bekerja.NOTA PENYENGGARAAN JALAN BIL 5 TAHUN 2008Pelaksanaan Kerja Pengukuran 'Surface Regularity'Oleh Konsesi Di J lan Persekutuan1.0 TUJUAN1.1 Surat arahan in i adalah bagi menerangkan carapelaksanaan bagi kerja pengukuran 'surface regularity'bagi kedua-dua arah iaitu 'longitudinal' da n 'transverse'.2.0 LATAR BELAKANG2.1 Terdapat kekeliruan mengenai cara yang betulbagi mengukur 'surface regularity' dengan menggunakanperalatan 'rolling straight-edge' bagi arah 'longitudinal'dan 'straight-edge & wedge' bagi arah 'transverse' sepertiyang dinyatakan dalam sub-klausa 4.4.3 dalamJKRISPJ11988 Seksyen 4.3.0 TATACARA PELAKSANAAN3.1 Bagi ujian pengukuran 'surface regularity' bagikedua-dua arah 'longitudinal' dan 'transverse', kaedahberikut seharusnya digunapakai;i. PenandaanSebelum pengukuran 'surface regularity' dijalankan,penandaan jalan perlu dibuat terlebih dahulu pada selasetiap 10 meter bermula dengan Chainage 0 pada 'kilometer post' yang terdekat bagi rujukan Nombor Seksyen.ii. Transverse Surface Regularity'Rut depth' diukur dengan menggunakan peralatan'straight edge & wedge' pada setiap jarak 10m bermuladari Chainage 0. Bacaan maksima diambil di bahagian'vergeside wheelpath' pada chainage 0, 10, 20, ... dan seterusnya (fixed interval).111. Longitudinal Surface Regularity'Longitudinal Surface Regularity' diukur dengan menggunakan 'rolling straight-edge'. Bacaan dicatat mengikutketerangan seperti berikut:

    "Reading should be recorded whenever the dialgauge on the rolling straight-edge registers rise or fallgreater than 4mm bu t less than or equals to 7mm, an dgreater than 7 mm bu t less than or equals to lOmm, an dgreater than lOmm as the rolling straight-edge device isbeing pushed along the road".4.0 TEMPOH LAKSANAPengukuran 'surface regularity' hendaklah dilaksanakandalam masa 7 hari setelah siap kerja.

    Buletin Senggara Fasiliti Jalan Sept 2008 11

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    12/30

    Jambatan Panel Keluli

    P ngurusan dan penyelenggaraan Jambatan PanelKeluli Bermodular adalah melibatkan programpenyelarasan semula pasukan, pemantauan operasi, penyimpanan rekod, pemeriksaan dan penyelengga-raan serta latihan. Pengurusan tersebut adalah melibatkantujuh (7) Pasukan Jambatan Panel Keluli telah ditubuhka nsemenjak tahun 2007 di Semenanjung Malaysia yangdiletakkan di bawah kelolaan Cawanga n Senggara FasilitiJalan. Objektif utama penubuhan tersebut adalah bagimemastikan pengurusan dan pengendalian Jambatanadalah memastikan setiap operasi berjalan lancar semasawaktu kecemasan atau bencana. Selain itu, sistem pengurusan inventori juga dapat dipantau dalam memastikansemua keperluan semasa penggunaan stok inventorisentiasa mencukupi dalam menghadapi sebarang kemung-

    12 Buletin Senggara Fasiliti I alan Sept 200S

    kinan terutamanya akibat bencana alam. Di samping itu,program penyelenggaraan yang diwujudkan juga dapatmemantau keadaan struktur jambatan supaya sentiasadalam keadaan baik dan selamat digunakan demi kepentingan orang ramai.Pengurusan tersebut juga adalah melibatkanlatihan kepada setiap pasukan. Latihan tersebut adalahmerangkumi latihan secara teori dan praktikal pemasangan Skop latihan secara teori adalah melibatkan pengenalan tentang J a m b a ~ komponen serta kaedah pemasangan mengikut rekabentuk yang telah ditetapkan.Manakala bagi latihan secara praktikal, peserta akandidedahkan tentang latihan secara praktikal pemasangansebenar melalui tunjuk ajar pengajar yang terlatih .

    PEMASANGAN JAMBATAN PANEL KELULI HER-MODULAR DI ALOR GAJAH, MELAKA.Pada 23 April 2008, di Alor Gajah, Melakakejadian kerosakan terhadap jambatan akibat daripadahujan lebat yang telah meruntuhkan sebahagian besar'approach' jambatan di M153, }alan Padangan Kambingdan M132, Jalan Air Paabas. Cawanga n Senggara FasilitiJalan telah diminta memasang jambatan semen ara iaituJambatan Panel Keluli di lokasi M153 Jalan PadanganKambing manakala di M132 Jalan Air Paabas di pasangoleh Uni t Tentera, Kern Terendak.

    Jambatan Panel KeluliPemasangan Pertama:Tarikh KejadianLokasi Pemasangan : 23 April2008:Jln Padangan Kam-

    b i n ~ Alor GajahTarikh Pemasangan : 25 April2008Tarikh Siap : 28 April2008Nombor Laluan I Seksyen : M 153 I 2.1Jenis Jambatan Panel Keluli :Compact 200Panjang Jambatan : 110 kakiDipasang oleh Pasu kan Jambatan Panel KeluliJKR.Temerloh.Pemasangan Kedua:Tarikh KejadianLokasi Pemasangan : 23 April 2008:Jln Air Paabas, AlorGajahTarikh Pemasangan : 1Mei 2008Tarikh Siap : 2 Mei 2008Nombor Laluan I Seksyen : M 132 I 5.4Jenis Jambatan Panel Keluli :Standard BaileyPanjang Jambatan : 60 kakiDipasang oleh Un it Tentera, Kern TerendakMelaka.

    Pemasangan adalah bertujuan bagi mengelakkangangguan terhadap lalulintas oleh kerana laluan tersebut . . . . l . i i : ~ ~ ; : . : , ; , : ; ~Rajah 1: Pasulam Jambatan Panel Keluli Bermodularmerupakan laluan utama. Keterangan lanjut mengenaikejadian adalah seperti berikut:

    Buletin Senggara Fasiliti Jalan Sept 200S 13

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    13/30

    Cold-in-place RecyclingMix Design Fo" (!old-inPavement Rec;yclingDoes It Guarantee Performa ""

    'This paper highlights the mi x designprocedures for CIPR works adoptedby he PWD. It discusses,on he use oflaboratory strength parameters suchas modulus, retained indirect tensilestrengthand unconfined compressivestrength to determine the optimumbinder content of recycled samples.Four binding agents namely emulsioncement, lime and foamed bitumen areused in the study, and the paperdetails the difference in the designapproach between the agents.The paper will also highlight, keyvariations between laboratory andin-situ samples, and provide solutionsto minimize the impact of such variations during construction.INTRODUCfiONBackgroundThe Cold-In-Place Recycling (CIPR)technique was first introduced inMalaysia around the mid 80's. Sincethen, the concept of recycling roadpavements as an alternative rehabilitation measure has become popularand acceptable. The techniqueinvolves recycling of all the asphaltpavement sectionand a portionof heunderlyingmaterials with an addition

