buletin - aplindoaplindo.web.id/wp-content/uploads/2015/09/buletin-aplindo-481.pdf · sebagai...

54
BULETIN APLINDO N0.48/2016, April - Mei 2016 Asosiasi Industri Pengecoran Logam Indonesia Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A Jl. Gatot Subroto, Senayan, Jakarta 10270 Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328 Email : [email protected] Web Site : www.aplindo.web.id APLINDO

Upload: vohuong

Post on 02-Feb-2018

260 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN APLINDO N0.48/2016, April - Mei 2016

Asosiasi Industri Pengecoran Logam Indonesia

Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A

Jl. Gatot Subroto, Senayan, Jakarta 10270

Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328

Email : [email protected] Web Site : www.aplindo.web.id

APLINDO

Page 2: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

1

DAFTAR ISI

No. Uraian Halaman

1. Pengantar Redaksi 2

2. The 24th Annual International Scientile and Technical

Conference “Foundry Production and Metallurgy 2016, 19-21 October 2016

4

3. Izin, Prosedur, Waktu, Dan Biaya Untuk Kemudahan Berusaha Di

Indonesia 6

4. Pusat Logistik Berikat 9

5. Percepatan Pengembangan Hilirisasi Industri Aluminium 12

6. Perpres No. 40/2016,Penetapan Harga Gas Bumi 14

7. Fabrication, magnetostriction properties and applications of Tb-Dy-Fe alloys: a review

15

8. Effects of Si alloying and T6 treatment on mechanical properties and wear resistance of ZA27 alloys

30

9. Effects of grain refinement on cast structure and tensile properties of

superalloy K4169 at high pouring temperature

41

10. Data Kendaraan Bermotor

1. Data kendaraan bermotor roda 4 di Indonesia & ASEAN 2. Data kendaraan bermotor roda 2 di Indonesia & ASEAN

47

48

11. Informasi Umum dan Pameran

1. Website pemerintah yang dapat diakses 2. Website Asosiasi Industri Pengecoran Logam Indonesia

3. Website Himpunan Ahli Pengecoran Logam Indonesia 4. Pameran dan Seminar

51 51

51 51

Page 3: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

2

Pengantar Redaksi

Pada edisi 48/2016 ini, membahas upaya perbaikan peringkat Ease of Doing Business

(EODB) atau kemudahan dalam berusaha, Pemerintah semakin giat melakukan perbaikan

baik dari segi peraturan, prosedur perizinan, waktu dan biaya. Peringkat EODB Indonesia,

sebagaimana survei Bank Dunia, saat ini berada pada peringkat ke-109 dari 189 negara

yang disurvei. Posisi ini tertinggal dibandingkan dengan negara ASEAN lainnya seperti

Singapura posisi 1, Malaysia posisi 18, Thailand posisi 49, Brunei Darussalam posisi 84,

Vietnam posisi 90 dan Filipina posisi 103.

Selain itu juga Pemerintah juga membangun Pusat logistic Berikat dan Kawasan Berikat

Kuala Tanjung. Pusat Logistik Berikut dibangun guna mendukung distribusi logistik yang

murah dan efisien guna mendukung pertumbuhan industri dalam negeri dan diharapkan

Indonesia menjadi Hub Logistik di Asia Pasifik, Sedang Kawasan Kuala Tanjung dibangun

untuk mendukung percepatan pengembangan hilirisasi industri berbasis alumunium dan

sebagai Hub Barat Toll Laut yang akan dibangun Presiden Jokowi.

Dalam edisi ini juga memuat artikel-artikel untuk menambah pengetahuan dibidang

pengecoran logam, selanjutnya kami mengharapkan agar buletin ini menjadi media antar

anggota maupun antar industri pengecoran didalam negeri dan diluar negeri. Harapan kami,

seluruh anggota dapat mengisi buletin ini menjadi kenyataan.

Kami informasikan undangan dari Association of foundrymen and metallurgists of the

Republic of Belarus yang akan menyelenggarakan The 24th Annual International Scientile

and Technical Conference Foundry Production and Metallurgy 2016, 19-21 October 2016 di

Binsk, BNTU (Belarus National Technical University) Belarus.

Redaksi buletin APLINDO menghimbau anggota APLINDO berpartisipasi dalam mengisi

tulisan/artikel, data maupun informasi lain yang berhubungan dengan industri pengecoran

logam. Naskah tulisan/artikel dapat dikirim ke sekretariat APLINDO, melalui email ataupun

fax.

Redaksi

Page 4: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

3

Page 5: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

4

Page 6: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

5

Page 7: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

6

Page 8: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

7

IZIN, PROSEDUR, WAKTU

UNTUK KEMUDAHAN BERUSAHA DI INDONESIA

Jakarta (28/4/2016) - Presiden Joko Widodo dalam beberapa rapat kabinet terbatas

menekankan pentingnya menaikkan peringkat Ease of Doing Business (EODB) atau

Kemudahan Berusaha Indonesia hingga ke posisi 40. Untuk itu harus dilakukan sejumlah

perbaikan, baik dari aspek peraturan maupun prosedur perizinan dan biaya, agar peringkat

kemudahan berusaha di Indonesia terutama bagi UMKM, semakin meningkat.

Untuk itu Kementerian Koordinator Bidang Perekonomian membentuk tim khusus untuk

melakukan koordinasi dengan Badan Koordinasi Penanaman Modal (BKPM) dan beberapa

kementerian dan lembaga terkait guna membuat sejumlah langkah perbaikan.

10 Indikator Tingkat Kemudahan Berusaha

Bank Dunia telah menetapkan 10 indikator tingkat kemudahan berusaha yaitu : Memulai

Usaha (Starting Business), Perizinan terkait Pendirian Bangunan (Dealing with Construction

Permit), Pembayaran Pajak (Paying Taxes), Akses Perkreditan (Getting Credit), Penegakan

Kontrak (Enforcing Contract), Penyambungan Listrik (Getting Electricity), Perdagangan

Lintas Negara (Trading Across Borders), Penyelesaian Perkara Kepailitan (Resolving

Insolvency), dan Perlindungan Terhadap Investor Minoritas (Protecting Minority Investors).

Indikator ini didasarkan atas survei Bank Dunia pada wilayah Provinsi DKI Jakarta dan Kota

Surabaya, Pemerintah menginginkan kebijakan ini bisa berlaku secara nasional.

Dari ke-10 indikator itu, Pemerintah akan memangkas proses perizinan dalam upaya

perbaikan kemudahan berusaha, antara lain :

a. Jumlah prosedur yang sebelumnya berjumlah 94 prosedur, dipangkas menjadi 49

prosedur

b. Perizinan yang sebelumnya berjumlah 9 izin, dipotong menjadi 6 izin.

c. Waktu yang dibutuhkan total berjumlah 1,566 hari, dipersingkat menjadi 132 hari.