    14 uletill Senggara Fasillii JalmSept 2008

    of stabilizing agents to produce astabilized base course. One of theadvantages of he CIPR is cost savingsof up to 40 percent over conventionaltechniques (Sufianet al, 2005).Although the aPR technique is gaining acceptance as a cost effectivesolution in rehabilitating distressedpavement, very little local researchhas been carried out on its cost effectiveness, design, construction andlong term performance. Subsequently, the Public Works Depart-ment (PWD) has embarked on aresearch work n his field, in collaboration with Kumpulan Ik:ram andRoadcareSdn. Bhd. The studyaims toestablish a comprehensive design an dconstruction guidelines on CIPR forMalaysia.ObjectivesThe objective of this paper is to highlight the mix design procedures forCIPR works adopted by the PWD. Itdiscusses on the use of laboratorystrength parameters suchas modulus,retained indirect tensile strength andunconfined compressive strength todetermine the optimum bindercontent of recycled samples. Fourstabilizingagents namely emulsion,

    AbstractPavement recycling hasbeen around n Malay-sia since the late 80s.Prior tn 2004, pavementrecycling work wascarried out primarilybased on overseas practicewith minimal local values,in he designan d construction procedures. Realizingthe fact that local materialand expertise differ inmany ways from thoseavailable overseas, thePublic Works Department(PWD) of Malaysiaembarked on a large-scalestudy to research on themost appropriate practicefor cold in-place pavementrecycling works (CIPR) inMalaysia. The studyscrutinizes all stages ofrecycling works, fromlaboratory mix design,-= trial lay, construction andlong term performance.cement, lime and foamed bitumenare

    used in the study, and the paperdetails the diHerence in the designapproach between the agents. 'Thispaper will also highlight key variations between laboratory and in-situsamples, and provide solutions tominimize the impact of such variations during construction.RESEAROIBRIEFAll together, nine (9) trial sites wereconstructed on Federal Roads, eachlk m long and are fairly uniform interms of terrain, geometries, level oftraffic, pavement type and surfacecondition. Each site was furtherdivided into five (5) sections of 200meach. Four CIPR sections wereconstructed utilizing the four stabilizing agents and a control section wasconstructed along side, using theconventional rehabilitation optionsuch as mill and replace, followed byone or two layers of asphalt overlay,or partial/ ull reconstruction.This paper is based on findings andavailable data,. up to 24 monthsof themonitoring period for three sites(Sufian et a1, 2007) as summarized inTable 1 below:-

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    14/30

    Cold-in-place Recycling

    Table 1: Description of Each Site Prior to Treatmenthe pavement rehabilitation design was carried out using the mechanisticmpirical approach. All sections were designed such that the strain at eachayer interface and on top of the subgrade would not exceed the allowablestrain for a given traffic loading. Table 2 depicts the pavement design for eachespective section.

    IFT 190 CIPR250mmKlang, Selangor ACBC60mm ACBC IOOmm ACBCIOOmm ACBC70mm(53 msa) ACWC50mm ACWC50mm ACWC50mm ACWC50mm2 (FDR- Emulsion) (FDR - Foamed) (FDR- Cement) (FDR-Ume)FT 14 IPR150mm CIPRI50mm CIPRI75mm CIPR200mm Mill & Replace IK a m n m , T ~ ACBC80mm ACBC70mm ACBC80mm ACBC80mm ACWCIOOmm(19 msa) ACWC60mm ACWC50mm ACWC50mm ACWC60mm3 (FDR- Emulsion) (FDR - Foamed) (Control) (FDR- Cement) (FDR-Ume)FT 1739 CIPRI50mm CIPRI50mm Mill & Replace 75 CIPR 130mm CIPR 175mmKlmahangKelanlan ACBC60mm ACBC60mm ACBC60mm ACBC60mm ACBC60mm(4 msa) ACWC50mm ACWC50m ACWC50mm ACWC50mm ACWC50mm

    Table 2: Study Sections and Respective TreatmentField Test/ Survey

    he field tes t programme was carried out before, during and after construcion. The tests include coring and Dynamic Cone Penetrometer (DCP) test,he Falling Weight Deflectometer (FWD) test, visual surface condition survey,alking profiler, traffic and axle load survey. The after construction monitorng tests are carried out at months 1, 6, 12, 24, 36 and 60.

    Laboratory Testsre-construction laboratory tests were carried out to determine the engineer

    ng properties of the existing materials, and the outputs were used for mixdesign purposes. The tests included determination of binder content, aggregate grading, penetration and softening point etc. During and postonstruction tests were also carried out to determine the performance of theCIPR mixes. The tests included Indirect Tensile Strength Test (ITS), Unconined Compressive Strength Test (UCS), resilient modulus etc.MIX DESIGN PROCEDURES

    he purpose of mix design is to establish the most effective method of treatng the materials in the recycled layer. Representative samples taken from theayer were prepared to simulate as closely as possible the gradation of mateial achieved during the actual recycling process. For this purpose, a smallilling machine is normally recommended to mill samples from the roadpavement. However, trial pi t samples were utilized for the mix designprocess in this research.he main objectives of the mix design are to establish the expected grading ofhe material to be recycled, its optimum moisture content, and the cement orbituminous binder content required at this moisture content to obtain thespecified strength.

    Important Considerations in the MixDesign ProcessThe mix design process involvessampling and testing of representativematerials, identification of the requiredstructural properties of the stabilisedlayer, assessment of types and quantities of stabiliser required and laboratoryconfirmation of stabilised materialproperties.Initial testing of the material, taken fromseveral pits and about 150 kg in total,includes establishing the grading, moisture content, maximum dry density andoptimum moisture content. Gradationtests are then undertaken on thesamples to decide whether the gradingof the composite layer to be recycled isacceptable and to ascertain whether theaddition of imported material isrequired to improve the gradation of therecycled layer. The OMC for the trial pi tsamples is determined, without inclusion of cement, using the Proctor test.When working with bitumen emulsions, "Fluid Content" is used in placeof Moisture Content in definirlg themoisture/density relationship. Maximum density is achieved at theoptimum total fluid content (OTFC),which is the combined mass of moistureand bitumen emulsion (before breaking) in the mix.The determination of the UnconfinedCompressive Strength (UCS) is done onspecimens, prepared with a range ofstabilizer contents and cured for 7 days,and tested in compression in accordancewith test 11, BS 1924 or BS 1881: Part116. For ITS test, a standard MarshallCompaction technique of 75 blows perside is carried out (ASTM D1559) andsamples are cured for 72 hours at 40 C.For cement and lime, the UCS valuesshould be plotted against stabilizerusing the average of each pair of results.The laboratory mixed stabilizer contentrequired to achieve the specifiedstrength can then be selected from thisplot. For foamed bitumen and emulsion,the average of the added bitumencontent from the plot at which thesoaked, unsoaked ITS and density aremaximum is taken as the designBitumen Content (BC).

    Buletin Sen ara Fasiliti Jalan S t 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    15/30

    Cold-in-place RecyclingMix Design ParametersThe specified mix design parameters in the Malaysian Specification (REAM,2005 ) are shown in Table 3.