Perhitungan total waktu ini belum menghitung jumlah hari dan biaya perkara pada

indikator Resolving Insolvency karena belum ada praktik dari peraturan yang baru

diterbitkan.

Upaya Perbaikan

Untuk meningkatkan peringkat kemudahan berusaha ini, sejumlah perbaikan dilakukan pada

seluruh indikator yang ada. Pada indikator Memulai Usaha, misalnya, sebelumnya pelaku

usaha harus melalui 13 prosedur yang memakan waktu 47 hari Kini hanya akan melalui 7

Page 9: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

8

prosedur selama 10 hari. Izin yang harus diurus meliputi Surat Izin Usaha Perdagangan

(SIUP), Tanda Daftar Perusahaan (TDP), Akta Pendirian, Izin Tempat Usaha, dan Izin

Gangguan.

Kemudahan lain yang diberikan kepada UMKM adalah :

1. persyaratan modal dasar pendirian perusahaan. Berdasarkan UU Nomor 40 tahun 2007

tentang Perseroan Terbatas, modal minimal untuk mendirikan PT adalah sebesar Rp 50

Juta. Dengan terbitnya Peraturan Pemerintah Nomor 7 Tahun 2016 tentang Perubahan

Modal Dasar Perseroan Terbatas, modal dasar Perseroan Terbatas tetap minimal Rp 50

Juta, tapi untuk UMKM modal dasar ditentukan berdasarkan kesepakatan para pendiri

PT yang dituangkan dalam Akta Pendirian PT.

2. Perizinan Pendirian Bangunan. Kalau sebelumnya harus melewati 17 prosedur yang

makan waktu 210 hari untuk mengurus 4 izin (IMB, UKL/UPL, SLF, TDG), kini hanya

ada 14 prosedur dalam waktu 52 hari .

3. Pembayaran pajak yang sebelumnya melalui 54 kali pembayaran, dipangkas hanya

menjadi 10 kali pembayaran melalui sistem online. Sedangkan Pendaftaran Properti

yang sebelumnya melewati 5 prosedur dalam waktu 25 hari dengan biaya 10,8% dari

nilai properti, menjadi 3 prosedur dalam waktu 7 hari dengan biaya 8,3% dari nilai

properti/transaksi.

Dalam hal Penegakan Kontrak, untuk penyelesaian gugatan sederhana belum diatur. Begitu

pula waktu penyelesaian perkara tidak diatur. Tapi berdasarkan hasil survey EODB, waktu

penyelesaian perkara adalah 471 hari.

Dengan terbitnya Peraturan Mahkamah Agung Nomor 2 Tahun 2015 tentang Tata Cara

Penyelesaian Gugatan Sederhana, maka saat ini untuk kasus gugatan sederhana

diselesaikan melalui 8 prosedur dalam waktu 28 hari. Bila ada keberatan terhadap hasil

putusan, masih dapat melakukan banding. Namun jumlah prosedurnya bertambah 3

prosedur, sehingga total menjadi 11 prosedur dan waktu penyelesaian banding ini maksimal

10 hari.

Penerbitan Peraturan Baru

Berkaitan dengan upaya memperbaiki peringkat EODB ini, pemerintah telah menerbitkan 16

peraturan, yaitu:

1. PP No. 7 Tahun 2016 tentang Perubahan Modal Minimum bagi Pendirian PT

2. Permenkumham No. 11/2016 tentang Pedoman Imbalan Jasa Bagi Kurator dan

Pengurus

3. Permen PUPR No 5/2016 tentang Izin Mendirikan Bangunan

Page 10: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

9

4. Permen ATR/BPN no. 8/2016 tentang Peralihan HGB Tertentu di Wilayah Tertentu

5. Permendag No. 14/M-Dag/Per/3/2016 tentang Perubahan Atas Peraturan Menteri

Perdagangan No. 77/M-Dag/Per/12/2013

6. Permen ESDM No 8 Tahun 2016 tentang Perubahan atas Peraturan Menteri ESDM No

33/2014 tentang Tingkat Mutu Pelayanan dan Biaya yang Terkait dengan Penyaluran

Tenaga Listrik oleh PT PLN

7. Permendag No. 16/M-Dag/Per/3/2016 tentang Perubahan atas Permendag No. 90

Tahun 2014 tentang Penataan dan Pembinaan Gudang

8. Permendagri No 22/2016 tentang Pencabutan Izin Gangguan

9. Peraturan Dirjen Pajak No. PER-03/PJ/2015 tentang Penyampaian Surat

Pemberitahuan Elektronik secara Online

10. SE Menteri PUPR No 10/SE/M/2016 tentang Penerbitan IMB dan SLF untuk Bangunan

Gedung UMKM Seluas 1300m2vdengan menggunakan desai prototipe

11. SE Direksi PT PLN No. 0001.E/Dir/2016 tentang Prosedur Percepatan Penyambungan

Baru dan Perubahan Daya bagi Pelanggan Tegangan Rendah dengan Daya 100 s.d

200 KVA

12. Perka BPJS No. 1/2016 untuk Pembayaran Online

13. Instruksi Gubernur DKI Jakarta No.42/2016 tentang Percepatan Pencapaian

Kemudahan Berusaha

14. SE Mahkamah Agung No2/2016 tentang Peningkatan Efisiensi dan Transparansi

Penanganan Perkara Kepailitan dan Penundaan Kewajiban Utang di Pengadilan

15. Keputusan Direksi PDAM DKI Jakarta Tentang Proses Pelayanan Sambungan Air

16. Keputusan Direksi PDAM Kota Surabaya tentang Proses Pelayanan Sambungan Air

Peringkat EODB Indonesia, sebagaimana survei Bank Dunia, saat ini berada pada peringkat

ke-109 dari 189 negara yang disurvei. Posisi ini tertinggal dibandingkan dengan negara

ASEAN lainnya seperti Singapura posisi 1, Malaysia posisi 18, Thailand posisi 49, Brunei

Darussalam posisi 84, Vietnam posisi 90 dan Filipina posisi 103.

----0000----

Page 11: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

10

Pusat Logistik Berikat

Bukan rahasia umum, bahwa biaya logistik di Indonesia merupakan yang termahal di dunia

dan salah satu dari permasalahan tersebut adalah banyaknya perizinan untuk mengurus

bongkar muat kapal (dwelling time) barang ekspor impor, sehingga Indonesia sulit bersaing

dengan negara tetangga.

Biaya logistik pelabuhan Indonesia sudah mencapai 27 persen, sementara di negara

tetangga, seperti Singapura, Malaysia maupun India atau negara lain berada di angka 15

persen dan di bawah itu.

Banyaknya kepentingan instansi kementerian atau lembaga yang mengeluarkan kebijakan

masing-masing. Perizinan menjadi biang keladi dari tingginya biaya logistik di pelabuhan.

Sebagai contoh : satu barang impor dengan HS Code sekian masuk dalam regulasi larangan

terbatas, untuk mengeluarkan barang tersebut membutuhkan waktu pengurusan perizinan

sampai dengan satu bulan. Padahal kalau bisa langsung keluar, biaya bisa dipangkas dan

penumpukan biaya hanya satu hari. tetapi dengan perizinan sebanyak itu, biaya akan terus

membengkak.

Indonesia merupakan salah satu negara pengimpor, hampir seluruh barang keperluan

industri di Indonesia yang diimpor dari berbagai negara ditimbun di gudang negara

tetangga, begitu pula dengan ekspor, banyak komoditas ekspor Indonesia yang menunggu

dibeli oleh pembelinya ditimbun di gudang negara tetangga, mengapa Indonesia tidak

membuat (pusat logistik berikat) di Indonesia?.

Dengan pemikiran tersebut, melalui Peraturan pemerintah (PP) No 85/2015 tentang Tempat

Penimbunan Berikat (TPB) Pemerintah telah mengembangkan Pusat Logistik Berikat (PLB)

sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia

dengan tujuan menjadikan Indonesia sebagai pusat distribusi logistic nasional atau

international untuk mendukung distribusi logistic yang murah dan efisien serta mendukung

pertumbuhan industri dalam negeri.

PLB merupakan suatu kawasan yang digunakan untuk menimbun barang asal luar negeri

maupun dari dalam negeri yang pemasukannya diberikan fasilitas kepabeanan, perpajakan,

dan fasilitas lainnya. Barang yang dikirim ke PLB ini belum dipungut bea masuk maupun

pajak impor, demikian pula dengan pemenuhan ketentuan pembatasan impor belum

diberlakukan saat pemasukan barang ke PLB kecuali untuk barang tertentu, sedangkan

Page 12: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

11

untuk barang asal dalam negeri yang akan diekspor dapat dimasukkan ke PLB dan dapat

diselesaikan pemenuhan ketentuan ekspor seperti pembayaran bea keluar dan pemenuhan

ketentuan pembatasan ekspor. Jadi PLB merupakan gudang logistik multi fungsi untuk

menimbun barang impor atau lokal dengan kemudahan fasilitas perpajakan berupa

penundaan pembayaran bea masuk dan tidak dipungut PPN atau PPNBM, serta fleksibilitas

operasional.

Dengan PLB ini diharapkan dapat mendekatkan jarak antara pelaku usaha dengan bahan

baku di dalam negeri sehingga harga bahan baku lebih murah dan dapat menurunkan biaya

produksi.

Indonesia akan mengembangkan pusat logistik berikat dengan memanfaatkan lahan yang

ada. Pemerintah menyerahkan investasi gudang berikat kepada pihak swasta atau

perusahaan warehousing, seperti di sektor migas, produsen susu, logam, kapas dan lainnya.

Saat ini terdapat 11 perusahaan yang membangun Pusat Logistik Berikat di dekat sentra

industri untuk menimbun komoditi yang dibutuhkan industri dalam negeri, seperti kapas,

spare part otomotif, peralatan migas, bahan baku industri kecil dan menengah (IKM) dan

chemical.

Berikut Perusahaan Penerima Fasiltas PLB adalah:

Nama Perusahaan Lokasi Keterangan

PT Cipta Krida Bahari Cakung Supporting Industri Migas & Pertambangan

PT Petrosea Tbk Balikpapan Supporting industri Migas & Pertambangan

PT Pelabuhan Panajam (Eastkal-Astra Group)

Balikpapan Supporting industri Migas & Pertambangan

PT Dahana (Persero) Subang Supporting industri Migas & Pertambangan

PT Kamadjaja Logistics Cibitung Supporting industri Makanan & Minuman

PT Toyota (TMMIN) Karawang Supporting Industri Otomotif

PT Agility International Halim & Pondok Ungu Supporting industri personal care/home care

PT Gerbang Teknologi

Cikarang (Cikarang Dry Port) Cikarang Supporting industri tekstil (kapas)

PT Dunia Express Sunter & Karawang Supporting industri tekstil (kapas)

PT Khrisna Cargo

International Benoa & Denpasar Supporting Industri Kecil Menengah

PT Vopak Terminal Merak Merak Supporting industri tekstil sintetis

Page 13: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

12

Perusahaan Penerima Fasiltas PLB yang segera akan menyusul :

Nama Perusahaan Lokasi Keterangan

PT Pertamina Driling Serv.Ind.

Supporting Industri Migas

PT United Tractors Balikpapan Supporting industri Migas & Pertambangan

PT Mexis Balikpapan Supporting industri Migas & Pertambangan

PT Indocafco Karawang Supporting industri Pemintalan/tekstil

PT Lautan Luas Jakarta/Bekasi Supporting industri

PT Linc Logistic Jakarta/Bekasi Supporting Industri

BKDI/PT Tantra Karya Sejahtera PangkalPinang Bursa Timah- Ekspor

PT GMF Aeroasia Cikarang Supporting maintenance Pesawat

PT Damco Indonesia Marunda Ekspor

PT Honda Prospect Motor Karawang Supporting industri otomotif

PT Nikawai Karawang Supporting industri Pemintalan/tekstil

PT BP Indonesia / CKB Tangguh Supporting industri Migas & Pertambangan

PT Trakindo Utama /CKB Balikpapan Supporting industri Migas & Pertambangan

PT CKB Balikpapan Supporting industri Migas & Pertambangan

PT Megasetia Jakarta/Bekasi Supporting industri Farmasi

----oooo----

Page 14: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

13

Percepatan Pengembangan Hilirisasi Industri Aluminium

Konsep Kawasan Industri Kuala Tanjung

Konsep pengembangan kawasan industri Kuala Tanjung terintegrasi dengan Kawasan

INALUM yang mengarah pada percepatan pengembangan hilirisasi industri alumunium yaitu

industri turunan dari alumina, industri maritim, industri pengolahan sumber daya alam

(komoditi lokal) dan general industri serta sebagai Hub Barat Tol Laut yang akan Presiden

Jokowi.