    Table 3: Specified. DesignParametersAegregat& Gradation -LAB va o n ~ l n u : t l o n

    1009080F 70l:* 403020100

    ,....

    _....

    ~/ lA!,.,-Si- Size (mm)

    / / /w/

    v

    .....

    Fjgure1:Gradation thatshowsgradationsof testpit arufbehind recyclermatmials

    1-+- Leb--eonetruc;don - LL - UL I

    Optimum moisture content (OMC). Thefield moisture contents were mostlylower than th e OMC of laboratorydesign mixes. Some were even lowerthan the allowable tolerance of 20%of the laboratory OMC. This may bedue to insufficient water being addedto the recycled materials during therecycling process. It should also behighlighted that the OMC for laboratory design mix is determined usingaggregates which do no t includecement filler, whereas th e field mois-ture contents were determined onsamples that had been mixed with 1 -3%cement.Optimum binder content (OBC). Thefields OBC were calculatedby deduct-ing th e bitumen contents of th ereclaimed asphalt pavement (RAP)materials from the total bitumencontent of th e recycled material. Thefield OBCs for emulsion an d foamed

    16 Buletin Se.nu amFasilitiJalan Se t2008

    treated materials were found to besignificantly similar with those of thedesign mixes. This is as expected sincethe injection of the bituminous binderis controlled by a computerizedsystem of the recycling machine.Cement and lime contents of therecycled materials were no t evaluatedsince their amounts were predeter-mined and controlled by spreading therequired quantities within a specifiedarea.Bulk density. The field bulk densities,as measured by th e proctor test, di dno tdiffersignificantly from the laboratory bulk densities at OM C and OBCfor each treatment type. 'This suggeststhat slight variation in th e aggregategradation has insignificant influenceon th e bulk density of th e materials.'This also indicates that th e currentpractice of using trial pit samples for

    Laboratory Mix Design and FieldParametersGradings. laboratory mix designprocess is carried ou t using samplestaken from the trial pits. It wasobserved that the aggregate gradationof these samples normally lies withinthe specified envelope for th e coarseraggregates but are slightly outside th elimits for the finer aggregates (passing450 um). This is mainly du e to themanual crushing of the trial pitsamples which produces less finemate:riais.On the other hand, aggregate grada-tion of recycled materials obtainedfrom behind the recycler usually fallswithin the specified envelope. In thiscase, the milling process producesrelatively higher percentage of finemate:riais.

    mix design purposes is adequate with-ou t the need to use a small millingmachine to simulate the actualrecycling process. However, theauthors are currently carrying outfurther research to evaluate the effectsof different gradations on volumetricand strength parameters.Indirect tensile strength test (ITS). TheITS values for field samples did notdiffer significantly from those of thelaboratory samples. This shows thatdespite th e significant differencebetween field and design mix moisturecontents, it does not affect th e ITSvalues significantly.The Tensile Strength Retained (TSR)values for field samples were withinthe allowable tolerance set at 75% ofth e WlSOaked ITS values. However,th e field TSR values were significantlylower than the laboratory TSR values.

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    16/30

    It is suspected that some percentage of cement was lostduring the construction process, possibly blown away bywind and/or passing traffic, resulting in lower cementcontents in the recycled materials, hence lower soaked ITSvalues.Unconfined compressive strength test (UCS). The UCS valuesfor field samples were found to be significantly higher thanthose of the design mixes. This suggests that the higherpercentage of fine materials present in field samplesincreases the UCS values.Indirect tensile stiffness modulus. The moduli of field foamedand emulsion treated samples were not significantly different from those of the design mixes. Again, this shows thatdespite the significant difference between field and designmix moisture contents, it does not affect the resultingmodulus values significantly.Compaction. The field dry density of the compacted recycledlayer is determined using the sand replacement method.Proctor test is also carried out on loose samples obtainedfrom behind the recycler. The ratio between these two drydensities gives the degree of field compaction. In mostcases, the field compaction satisfies the minimum specified97% degree of compaction except in Site 1 where lowerdegree of compaction was recorded.The detailed comparison between the mean values oflaboratory mix design and field parameters is shown inTable4.

    FIELD PERFORMANCEThe research sites are monitored for their functional andstructural performance. At this stage of the study, theperformance of the pavement system as a whole is considered instead of the performance of individual pavementlayer. The functional performance of the pavements isevaluated using the International Roughness Index (IRI).The structural performance is measured in terms of theFWD central deflection, Crack Index (CI) and Rut Index(RI). The CI and RI are defined (TRL, 1999), (Sufian et al,2007 ) as follows :-

    - -

    ~ ' ~ ' '9 ' ~ ~ ..

    Cold-in-place RecyclingCO: no crack0 : single crackC2: more than one crack

    not connectedC3: more than one crackinterconnectedC4: crocodile cracksC5: severe crocodile crackswith loose blocksPavement Functional Performance

    RO:norutR1:1:S:R:S:Smm

    R2:6:S:R:S:10mmR3: 11 :S: R S: 15 mmR4:16:S:R:S:25mmRS:R>25mm

    Generally, before rehabilitation, each section on all 3 sitesexhibited severe functional condition with an averageInternational Roughness Index (IRI) of greater than 3mfkm. Mter rehabilitation, all sections recorded a significant reduction in IRI with an average value rangingbetween 1.17 to 2.63 m/km. However, the IRI graduallyincreases after 1 month with varying rate of change.Figure 4 illustrates the functional performance of eachsection over a 24 months period. It was observed that therate of change of IRI for various sections is influenced bythe traffic loading. Twenty four months after construction,higher IRI was observed on Site 1 (high trafficked) withthree of the sections namely cement, lime and foam treatedsections having IRI values of greater than 3m/km. For thesame period, all sections within Sites 2 and 3 are havingIRI values of less than 3m/km. Therefore it can beconcluded that the rate of change of IRI is dependant ontraffic loading. This is in line with the finding by Patterson(1986), that the development of road roughness(unevenness) was affected by traffic loading, structuraland climatic factors and surface distress Gordan et al,1989).Since the rate of change of IRI is dependant on traffic loading and minimal rate of change was observed on Site 3, itis reasonable to infer that the increase in IRI on Sites 1 and2 could have occurred as soon as the road was opened totraffic. This poses questions as to the appropriate time tomeasure IRI for a completed pavement work and the limiting values to be specified for roads of various traffic levels.The authors would recommend that the IRI be measuredbefore the road is opened to traffic.

    .. . . .~ ~ mmm ~ l l l l ! i ' l l ~ ~" ' ~ . ' ' .. 'rm 1. . lllll ll1ll n ll1ll liD m'l ~ rm 1. . lllll n 1m n ll1ll liD! ltm I rm 1. . 1m nFoamed Site 1-FT 190 2.0 2.0 5.3 5.0 2.065 1.966 242 336 215 293 89 86 1.0 21 1549 5051 Out Within 1.911 1.961 2.138 89

    Bitumen Site 2-FT 14 2.0 1.8 4.9 3.3 1.870 1.977 290 195 283 177 98 91 0.9 1.3 1084 1147 Out Within - 2.013 1.780 1.967 100 103Site 3 FT1739 2.0 2.0 5.4 5.1 2.213 1.999 325 273 333 228 102 84 1.8 1.6 7899 6348 Out Within 1.898 2.027 1.937 98Site 1-FT 190 3.5 4.6 5.3 3.3 2.065 2.046 270 268 228 220 84 82 0.5 2.0 863 2223 Out Within 1.978 1.961 2.081 95

    Emulsion Site 2-FT 14 41 3.4 5.2 4.1 1.950 1.956 255 258 200 209 78 80 2.3 1.5 829 1616 Out Within - 1.948 1.939 1.919 100 102Site 3 FT1739 4.5 3.2 4.8 5.4 2.142 2.142 270 233 255 202 94 87 1.7 1.2 2811 3393 Out Within 2.031 2.044 2.059 99Site 1-FT 190 3.0 5.5 3.9 2.071 2.256 1.9 2.9 Out Within 2.171 1.967 2.213 98

    Cement Site 2 FT 14 3.5 5.8 5.3 2.090 2.168 - 2.4 4.5 Out Within - 2.109 1.970 2.082 100 101Site 3 FT1739 4.0 5.2 5.4 2.135 2.128 2.1 3.6 Out Within 2.018 2.024 2.039 99Site 1-FT 190 3.0 5.5 4.5 2.071 1.973 0.6 1.5 Out Within 1.886 1.967 2.012 94

    Ume Site 2-FT 14 3.5 5.4 5.7 2.058 2.097 - 2.4 1.7 Out Within - 2.075 1.947 2.007 100 103Site 3 FT1739 4.0 5.4 5.6 2.120 2.081 1.1 0.5 Out Within 1.984 2.005 2.037 97

    Table 4: Comparison between Laboratory Mix Design and Field Parameters

    Buletin Sen ara Fasiliti Jalan Se t 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    17/30

    Cold-in-place RecyclingSite 1: Mean IRJ vs. Time Site 2: Folean R vs.

    7.0 7.0.,6.0 ~ 6.0' 5.0 5.0"' M=- '4.0 ... , .......-::& .i i ) 4.D ......3.0 """' 3.0 ""-.0 ""' 2.0 ~1.0 1.00.0 o.oPre 1mth 8mth 12mth 24mth Pre 1mth 6mlh 12mth 24mth

    lime lima1::::::= = ~ I f m u l t i o n - - - - F o i l m. L i m e - --canttd c . . . ~ IThe rate of change in IRI for al l sections for the second sixmonth period is higher than that of the first six monthperiod. This observation is as expected since the rate ofpavement deterioration increases over time due to dynamicimpact of heavy vehicles traveling on rough surface.Within each site, the rate of change of IRI could no t berelated directly to treatment type. For bothSites 1 and 2, thelime treated sections registered the highest IRI while forSite 3, IRI is the highest at the control section.I t is possible that, the change in IRI may also be influencedby the degree of compaction. Itwas observed that the meandegree of compaction for lime and foamed bitumen treatedsections in Site 1 were below the minimum specified valueof97%.Pavement Structural Performance

    Site 3: Mean IRI vs. Tlma7.0 .0' 5.0 Il l \~1 4.03.0 '.01.00.0 Pre 1mth 8mth 12mth 24mth

    lima- - E m u l o l o n - - F o o m

    Cnent ~ --"""""'I Figure 2: PavementFunctional Performanceover a 24-Month Period

    month 24. The location of crack coincides with the locationwhere the degree of compaction is below the specifiedminimum value. Whi lst for Site 3, only the cement treatedsection exhibited crack type C2 after 24 months. Howeverno direct correlation can be made to the degree of compaction or other strength parameters.Moderate rutting (R3) was recorded at the control sectionof Site 1 at month 6 while very low rutting (R1) wasrecorded for the other sections except the lime treatedsection which recorded a rut index of 2. At 24 months, therut index for all the sections remained unchanged. Verylow rutting (R1) was recorded for all sections at Sites 2 and3 up to 24 months. Figure 3 summarizes the structuralperformance of the 3 sites over a 24 month period.CONCLUSIONS AND RECOMMENDATIONSFrom the results of the studies carried out the followingscan be concluded:All sections indicated a significant reduction in centraldeflection after 24 months. In general, the deflection had

    been decreasing gradually from month 1 to month 6 before a.it started to stabilize afterwards. This reduction may be due The design parameters used in the current MalaysianSpecification for Cold-In-Place Recycling are suitableand adequate to ensure field performance.o the stiffening of the surfacing layer as well as curing ofthe stabilized layer. This pattern of stiffening has been b.confirmed through laboratory simulation tests whichindicate the gain in strength (ITS, UCS and modulus) overa period of 28 days. However, the FWD central deflectionvalues in Site 1 are increasing especially for the lime,foamed bitwnen and control section. This reconfirms theearlier observation on the IRI that the degree of compactiondirectly influences the structural performance of lime andfoamed bitumen treated sections.For Site 1, cracks of type C1 to C4 were observed as early asat month 1 for the control section and at month 6 for the c.

    There were variations in the aggregate gradationbetween the laboratory mix design and the fieldsamples due to different method of aggregatesampling, crushing and mixing. However, it can beconcluded that the current practice of using samplesfrom trial pi t for mix design is sufficient to provideseed values (TIS, UCS, modulus and density) that areattainable by the ac tual field samples. Therefore it isnot necessary to use a small milling machine to obtainthe samples for mix design purposes as normallyrecommended.The variations between laboratory OMC and field MCdo not seem to affect the field performance. However itis recommended that the laboratory mix design OMCbe determined with the presence of cement to facilitatea more accurate determination of moisture to be addedduring construction.

    d. Adequate compaction of the treated layer is of greatimportance as 1t directly affects the field performance.'I'herefore it is critical to control the compaction processproperly during construction.

    other four sections. No progression of cracks was observedafter month 6 except for emulsion treated section, where itcontinued to develop until month 12 before it stabilized.Further analysis showed that the cracks are not confined inthe wheel paths which suggest that their development isno t solely due to traffic loading. It was also noted that thefield density test (FD1) results for sections which weretreated with foamed bitumen, emulsion and lime indicatedrelatively low degree of compaction. This indicates that e.poor compaction is one of the main contributing factors tothe formation of premah.tl'e cracks. For Site 2, the foamedbitumen treated section has exhibited type C3 crack after

    18 Bul.etin SetlJWilllFasiliti Jalan Se t 2008

    Proper mix design process which includes derivationof aggregate grading, moisture content, binder contentand strength parameters is very crucial as it will simulate and guarantee field performance.