FGD rencana percepatan pengembangan hilirisasi industri alumunium nasional yang dihadiri oleh Dirjen Pengembangan

Perwilayahan Industri Kemenperin (Iman Haryono) orang pertama sebelah dari kanan, Dirjen ILMATE Kemenperin (IG Putu

Suryawirawan) orang kedua sebelah dari kanan, Deputi bid. Usaha Pertambangan Industri Strategis Kemen BUMN (Fajar Hary

Sampurno) orang ketiga sebelah dari kanan, Bupati Batubara (Arya Zulkarnaen) orang keempat sebelah dari kanan, Direktur

Utama PT.INALUM (Winardi Suroto) orang kelima sebelah dari kanan.

Masterplan Kawasan Industri Kuala Tanjung

Konsep Pengembangan KI Kuala Tanjung terdiri dari 60% fungsi industri dengan rincian:

1. 20 % diperuntukkan untuk industri alumina dan turunannya.

2. 20% diperuntukkan untuk industri maritim, industri perkapalan seperti industri

pembangunan kapal baru, bangunan lepas pantai, reparasi kapal, dan ship recycle

(penutuhan kapal).

Page 15: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

14

3. 10 % diperuntukkan untuk industri pengolahan sumber daya alam seperti karet dan

kakao.

4. 50 % diperuntukkan untuk general industri seperti Kawasan Berikat (dengan konsep

EPTE), industri manufaktur.

5. Dan 40% fungsi Pendukung berupa lahan fasilitas dan infrastruktur.

FGD rencana percepatan pengembangan hilirisasi industri alumunium nasional

tanggal 13 April 2016 di Medan Sumatera Utara

Infrastruktur Pendukung Kawasan Industri Kuala Tanjung

Infrastruktur tersedia berupa jaringan jalan, pengolahan air bersih, listrik,

pengolahan limbah, sarana perkantoran, permukiman, sarana rekreasi, dll

Penyediaan Listrik didukung oleh keberadaan PLTA Asahan dengan kapsitas 600MW.

Kebutuhan air bersih diperkirakan sebesar 0,55 liter/ detik/ha. Air bersih bersumber

pada pengolahan air bersih (Water Treatment Plant) yang terdapat di dalam

kawasan industri

Pengelolaan air limbah menggunakan sistem terpusat yaitu dengan sistem

pengolahan air limbah (Waste Water Treatment Plant)

----oooo----

Page 16: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

15

Perpres No. 40/2016 Penetapan Harga Gas Bumi

Dengan pertimbangan untuk mendorong percepatan pertumbuhan ekonomi dan

peningkatan daya saing industri nasional melalui Gas Bumi, serta untuk menjamin efisiensi

dan efektivitas pengaliran Gas Bumi, Presiden Joko Widodo pada tanggal 3 Mei 2016, telah

menandatangani Peraturan Presiden Nomor 40 Tahun 2016 tentang Penetapan Harga Gas

Bumi, dan diposting di website setneg oleh Humas Setneg tanggal 18 Mei 2016.

Dalam Perpres itu ditegaskan, harga Gas

Bumi ditetapkan oleh Menteri yang

menyelenggarakan urusan pemerintahan

di bidang minyak dan gas bumi

(ESDM)sebagai dasar perhitungan bagi

hasil pada Kontrak Kerja Sama dan dasar

perhitungan penjualan Gas Bumi yang

berasal dari pelaksanaan Kontrak

Kerjasama Minyak dan Gas Bumi.

Penetapkan harga Gas Bumi sebagaimana dimaksud, dengan mempertimbangkan :

a. Keekonomian lapangan;

b. Harga Gas Bumi di dalam negeri dan internasional;

c. Kemampuan daya beli konsumen dalam negeri; dan

d. Nilai tambah dari pemanfaatan Gas Bumi di dalam negeri,” bunyi Pasal 2 ayat (2)

Perpres tersebut.

Dalam hal harga Gas Bumi tidak dapat memenuhi keekonomian industri pengguna Gas Bumi

dan harga Gas Bumi lebih tinggi dari 6 dollar AS/MMBTU, Menteri (ESDM, red) dapat

menetapkan harga Gas Bumi Tertentu yang diperuntukkan bagi pengguna Gas Bumi yang

bergerak di bidang :

a. Industri pupuk;

b. Industri petrokimia;

c. Industri oleochemical;

d. Industri baja;

e. Industri keramik;

f. Industri kaca;

g. Industri sarung tangan.

Page 17: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

16

“Perubahan Gas Bumi yang dapat dikenakan Harga Gas Bumi Tertentu ditetapkan oleh

Menteri (ESDM, red) setelah berkoordinasi dengan menteri yang menyelenggarakan urusan

pemerintahan di bidang perindustrian,” bunyi Pasal 4 ayat (2) Perpres tersebut.

Penentuan Harga Gas Bumi Tertentu kepada pengguna Gas Bumi sebagaimana dimaksud

dilakukan terhadap Gas Bumi yang dibeli oleh pengguna Gas Bumi:

a. Secara langsung dari kontraktor; dan

b. Melalui Badan Usaha Pemegang Izin Usaha Niaga Gas Bumi.

Tahapan penyelesaian implementasi penetapan harga gas bumi tertentu :

1. Telah diindentifikasikan industri akan mendapatkan insentif penurunan harga gas yang

langsung dari hulu dan melalui trader yang telah terindentifikasi secara langsung yaitu

industri di Sumatera Utara, PT Pelangi Losarang/Chang Jui Fang, PT Indo Raya Kimia, PT

Krakatau Steel, PT Tossa Sakti, PT. Pupuk Kujang, PT Petrokimia Gresik, PT Pusri, PT

PIM.

2. Untuk tahap 2 adalah industri yang menerima dari PGN, Pertamina (Niaga) EHK,

Sadikun, Rabbana, daftar pengguna dalam proses konfirmasi akhir.

3. Untuk tahap 3, Ditjen Migas akan mengirim surat untuk seluruh Badan Usaha Niaga agar

menyampaikan daftar pembeli sektor-sektor penerima insentif penurunan harga gas

bumi.

Menurut Perpres ini, Kepala SKK Migas melakukan perhitungan penerimaan negara atas

penetapan Harga Gas Bumi Tertentu dengan berkoordinasi dengan Menteri ESDM dan

menteri yang menyelenggarakan urusan pemerintahan di bidang keuangan negara

(Menkeu).

“Perhitungan penerimaan negara sebagaimana dimaksud berdasarkan penetapan Harga Gas

Bumi Tertentu setelah memperhitungkan besaran penerimaan yang menjadi bagian

Kontraktor,” bunyi Pasal 6 ayat (3) Perpres tersebut.

Perpres ini juga menegaskan, Menteri ESDM melakukan evaluasi penetapan Harga Gas Bumi

Tertentu setiap tahun atau sewaktu-waktu dengan mempertimbangkan kondisi

perekonomian dalam negeri.

Peraturan Presiden ini mulai berlaku pada tanggal diundangkan, dan berlaku surut sejak

tanggal 1 Januari 2016,” bunyi Pasal 10 Peraturan Presiden Nomor 40 Tahun 2016, yang

telah diundangkan oleh Menteri Hukum dan HAM Yasonna H. Laoly pada tanggal 10 Mei

2016 itu.

----oooo----

Page 18: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

17

Fabrication, magnetostriction properties and

applications of Tb-Dy-Fe alloys: a review

Nai juan Wang 1, *Yuan Liu

1,2 , Hua-wei Zhang

1,2, Xiang Chen

1,2, and Yan-xiang Li

1,2

*) Yuan Liu, Male, born in 1974, Ph.D, Associate Professor. His research mainly focuses on the fabrication and

application of porous metals, alloy solidification foundation and process and advanced metallic materials. E-

mail: [email protected].

1. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Beijing 100084, China

Abstract: As an excellent giant-magnetostrictive material, Tb-Dy-Fe alloys (based on Tb0.27-0.30Dy0.73-

0.70Fe1.9-2

Laves compound) can be applied in many engineering fields, such as sonar transducer systems, sensors, and

micro-actuators. However, the cost of the rare earth elements Tb and Dy is too high to be widely applied for the

materials. Nowadays, there are two different ways to substitute for these alloying elements. One is to partially

replace Tb or Dy by cheaper rare earth elements, such as Pr, Nd, Sm and Ho; and the other is to use non-rare

earth elements, such as Co, Al, Mn, Si, Ce, B, Be and C, to substitute Fe to form single MgCu2-type Laves phase

and a certain amount of Re-rich phase, which can reduce the brittleness and improve the corrosion resistance of

the alloy. This paper systemically introduces the development, the fabrication methods and the corresponding

preferred growth directions of Tb-Dy-Fe alloys. In addition, the effects of alloying elements and heat treatment on

magnetostrictive and mechanical properties of Tb-Dy-Fe alloys are also reviewed, respectively. Finally, some

possible applications of Tb-Dy-Fe alloys are presented.

Key words: magnetostriction; Tb-Dy-Fe alloy; fabrication method; applications

CLC numbers: TG143.9 Document code: A Article ID: 1672-6421(2016)02-075-10

1 Introduction

The cubic Laves phase RFe2 compounds (R=Sm, Tb and Dy) with cubic MgCu2-type structure have giant room

temperature magnetostriction constants in excess of 2,000 ppm [1-4]

. However, they also possess huge

magnetocrystalline anisotropies [5]

, which needs large magnetic field in practical application. Considering that the

sign of these magnetocrystalline anisotropy constants differs at room temperature, for example, K1=

+2.1×107erg·cm

-3 for DyFe2 and K1= -7.6×10

7 erg·cm

-3 for TbFe2

[6, 7], Clark et al.

[8] suggested that the anisotropy

of TbFe2 could be lowered by introducing DyFe2 compound for the anisotropy compensation. On this basis, they

tailored the ternary Tb1-x-Dyx-Fe2-y alloy to minimize the anisotropy yet maintaining the large magnetostriction.

The optimal compositions occur near 0.7<x<0.73 and 0<y<0.2 [9, 10]

. Tb-Dy-Fe alloys with the optimal composition

are evenly marked with Terfenol-D

which possesses a lower magnetocrystalline anisotropy constant (K1 = -0.06×107 erg·cm

-3), while maintaining a

higher room temperature magnetostriction constant (λ111=1,500-2,000 ppm) in its single crystal state [11-14]

. This

discovery yields a potential future for applications of giant magnetostrictive materials (GMM).

In the past four decades, many studies have been conducted during the development of Tb-Dy-Fe alloys with a

large magnetostrictive but a small magnetic anisotropy and a low cost. Much work has been focused on

increasing the ratio of magnetostriction to magnetocrystalline anisotropy through substituting other rare earth

elements for Tb, Dy or transition metal elements for Fe. For example, some researchers proposed to replace Tb

or Dy by Pr[15]

, Nd[16]

and Ho [17]

, and to substitute Co [18]

, Al [19]

, Mn[19]

, Si [20]

, Zr[ 21]

and Ce[22]

for Fe, respectively.

Beside alloy composition, the magnetostriction of the material can also be controlled by the grain orientation

Page 19: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

18

which is involved with the different easy magnetization directions (EMD) formed by different fabrication methods [23, 24]

. Bridgman method [25-29]

, floating zone method [30-32]

and Czochralski Method [33-35] were used for

preparing a single crystal grain orientation or twins, respectively. Moreover, heat treatment was also employed to

improve comprehensive performances of the alloy by Hu Yong et al [36]

. and Wei Wu et al. [37]

.

The fabrication methods for Tb-Dy-Fe alloys and the corresponding preferred growth direction are introduced in

this paper. Moreover, effects of some alloying elements and heat treatment on magnetostrictive and mechanical

properties of Tb-Dy-Fe alloys are reviewed, respectively. Finally, some possible applications of Tb-Dy-Fe alloys

are presented.

2 Fabrication methods

Tb-Dy-Fe alloys with a single crystal or crystal orientation have good magnetostrictive properties [38]

. To obtain

this kind of crystal, directional solidification technology mainly including Bridgman method, floating zone method

and Czochralski method are used for preparing the single crystal grain orientation or twins, respectively. In the

following, these three methods will be introduced in detail.

2.1 Bridgman method

Bridgman method is named after P. W. Bridgman who is the first one using this method to grow a series of metal

single crystals [25]

. A typical Bridgman system is shown in Fig. 1(a). The movement of the crucible is controlled by

a dropping motor. A longitudinal temperature profile is established at the center of the furnace with a specific

temperature gradient near the melting point of the material, as shown in Fig. 1(b). The hole in the lid should be

small and the lid should fit well with the furnace body to prevent thermal disturbance. The solidification interface

moves up slowly along with the crucible which is cooled from one end to another.