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    18/30

    Cold-in-lllace RecyclingSllr 1 ldnn fl. '/0 C1!! Denedlcn

    T l ~

    -----d . -1= := ==---)

    I n : Mu n f \o'.O Ctll De!!ectJOn, . T'I"W'

    - .... ,_ ~ --.,_ -- --).":ZL: =I j l\,l : .:----- l :7 . : :- - - --::::: __ ::;:- - I

    ~: -......' / - -- - - - ~-- - - ~ . .... . -1 .._ - I

    Stll S Mun FY"''- --'- .""'--=-- - - ',,... . . , ....,.., ...,., . . ,n

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    19/30

    Pengurusan TrafikLATARBELAKANG

    A udit pem.atuhan pengurusan trafik di tapak binamula dikendalikan oleh Cawangan SenggaraFasiliti }alan (CSFJ) pada Januari 2008 dengandibantu oleh Cawangan }alan serta Cawangan Kejuruteraan Jalan & Geoteknik. Audit telah dilaksanakan denganmenemubual mereka yang terlibat secara langsung ditapak termasuk perunding, kontraktor dan wakil 5.0.dengan berpandukan kepada borang audit yangdisediakan oleh Unit Keselam.atan }alan, Cawangan Kejuruteraan }alan & Geoteknik selepas menjalankan lawatantapak pada waktu siang dan m.alam. Sehingga Mei 2008,sebanyak 44 projek telah diaudit.Markah peratusan pem.atuhan bagi setiap projek ditentukan dari jwnlahkomponen pengurusan trafik yang ditakrifpatuh oleh juruaudit berbandingjumlah keseluruhan komponen pengurusan trafik yang dikenalpasti dalam borangaudit tersebut. Tahap pematuhan pengurusan trafik ditapak bina bagi kesemua projek yang telah diauditsehingga Mei 2008 dapat diringkaskan seperti Jadualt.

    Peratus Pematuhan Bilangan Projek80-100 1660-80 940-60 10

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    20/30

    mengisi dan mengembalikan borang maldumbalaskepada CSFJ.

    Namun begitu, dukacita dilaporkan di sinibahawasetakat ini, hanya dua laporanmaklumbalas yangditerima dari jumlah 44 projek yang diaudit. Itupuntermasuk satu borang maldumbalas yang dikembalikandengan hanya m.embe:ri penjelasan atau a1asan yangremeh ke atas ketidakpatuhan komponen-komponentertentu pengu.rusan trafik seperti yang dikenal pasti olehjuruaudit dan buka:nnyamenerangkan tindakan-tindakanpenambahbaikan yang telah diambil.

    Terdapat dua tanggapan ekoran terlalu sedikitmaklumbalas yang diterima dari S.O. ke atas laporanaudit yang dihantar; a) Tindakan penambahbaikan sememangnya telah diambil oleh 5.0. tetapi laporan maklumbalas tidak dikemuk.ak.arl;. atau b) S.O. tidak mengambilsebarang tindakan penambahbaikandan, oleh kerana itu,tiada apa yang dapat dikemukakansebagai maklumbalas.

    Audit Susulan

    Pengurusan Trafikaudit juga telah mengambil inisiatif dalam mengenal pastikelemahan-kelemahan tertentu di dalam kontrak. Antaraisuwisu yang dibangkitkan ialah sepertiJadual3.

    Satu perbincangan dengan Cawangan Jala.n,.Cawangan Ukur Bahan dan Unit Keselamatan Jalan diCawangan Kejuruteraan }alan& Geoteknik telah diadakanpada 7.7.2008 bagi menyelesaikan isu-isu di atas danmemastikan 'Road Safety Audit' dilaksanakan sepenuhnya di masa akan datang. Hasil dari perbincangan tersebut, 11 isu berikut telah dikenal pasti dan akan ditanganioleh cawangan-ca.wangan yang berkenaan.1. Item Pengurusan Trafil( dalam BQ tidak lengkap.

    Item-item untuk pengurusan trafik yang disediakantidak mencukupi seperti standard BQ. Contohnyaterdapat BQ yang hanya menyediakan temporarybarrier dan blinkers sahaja walhal standard BQ untukTMP mengandungi Traffic Management Team, Tempo-rary Road Furniture, Temporary Signs, Temporary RoadDiM'8icn dan Report & Trt1JJU: Management Plan.

    Tindakan Penambahbaikan:(Nota: 'Standard BQ' telah digunRpakai di HQ tetapi tidakdiedarkan ke ]KR Negeri.) Oleh yang demikian, Cawangan Kejuruteraan Jalan &Geoteknik. akan menyediakan 'Nota Teknik' yang

    mengandungi 'Standard BQ' untuk diedarkan kepadasemua JKRNegeri sebelum23 Julai 2008.

    2. Kuantiti bagi Item Pengurusan Trafik tidak mencukupi. Item-item yang dimasukkan dalam BQ tidak mempu

    nyai kuantiti yang mencukupi terutamanya projeknegeri.Tindakan Penambahbaikan:(Nota: Perekabentuk yang kompeten sehanumya aritentang prosedur pembinaan dan keperlURn pengurusantrafikdi tapak. S.O. seharusnya melaksanakan pembinaanberperingkat seperti dirancang.)agim.engesahkan tanggapan di atas, pasukanaudit telahmula menjalankan 'audit susulan' ke atas projek-projekterpilih khususnya yang mendapat markah peratusan

    pematuhan yang rendah. Analisiske atas hasil audit susu"Ian in i adalah seperti di Jadual 2. Tidak semua projekmenunjukkan peni:ngkatan pematuhan semasa auditsusulan dijalankan. Malah terdapat2 projek yang menunjukkan penurunan ketara iaitu Projek Jalan LingkaranAlor Setar - Tasek Pedu - Gurun dari Pekan Gurun, 3.Daerah Kuala Muda lee Pekan Sik, Kedah (dari 52.4% kepada 14.8%) dan Projek Menaiktara Jalan PakaSantong, Laluan 122, Dungun, Terengganu (dari 85.0%kepada 60.4%).

    Oleh yang demikian, BQ akan diberi kepada perekabentuk untuk diveri.fikasi. Oleh yang demikia:n.. SeminarPematuhan Pengu.rusanTrafik Sewaktu Pembinaan telah diadakan bagi. mem-be:ri kesedaran kepada semua pihak terlibat khususnyamengenai keperluan dan kuantiti.Ketidak:patuhan pihak kontraktor terhadap BQ.Pihak kontraktor tidak menyediaka:n sepenuhnyaitem-item yang terdapat di dalam senarai BQ sepertitidak melantik Traffic Safoty Officer dan tidak menyediakan aporan TMSR.Berdasarkan tahap pematuhan audit susulanyang dijalanka:n, dapat dirumuskan bahawa S.O. masih Tindilkan Penambahbaikan:tidak mengambil iktibar bagi meningkatk.an tahap pemaw Cawangan Jalan di.minta untuk memantau ke atas

    tuhan trafik di tapak dan tidak melaksanakan syor-syor penguatkuasaan kontrak di tapak dan mengambilyang telah diberikan. tindakan puniti ke atas mana-mana wakil 5.0. yangMengenalPasti& MenanganiKelemahan DalamKontrakSelain dari memberi tumpuan ke atas komponenkomponen pengurusan trafikdi dalam borang audit, juru-

    didapati gagal melaksanakannya.