(a) (b)

Fig. 1: A typical Bridgman system: (a) schematic diagram of furnace;

(b) longitudinal temperature profile at furnace center [28]

There can be a seed or no seed for the crystal growth based on the Bridgman method. Given the orientation of

seed crystal is <111>, when the movement velocity of induction coil is less than the alloy critical solidification

rate, the alloy will grow along with the <111> axis without preferred orientation. However, it is harmful for the

magnetostrive property due to the formation of RFe3. When the induction coil movement velocity is faster than

the alloy critical solidification rate, it is easy to form dendrites or cellular crystal with easy magnetization direction

(EMD) <112>[26, 27]

. There is little RFe3 precipitates

in this process. But rare earth is easy to burn in this way, and it is difficult to reach a high temperature gradient

which has an adverse impact on the solidification structure. In addition, the Bridgman method has limitations and

potential issues such as crucible contamination and constraint [29]

as well as axial macrosegregation when the

pre-alloyed ingots are used [23]

.

Page 20: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

19

2.2 Floating zone method

The floating zone method is to grow crucible contamination-free crystal in such a process that the contamination

of the melt and the restriction on the melting temperature of the grown crystal by the crucible material can be

avoided [30, 38]

. Figure 2(a) exhibits the schematic diagram of floating-zone crystal growth model.

The induction coil moves from one end to another, which leads to the melting and solidification of alloys

alternately. Dendrites or cellular crystals with easy magnetization direction (EMD) of <112> are prone to form in

this way, as shown in Fig. 2(b)[31]

. However, this method requires the relative moving speed of the induction coil

to be consistent with the heating power, the width of the molten zone, the liquid phase temperature as well as the

liquid surface tension, which makes it difficult for practical preparation. At present, the method is mainly used in

the fabrication of small-sized specimens.

(a) (b)

fig.2 : (a) Schematic diagram of floating-zone crystal growth model [30]

;

(b) Dendritic platelets inTb0.27Dy0.73Fe2[11]

2.3 Czochralski method

The Czochralski method [39]

is a viable one-step route for preparing grain aligned rods of Tb-Dy-Fe alloys [33]

. The

schematic diagram of the process is shown in Fig. 3. The

Fig.3 : Schematic diagram of Tb0.3Dy0.7Fe2 produced by Czochralski method [38]

Page 21: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

20

method is mainly composed of fixing a small grain (seed) to the rotatable tungsten rod, then inserting it into the

mother alloy melt, thereafter pulling the seed crystal at a certain rate. Based on the seed, melt grows up into a

single crystal [38]

.

The Czochralski technique is a preferred process in many single crystal growth experiments due to its great

controllability over growth rate and the possibility of seeding crystals [29]

. However, the overall melting process of

raw materials with high temperature gradient which leads to volatility of rare earth elements resulting in

composition deviation. Moreover, the slow pulling rate is easy to cause the precipitation of RFe3 phase and

Widmanstatten structure, which can reduce the magnetostrictive properties. The magnetostrictive coefficient is

various with different easy magnetization directions, as shown in Fig. 4. The preferred EMD of the single crystal

fabricated by this method is <111>.

Fig. 4: Magnetic field dependences of magnetostriction for Tb0.27Dy0.73Fe2 single crystal

along the [111], [211] and [011] directions at demagnetized state [24]

From what has been discussed above, it can be found that it is difficult to obtain a bulk single crystal regardless

of the methods for magnetostrictive material. Taking the crystal structure into consideration, preparing crystal

along with the orientation direction can improve the magnetostriction properties.

3 Effects of substitute elements

Comparing with pure nickel and piezoelectric ceramic, Tb-Dy-Fe alloys possess many excellent characteristics

such as large coupling coefficient, high energy density, high Curie temperature, large strain and better operation

stability, and they have been widely studied and applied to ultrasonic transducer in recent years [40]

. However, the

high cost of Tb and Dy as well as certain brittleness of Tb-Dy-Fe alloys shortens the operating life-span and limits

the large scale production [41]

. In addition, the content of Fe element will also affect the characteristics of

magnetostrictive materials. The content of RFe3 can be increased with the increasing Fe content, whose

magnetostrictive coefficient is quite lower than that of RFe2, hence resulting in the reduction of the

magnetostrictive coefficient [29]

. Literatures show that it is feasible to stabilize the Laves phase, reduce

brittleness, improve their corrosion resistance, and lower the cost, but without degrading magnetostrictive

properties of the alloy by adding some alloying elements.

Nowadays, there are two different ways to substitute for alloy elements. One is to partially replace Tb or Dy by

cheaper rare earth elements, such as Pr, Nd, Sm and Ho; the other one is to use non-rare earth elements, such

as Co, Al, Mn, Si, Ce, B, Be and C, to substitute Fe and form single MgCu2-type Laves phase and a certain

amount of Re-rich phase, which can reduce the brittleness and improve the corrosion resistance of the alloy.

Page 22: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

21

3.1 Substitute elements for Tb/Dy

3.1.1 Nd

NdFe2 has a large theoretical spontaneous magnetostriction (the coefficient of λ111 is up to 2,000 ppm at 0 K).

Moreover, the sign of anisotropy constant K1 for NdFe2 is opposite to that of TbFe2 which can reduce the

magnetocrystalline anisotropy. Therefore, adding a certain amount of Nd into Tb-Dy-Fe can reduce the

magnetocrystalline anisotropy of alloy instead of lowering the magnetostrictive coefficient. J. J. Liu et al [16]

studied magnetic

properties of Tb0.4-xNdxDy0.6(Fe0.8Co0.2)1.93. Results showed that there are optimal magnetic properties at x=0.05

and 10 KOe for external magnetic field (H). Figure 5 illustrates the magnetic-field and composition dependence

of the magnetostriction of Tb0.4-xNdxDy0.6(Fe0.8Co0.2)1.93 alloys. The largest saturation magnetostriction coefficient

can be up to 1,170 ppm. In addition, H. Y. Yin et al. [42]

found that the Laves phase compound of

Tb0.4Dy0.5Nd0.1(Fe0.8Co0.2)1.93 has a large spontaneous magnetostriction, and the coefficient of λ111 is about 1,640

ppm.

3.1.2 Ho

Ho has a smaller saturation magnetostriction than that of either Tb or Dy, thus the addition of Ho can reduce the

magnetostriction of the alloy. However, the substitution of a small amount of Ho (<20%) for Tb or Dy resulted in a

substantial decrease in hysteresis accompanied by only a small loss in magnetostriction[17, 43]

. Such a tradeoff is

very important for many device applications. M Wun-Fogle et al. [17]

researched the magnetization and

magnetostriction of dendritic

Fig. 5: (a) Magnetic-field dependence of magnetostrictionλa (=λ||-λ⊥) and (b) composition

dependence of magnetostrictionλa of Tb0.4-xNdxDy0.6(Fe0.8Co0.2)1.93 alloys [16]

[112] TbxDyyHo1-x-yFe 1.95 rods under compressive stress. Adding Ho into the ternary alloy can clearly reduce the

hysteresis, as shown in Fig. 6. Bowen Wang et al. [44]

prepared and studied the x(Tb0.15Ho0.85Fe2)+(1-

x)(Tb0.3Dy0.7Fe2) alloys. It was found that the magnetostriction of alloys decreased with the increase of x. But the

ratio (λ///Wh) of magnetostriction to hysteresis increases first and exhibits a peak when x=0.1, and then

decreases with the increase of Ho content, as shown in Fig. 7. S.C. Busbridge et al. [45]

manufactured

Tb0.20Dy0.22Ho0.58Fe2 alloy, and tested the magnetostriction coefficient at different temperatures. Results claim

that with the temperature decrease, the magnetostriction coefficient of the alloy significantly decreases at low

magnetic field, whereas shows a tendency to rise at high magnetic field.This is mainly because the EMD

transferred from <111> to <100> with the decrease of temperature.

3.1.3 Pr

Because of high magnetostriction of PrFe2 (close to 5,600×10-6

) [46]

, it attracts much attention in the research field

of magnetostictive materials. At the same time, the magnetocrystalline anisotropy constant of PrFe2 is opposite

to TbFe2[47]

, thus the addition of Pr can reduce the magnetocrystalline anisotropy constant of the alloy. Single-

ion model [48]

demonstrates that the ideal radius ratio of Laves phase between rare earth ions and Fe ion is

1.225. However, the radius of Pr3+ is larger than that of the ideal rare earth ions, which deviates much from the

ideal radius ratio [49]

.

Page 23: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

22

Fig. 6: Hysteresis width Whvs Ho concentration for samples under applied stresses of -9.8

(filled square), -21.9 (filled triangle), -33.9 (filled diamond), -46.0 (filled circle), -58.1 (open

square), and -70.1 MPa (open circle) [17]

Fig. 7: Ratio (λ///Wh) of magnetostriction to hysteresis for x(Tb0.15Ho0.85Fe2)+(1-x)(Tb0.3Dy0.7Fe2) alloys in

different compositions at a magnetic field of 320 kA·m-1 [44]

Therefore, the addition amount of Pr should not exceed 20%, otherwise it is easy to form impurity phase [49]

.

RenZhi et al. [15]

studied the structure and magnetostriction of PrxTb0.2Dy0.8 -xFe1.85C0.05 (x=0.1-0.4) alloys. The

research shows that RFe3 phase and rare earth phase appeared when x≥0.2, which leads to the decrease of

magnetostriction coefficient and Curie temperature.

Figure 8 depicts the magnetostriction coefficient and Curie temperature of the PrxTb0.2Dy0.8-xFe1.85C0.05 (x=0.1-0.4) alloy, and it can be seen that Pr0.2Tb0.2Dy0.6Fe1.85C0.05 alloy shows good magnetostrictive properties. Adding B into TbDyPrFe alloys can restrain the formation of RFe3, therefore it can increase the amount of Pr to 30%. W. J. Ren et al.

[50] studied the TbxDy0.7-xPr0.3(Fe0.9B0.1)1.93 alloy, and the result showed that Tb0.25Dy0.45Pr0.3

(Fe0.9B0.1)1.93 alloy possesses excellent magnetostrictive properties with λ111≈1,850 ppm. Moreover, W. J. Ren et al.

[51, 52] investigated Tb0.2Dy0.82xPrx(Fe0.9B0.1)1.93 (0<x<0.7) alloys and found that Tb0.2Dy0.4Pr0.4(Fe0.9B0.1)1.93 alloy

with the single Laves phase has a large magnetostriction (λ111=1,200 ppm) and a low anisotropy. This alloy may be a good candidate for magnetostriction applications

Page 24: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

23

(a) (b)

Fig. 8: Magnetostriction coefficient vs. magnetic field H (a) and Curie temperature vs. x (b) of alloy

PrxTb0.2Dy0.8-xFe1.85C0.05 (x=0.1-0.4) [15]

3.2 Substitute elements for Fe

3.2.1 Al /Mn

Under low magnetic field, the addition of a small amount of Al can lower the magnetocrystalline anisotropy of the

material, but the magnetostrictive coefficient can be decreased with an increase in Al content. Meanwhile, Curie

temperature will be reduced. In addition, Al is regarded as an ideal substituent for Fe to increase the resistivity

and ductility [19]

. Manganese is an effective substitution element to improve the magnetostrictive property of the

Tb-Dy-Fe alloys. It is noted that the magnetostriction of Mn-containing compounds is larger than that of Mn-free

compounds especially in the lower temperature region. And the addition of Mn can lower the anisotropy energy,

and therefore, a low bias field for saturation magnetostriction is expected. This low bias magnetic field is very

useful since it is sometimes decisive in the practical application [19]

.

3.2.2 Co

The addition of a small amount of Co can stabilize the Laves phase [16]

, but can reduce the magnetostriction

coefficient of materials at the same time [18]

. Replacing Fe by a small amount of Co can increase the alloy’s Curie

temperature TC, but TC will be deceased with the further increase of Co. Z. J. Guo et al. [18]

studied

themagnetostrictive properties of (Tb0.7Dy0.3)Pr0.3(Fe1-xCox)1.85, and the results are shown in the Fig. 9 and Fig.

10, respectively. With increasing Co content, the saturation magnetostriction coefficient decreases, but the Curie

temperature obtains maximum value at x=0.3. As the Co content continues to increase, the Curie temperature

tends to decline.

Z. B. Pan et al. [53]

found that the Co element plays an opposite role in the resultant anisotropy as compared with

Tb. The smallest anisotropy is obtained for the Tb0.3Dy0.6Nd0.1(Fe 0.8Co 0.2)1.93 compound, which has good

magneto-elastic properties, such as the large saturation magnetostrictionλS(~930 ppm) and the high low-field

magnetostrictionλa(~670 ppm/3 kOe).