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    21/30

    Pengurusan Trafik. Penguatkuasaan yang terhad. Tindakan Penmnbahbat1am: Terdapat BQ yang tidak di:masukkan keperluan (Nota: Seminar Pengurusan Trafik Sewaktu Pembinaan telahpenguatkuasaan dan penyemakan kerana tidak meny- diadakan bagi memberi kesedaran kepada semua pihak terlibat

    enaraikanTraffic SafetyOfficerdan Road Safety Auditor. khususnya 'Designer', QS dnn Penyelia Tapak Bina berkaitlm Cont:ohnya, BQ bagi projek yang dijalankan secara reka kuantiti yang diperluJam di tapak.)dan bina mempunyai Traffic Safety Officer dan RoadSafety Auditor manakala projek konvensional tiada UKJ akan mengadakan seminar yang sama secaradisediakan item tersebut. berterusan.Tindalam Penambahbailam: Cawangan Jalan akan m.enyenaraikan projek semasa

    yang me:mpunyai RSA dan tidak me:mpunyai RSA danmeneliti penguatkuasaan pelaksanaan RSA bagi projekyang terdapat item RSA.

    Cawangan Jalan akan memberi arahan kepada Pengarah Negeri/ Jurutera Daerah supaya meminta kontrak.RSA dari Pengurus Projek. sekiranya tiada dalam

    . Juruperunding yang tidak berpengalaman dankelemahan kontrak. BQ yang tidak lengkap serta rekabentuk yang banyak.

    kelemahan dan kekurangan. Ini adalah berpuncadaripada juruperunding yang tidak. berpengalamandan profesional yang dilantik untuk membuat rekabentuk dan menyediakan dokumentasi bagi projekberkenaan.

    Tindakan Penambahbaikan: Cawangan Jalan akan membuat syor kepada SektorPakar, mana-mana juruperunding yang gaga! melak.sanakan pengurusan trafik di tapak.SektorPakarakanmelaporkan kepada LembagaJurutera Malaysia.

    Cawangan Jalan akan menyediakan 'Penalty Oause'dalam kontrak.

    String delimalordiFI'003, Kertih.6. Ketidakfahamandan kurang peka akan dasar kepe:ll-luan pengurusan trafik. Ketidakpekaan akan kepentingan pengurusan trafik

    olehpihak JKR. sendiri. Sebagai contoh, penyediaanBQuntuk pengurusan trafik tidak lengkap kerana pihakyang menyemak BQ seperti 'designer' tidak memahami akan kepentinganpengurusan trafikbagi menangani isu keselamatan pengguna jalan raya di tapakpembinaan. Dengan itu, BQ bagi pengurusan trafikdalam projek jalan dibuat secara ala kadar sahaja.

    Stringdelnuahw di Sydney, Austmli4.7. Kriterla bagi projek yang pe:rlu pelaksanaan TMP. Keperluan pelaksanaan pengurusan trafikadalah tidakjelas kepada sesetengah pihak. Tiada surat pekeliling

    khusus yang mewajibkan pelaksanaan pengurusantrafik serta tahap keperluan pengurusan trafik. Adayang berpendapat tahap keperluan pengurusan trafikbagi projek naiktaraf jalanraya perlu dikaitkandengankategori jalan dan bilangan trafik yang menggunakanjalan berkenaan. Jalan-jalan luar bandar yang tidakmempunyai trafik yang banyak (nilai tertentu perludinyatakan.) mungkin boleh menyediakan pe:rabotpengu.rusan trafik yang minima sahaja berbanding:dengan jalanraya utamayangmempunyai kadar trafikyang tinggi.

    Tindakan Penmnbahbtu1am: Garispanduan barubagi menggantikan Araban TeknikUalan) 2C/85 akan diterbitkan oleh REAM padaDisember 2008. Garispanduan baru lebih menekankan

    kepada prinsip berbanding Arahan Teknik lama yanglebih fokus kepada templates'.8. Vandalisma. Masalah kecurian yang be:rleluasa menyebabkan kuan-

    titi sebenar di tapak tidak mencu.kupiTindakan Penmnbahbaikan:(Nota: Alasan kecurian ke atas ketidnkcukupan kuantiti di taptiktidtik seharusnya diterima oleh kerana harga yang ditenderseharumya mengambil kira kemungkinan berlakunya kehilan-gan dan kerosakan dan menjadi tanggungjawab 1wntraktarmenjaga perkakas pengurusan trafik melalui rondmm berkalapasukan pengurusan trafik.) Olehyang demikian, CawanganJalanakan mengeluarkan surat bagi memperingati 5.0. mengenai perkaraini sebelum23 Julai 2008.

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    22/30

    String dclineator di FT003, DuriJm Bu.rung.9. Road Safety Audit (RSA). Laporan Road Safety Audit tidak. dimajukan kepadapihak. pengurusan atasan. PerananRoad Safety Auditoryang kurang jelas di mana

    Road SIZjetyAuditor hanya menjalankan RSA peringkat4 di tapak. bina tetapi tidak menjalankan audit terha-dap TMP dalamTMSRyang disediak.an setiap 3 bulan. Sekalipun Road Safety Auditor ada melaksanakan auditke atas TMP dalam TMSR tetapi pematuhan terhadappelan pengurusan trafik di tapak sebaliknya masihlemah. Cawangan Jalan diminta untuk mengkaji semula,menambahbaik, mengaktifkan semula dan memasti"kanRSA dilaksanakan sepenu.hnya.

    S.O. ti.dak. memberi maklumbalas sek:iranya RSA ti.dak.dilaksanakan atau tiada dalam kontrak. Audit pe:matuhan pengurusan trafik yang diselaraskanolehCSFJ adalah sebagai langkah sementara bagingawal pengurusan trafik di tapak. sebelum RSA dilak.-sanakan sepenulmya.

    Tindakan Penmnbahbailam:

    String tklindccrdim blinkerdi Sydney, AU8trali4.

    Pengurusan Trafik Cawangan Jalan akan mengeluarkan arahan kepada

    semua S.O. supaya melantik RSA bagi menjalankanAudit KeselamatanJalan Peringkat 4 Bahagian 1, 2 &: 3dan ke atas TMP dalamTMSR. Cawangan Jalan ak.an mengeluarkan surat bagi mem-peringati S.O. supaya memastikan TMP di tapak.adalah seperti TMPyangdiluluskan. Sebarangperubahan ke atas TMP perlu dirujuk kepada Road SafetyAuditor dan juruperunding. Cawangan Jalan ak.an mengeluarkan surat pekeliling-bagi. mengingatiS.O. dan mewar-warkan dalam lamanweb/Rak.an mengenai keperluan dan kepentinganRSA.

    Cawangan Jalan akan memastikan RSA dan pengu.ru-san t:rafik dilaksanakan sepenu.hnya melalui surat-surat araban/pekeliling dan hebahan dalam lamanweb/Rak.an dan dijadikan sebagai agenda tetapmesyuarat tapak.

    String dclintator tidllk numantul C1haya ~ t Pmimpangan Chuping.10. Laporan TMSR dan Laporan Verifikasi TMP.

    Terdapat projek yang tidak menyediak.an laporanTMSR dan Laporan Verifikasi TMP dan, sekiranyadisediakan, tidak dimajukan kepada S.O.fP.D., UPP &:UKJ.Tiada t:indakan yang diambil terhadap projek yangtidak. menyediakan atau tidak me:nghantar LaporanTMSR setiap 3 bulan dan Laporan Verifikasi TMPsetiap 2 minggu.Oleh. yang demikian, terdapat pihak yang mempertikaikan keperluan menyediakan laporan tersebutkhususnya Laporan VerifikasiTMP.Laporan Verifikasi TMP yang dikemukakan olehkonsultan untuk diluluskan oleh S.O. tidak menggambarkan keadaan sebenardi tapak.

    Tindakan Penambahbaikan: UKJ akanmenghantar surat peringatansekiranya lapo-ran 'IMSR tidak diterima dan sentiasa memperingatkan S.O. semasa mesyuarat tapak. Cawangan Jalan akan menyenaraikan projek yangmenghantar dan tidak. menghantar Laporan VerifikasiTMP. Cawangan}alan ak.an menyediakan ringkasan ekseku-ti.f kepada TKPKR 1 dan salinan kepada 5.0. di tapak.

    CawanganJalanakan mengarahkan S.O. mengesahkansendiri LaporanVe:ri.fi.kasiTMP dan mengambil tindakan sewajam.ya ke atas konsultan sekiranya gaga!membantu 5.0. dalam hal ini.

    Fasiliti Jalan S 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    23/30

    Pengurusan Trafikf " B i i f - F i r o j i k - I = : : ~ ~ ~ ~ ~ ! : : = = J : = : = ~ ~ ~ ~ ~ = J naan telah diadaJcan bagimemberi keseda-ran kepada semua piha1c yang terlibat.)h - + : - - : - - - : : - : ' - - - : - - - + . . . , . . . . . . . . , ~ ~ ~ ~ ~ ! ! ! ! , j ___ j _ . ! ! ! ~ ~ m . . J Pihak UK] akan membuat

    Jalan Llngkaran penilaian keberkesana:n terha-Aior Setar- Tasek dap Seminar yang diadakanPeclu - liatrun dari d.engan mengadakan audit kePakan GliJm, atas projek di mana konsultan,kontraktor dan S.O./wakil telahmenghadiri seminar tersebut.

    ~ - = ~ ~ - + - - - - 4 - - 9 - 3 8 - % - ~ ~ ~ ~ S e ~ P e ~Bagi meningkatkan kesedaran tentangkeperluan dan ama1an sem.asa JI

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    24/30

    Pengurusan TrafikBIL PROJEK NO.KONTRAK TARIKH AUDIT % KEPATUHAN PEGAWAI PENGUASA (S.O.)1 Menaiktaraf Jalan - Jalan PersekutuanSabak Bernam Ke Changkat Jering - Pakej JKR/IP/CKUB/19/2006 30.5.2008 33.3 Pengarah

    B: Stretch 1 - Dari Sg. Bernam Ke Hutan JKR PerakMelintang.2 Cadangan Menaiktaraf Laluan Persekutuan Pengarah5: Kapar- Klang, Selangor, Fasa 1. KKR/JKR/IP/JK/12/2004 22.5.2008 51.9 JKR Selangor3 Membina dan Menyiapkan Jalan dari Jurutera DaerahCentral Paloh ke Paloh, Kluang, Johor. JKR/PERS/J/KLG/6/2007 15.5.2008 45.8 JKR Kluang4 Membaikpulih dan Menaiktaraf Jalan Alor

    Setar- Kuala Nerang - Durian Burung, KKR/JKR/IP/UB/100/2006 6.5.2008 40.9 TKPKRIKedah (600000-119).5 Jalan Lingkaran Alor Setar- Tasek Pedu-Gurun dari Pekan Gurun, Daerah Kuala JKR/IP/UB/88/2003 7.5.2008 14.8 TKPKRIMuda ke Pekan Sik, Kedah.(Audit Susulan. AuditPertama Januari 2008: 52.4%)

    PURATA PEMATUHAN (%) 37.3Tahap Pematuhan Pengurusan Trafik Sewaktu Pembinaan Mei 2008

    BIL PROJEK TARIKH AUDIT %KEPATUHAN TARIKH AUDIT %KEPATUHAN PEGAWAI PENGUASAPERTAMA SUS ULAN (S.O.)1 Projek Menaiktaraf Jalan Jitra melalui 30.1.2008 62.7% 23.6.2008 26.3% PengarahKodiang, Kedah ke Arau, Perlis, Pakej 2: JKR KedahCH4500- CH17500.

    2 Projek Menaiktaraf Jalan Jitra melalui 30.1.2008 34.5% 24.6.2008 63.2% PengarahKodiang, Kedah ke Arau, Perlis, Pakej 3: JKR KedahCH17500- CH21500.3 Projek Menaiktaraf Jalan Jitra melalui 30.1.2008 56.5% 18.2.2008 83.5% PengarahKodiang, Kedah ke Arau, Perlis, Pakej 4: 23.6.2008 93.8% JKR PerlisCH21500 - CH26881.173.4 Naiktaraf Jalan Persekutuan Laluan 3, 21.1.2008 86.5% 30.6.2008 80.6% Pengarahkm11-18, Jalan Kuala Terengganu- Kuantan, JKR TerengganuMarang, Terengganu.5 Menaiktaraf Jalan Dari Simpang Lima Ke 2.4.2008 46.7% 17.6.2008 75.7% Jurutera DaerahParit Sulong, Batu Pahat, Johor. JKR Batu Pahat6 Projek Menaiktaraf Jalan Paka- Santong, 7.3.2008 85.0% 25.6.2008 60.4% PengarahLaluan 122, Dungun, Terengganu. Cawangan Jalan7 Projek Membina Jambatan Baru Sg. Kinta, 19.6.2008 51.9% - - Jurutera DaerahKg. Kuala Pari, lpoh, Perak. JKR Kinta8 Projek Jalanraya Pulai - Gua Musang - 19.6.2008 63.3% - - PengarahKuala Berang (Pakej 2). JKR Perak

    Tahap Pematuhan Pengurusan Trafik Sewaktu Pembinaan fun 2008BIL PROJEK TARIKH AUDIT %KEPATUHAN TARIKH AUDIT %KEPATUHAN PEGAWAIPENGUASAPERTAMA SUS ULAN (S.O.)1 Projek Menaiktaraf Jalan Persekutuan 50, 31.1.2008 73.0% 16.7.2008 72.9% PengarahBatu Pahat- Ayer Hitam - Kluang, Johor JKRJohor(Fasa 2: Membina Pusingan U, Median &Kerja Berkaitan).2 Projek Menaiktaraf Jalan Persekutuan 3 23.7.2008 96.8% - - PengarahDari Kuantan {km 9.0) ke Pekan {km 46.0), JKR PahangPahang.3 Projek Menaiktaraf Laluan Seremban - 30.4.2008 90.1% 24.7.2008 81.3% PengarahSenawang (Fasa 2), Negeri Sembilan. JKR Negeri Sembilan4 Projek Menaiktaraf Laluan 3, km 97.4 - km 22.1.2008 70.8% 30.7.2008 68.8% Pengarah108, Jalan Kuala Terengganu-Kuantan, JKR TerengganuTerengganu.5 Projek Membina Jalan Dari Ulu Pauh 31.7.2008 66.2% - - PengarahMelalui Chuping ke Padang Besar, Perlis, JKR PerlisPakej 3 (81000-017).

    Tahap Pematuhan Pengurusan Trafik Sewaktu Pembinaan Julai 2008

    Buletin Sen ara Fasiliti Jalan S t 2008

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    25/30

    FAQs

    Q; Is KU A safe for Airbus A3807Jt: The impending arrival into full-scale service of thelargest commercial aircraft, Airbus A380, duly triggercuriosity on the capability of the existing pavement structures at KilA to take the load from the aircaft.Based on gross weight, Airbus A380 is the largest conunercial aircraft. However, in terms of wheel load, otheraircraft, such as Airbus A340-600, impose higher stress onpavement swface layers. A brief comparison of selectedwide-bodyaircraft s shown below;

    Alrcndl IITOW Numbarof Numbarof l l ohum ._ d Plllr[tDIW) Lancllllll GM r WI!.... IIG WhMI (toM) lloelllll l 8747...00 .. 1 +4 1+11 2U lloelng B777400 3411 , 2 1+11 2U i AlrbuaAS4o..200 271 ,., 1+10 28.0 Alrbua AI40o400 .. , 3 2+12 2$.1 AlrbuaA38D-8DD SID , 4 2+20 211.5 ~ L 1 0 1 1 234 1 3 2+10 21.1

    The above weights show that Airbus A380 has a maximumwheel load that is comparable with other large aircraft.Taking into consideration th e effect of wheel proximity

    u " "" 1 2

    by Ir. Mohd Hizam Harun

    and of landing gear proximity, Airbus A380relatively high stress on pavement layers. However, mostpavements designed to cany other wide-body aircraftwill safely support Airbus A380 traffic. The primarypurpose of the Pavement Evaluation Program headed byAirbus Industries an d carried ou t in Toulouse,France, wa sto ensure that Airbus A380 traffic does no t overloadairfield pavements that have been designed for otherwide-body aircraft.Runway and taxiway pavements at KilA are constructedas follows: 15 em polymermodified asphalt (usingPG 76 binder). 10em crack relief layer (CRL). 45 em cement treated base (CfB) using crushed gravel

    and sand 20 em drainage layer consisting of crushed gravel.In accordance withcurrentFAA regulations, theminimumpavement thickness for BoeingB777 type aircraft is 28 em;12.5em of polymer modified asphalt (in a hot climate) plus15.5 em of bituminous or cement stabilised base.Overall, the total thickness of asphalt plus cement stabilised layers at KilA exceeds by a significant margin theanticipated requirements based on traffic volume, including 10 to 15% Airbus A380 traffic.

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    26/30

    Q; What are the desirable characteristics of asphalticconcrete?tJt: A satisfactorily designed asphaltic concrete mixtureshould have the following characteristics;i. Sufficient bitumen to ensure durability,ii. Sufficient stabili ty to carry traffic loads without defor-mation,iii. Sufficient ai r voids to allow for a slight amount ofadditional compaction under traffic loads an d a slightamount of bitumen expansion due to an increase intemperature without bleeding an d loss of stability.However, the voids should not be too high to restrictth e ingress of harmful ai r an d moisture into themixtul'e,iv. Sufficient workability to allow efficient placementand compactionof mixture without segregation, an dv. Sufficient surface texture for satisfactory skid resistance through proper combination of coarse and fineaggregates.

    FAQsbitumen on the aggregate particles that provides insuffi-cient cohesive forces an d too many interconnected ai rvoids. The mixture will become so porous to ai r and waterthat the thin bitumen film can rapidly oxidise. Studiescarried out elsewhere have shown that bitumen film thickness has a significant effect on th e rate of hardeningon th eroad. In addition, th e mixtul'e will be too stiff an d not soworkable for efficient laying and compaction.

    0: What is th e purpose of carrying ou t mix design on~ l t i c concrete? Q; What happen i f he bitumen content is too high?tJt: The objectiveof design ing asphaltic concretemixtureis to find an economical blend of various sizes of aggregateand bitumen which is stable an d durable, an d whichcomplies with the desired properties as specified in Table4.3.5 of JKR/SPJ/2008-54.In designing a good asphaltic concrete mixture, th e aim isto produce a blend of aggregate with a controlled ai r voidcontent and not necessarily the one with the lowestpossible ai r voids. I f th e ai r void content in the blendedaggregate is too low, the mixture will be unable to carrysufficient bitumen and, therefore, wil l be difficult tocompact due to insufficient lubrication, and will no t besufficiently durabl e as the bitumen film on the aggregateparticles will be too thin. On the other hand, i f he ai r voidcontent is too high, it is probable that the mixture will belacking in stability as each aggregate particle will receiveless support from those surrounding it .

    What happen i f he bitumen content is too low?tJt: Too little bitumen will produce a very thin film of

    tJt: I f the bitumen is too much, the ai r voids will beflooded with the binder, pushing the aggregate particlesapart thus reducing mechanical interlock within the aggregate structure. The bitumenwill tend to lubricate the aggregate particles and reduce the inter-particle friction. Themixture will lose its stability and liable to deform undertraffic loads.Q! Why need to limit th e air voids in asphaltic concretemiXtUre?Jt: In combining various sizes of aggregate particles toform th e structural skeleton of asphaltic concrete, the aim sno t to produce closely arranged aggregate particles withthe lowest possible ai r voids in between that gives aggregate grading with maximum density. The aim is actually tocreate a reasonable amount of space within the aggregatestructure. From past experience, the target ai r voids in th ecompacted mineral aggregate (VMA) is around 17 - 20%which will allow the percentage ai r voids to be filled upwith bitumen (VFB) to be in th e range 75 - 85% for wearingcourse and 65- 80% for binder course as stipulated in Table4.3.5 of JKR/SPJ/2008-54. This in turn will normally resultin total ai r voids in the compacted asphaltic concretemixture (hereafter referred to as VIM) to be in th e range 3 -5% for wearing course and 3 - 7% for binder course asstipulated in Table 4.3.5 of JI

  • 7/30/2019 Buletin BSFJ Bil 3 2008

    27/30

    FAQsI f the VMA is lower than 17%, the consequences arereversed, that is i f the amount of bitumen added is justsufficient to give sufficient air voids in the final compactedmixture, then this bitumen content will be too low andlead to poor durability. I f however a normal quantity ofbitumen is added, the VMA will be over-filled withbitumen and the final compacted mixture will have a verylow air voids, resulting in a mixture of poor stability whichwill liable to deform under traffic loads.Q! What happen i f he air voids is too high?Jt: After the asphaltic concrete mixture is laid andcompacted on site, the bituminous binder is readilyexposed to ultra violet radiation and atmospheric oxygen.The rate of hardening of binder in service is more severe inthe top 3 mm of the road surfacing and decreases withdepth. The main factor which affects the hardening ofbinder on the road is the voids content of the surfacingmaterial. At voids content less than 5%, very little hardening will occur. However, at voids content greater than 9%,it has been shown that hardening will be very rapid. Atvoids content lower than 5%, it has been demonstratedthat bituminous mixtures are impermeable to air.

    Q! What happen if the air voids is too low?Jt: When air voids is too low which is usually caused byexcessive bitumen. the mec