3.2.3 Si

Eddy current is formed easily in the process of Tb-Dy-Fe alloy in practical applications, which reduces the

efficiency of the transducers. Studies have shown that the eddy current coefficient is inversely proportional to the

electrical resistivity for magnetic material [20]

. Thus, increasing electrical resistivity is a good means

Page 25: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

24

Fig. 9: Magnetic field dependence of room temperature magnetostriction λ of annealed

polycrystalline (Tb0.7Dy0.3)Pr0.3(Fe1-xCox)1.85 alloys [18]

Fig. 10: Dependence of Curie temperature of (Tb0.7Dy0.3) Pr0.3(Fe1-xCox)1.85 alloys

as a function of composition [18]

to reduce the resistivity of the alloy. Some researchers found that adding a certain amount of Si into Tb-Dy-Fe

alloy can clearly improve the resistivity [20]

. Silicon can be randomly dispersed into the alloy to become the

conduction electron scattering center. With the increase of Si content, the number of conduction electrons

transferring into the localized 4f orbital of Tb or Dy is increased, but the number of remaining conduction

electrons is decreased, which leads to the rise of resistivity. LihongXu et al [20]

prepared the

Tb0.3Dy0.7(Fe1−xSix)1.95 (x=0,0.025,0.1) alloys with orientation

<110>, and studied the magnetostriction coefficient and resistivity along with the change of Si content. Results

showed that when x increases to 0.025, the magnetostrictive coefficient drops slightly, but its resistivity increases

significantly up to 100 mu Ω cm, as shown in Fig. 11 and Fig. 12, respectively.

Fig. 11: Si content dependence of magnetostriction of<110> oriented

Tb0.3Dy0.7(Fe1−xSix)1.95 (x=0, 0.025, 0.1) samples at room temperature [20]

Page 26: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

25

Fig. 12: Temperature dependence of electrical resistivity of Tb0.3Dy0.7(Fe1−xSix)1.95

(x=0,0.025, 0.1) in the temperature range from 250 to 300 K [20]

In addition, adding small amount of Si into alloy can improve the corrosion resistance. The

reason is that the addition of Si improves the natural corrosion potential of the rare earth rich

phase, which reduces the electrochemical potential difference between the rare earth rich

phase and matrix phase. LihongXu et al. [54] studied the magnetic and corrosion resistance

properties of Tb0.3Dy 0.7(Fe1−xSix)1.95 (x=0, 0.025, 0.10) in 3.5% NaCl solution. Figure 13

illustrates the potentiodynamic anodic

Fig. 13: Potentiodynamic anodic polarization curves of Tb0.3Dy0.7(Fe1−xSix)1.95 (x = 0,

0.025 and 0.1) in 3.5wt.% NaCl aqueous solution. SEM surface morphology

after corrosion test of Tb0.3Dy0.7 Fe1.95 alloy (a), and Tb0.3Dy0.7(Fe0.975Si0.025)1.95 alloy (b)

[54]

Page 27: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

26

polarization curves of Tb0.3Dy 0.7(Fe1-xSi x)1.95 (x=0, 0.025 and 0.1) in 3.5wt.% NaCl aqueous solution, and the

SEM surface morphology after corrosion test of Tb0.3Dy0.7Fe1.95 alloy (a), and Tb0.3Dy0.7(Fe0.975Si0.025)1.95 alloy (b).

The surface morphology after corrosion test indicates that the corrosion resistance of x=0.025 is better than that

of the alloy without Si.

3.2.4 Zr

Li Xiaocheng et al. [21]

replaced partial Fe of Tb0.3Dy0.7Fe1.95 alloy by Zr. The addition of different amounts of Zr

(x=0, 0.03, 0.06 and 0.09) has varying effects on alloy magnetostrictive properties. The addition of a small

amount of Zr can effectively restrain the formation of harmful RFe3 phase, which is good for the improvement of

magnetostrictive properties. However, the precipitation of Zr rare earth rich phase is harmful to the

magnetostriction enhancement when x=0.09, which has been shown in Fig. 14.

Fig. 14: Magnetostriction and magnetic field strength curves of alloy Tb0.3Dy0.7Fe1.95-

xZrx (x=0.03, 0.06, 0.09) [21]

Fig. 15: Magnetostriction of Tb0.3Dy0.7(CezFe1-z)1.95 as a function of applied field and

temperature as z=0.75 [22]

3.2.5 Ce

Colm Mac Mahon et al [22]

investigated the magnetization and magnetoelastic properties of melt-spun ribbons of

Tb0.3Dy0.7(CezFe1-z)1.95 (0.025≤z≤0.2). The ribbons exhibit a nanocrystalline structure which becomes more

amorphous with increasingCe content. Room temperature coercivities remain to be 80 kA·m-1

, but low

temperature coercivities increase with the Ce percentage. Saturation magnetostriction varies considerably with

the addition of Ce, reaching a maximum of 850 ppm at 230 K, for z= 0.075 composition as shown in Fig. 15.

4 Heat treatment

The properties of Tb-Dy-Fe alloys are closely related to the material microstructure. After directional solidification,

the Tb-Dy-Fe alloys are usually composed of RFe2 phase and Re-rich phase [38]

. The existence of the Re-rich

phase can improve the toughness of the alloys [55]

. Heat treatment can be used to optimize the morphology of the

Page 28: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

27

Re-earth phase, reduce defects, and lower inner stress of the alloys, so that the brittleness of material is

improved [56]

. According to the difference of heat treatment time and procedure, the heat treatment can be divided

into one-step treatment and two-step treatment.

Hu Yong et al. [36]

prepared <110> oriented Tb0.3Dy0.7Fe2 alloy by the method of zone-melting directional

solidification. Results show that the directional solidification Tb-Dy-Fe alloys annealed at 1,203 K for 2 h can

achieve optimal performance with saturation magnetostriction of 1,226 ppm and compressive

Fig. 16: Cleaning tool: (a) Photograph; (b) cleaning station with two devices[66]

strength of 256 MPa. In addition, slow cooling rate can promote high magnetostrictive and mechanical

properties. Chengbao Jiang et al [57]

have successfully prepared <110> oriented rods of TbDyFemagnetostrictive

alloys by zone melting unidirectional solidification. The homogenization annealing for 4 h and 48 h at 1,273 K

have been conducted in a quartz cylinder under Ar atmosphere after pumping to 2×10−3

Pa. A satisfactory

magnetostrictive property of 1,970×10−6

was obtained under 15 MPa pre-stress after heat treatment for 4 h, but

there was not further improvement for 48 h annealing.

Wei Wu et al [55]

have also prepared <110> oriented rods of TbDyFe giant magnetostrictive alloy using zone

melting directional solidification method. Two-step heat treatments were performed at 1,353 K for 2 h, followed

by heating at 673, 773, 873, and 973 K for 4 h in Ar atmosphere and air cooling, respectively. Results showed

that the alloy can get magnetostriction of 1,324 ppm and compressive strength of 585.16 MPa in a magnetic field

of 80 kA·m-1

under 5 MPa pre-stress.

5 Applications

The rare earth giant magnetostrictive material (GMM) is an excellent new functional material. Comparing with

pure nickel and piezoelectric ceramic, Tb-Dy-Fe alloys possess large coupling coefficient and high Curie

temperature as well as higher magnetostriction coefficient [39, 40, 58]

, and have attracted much attention for

applications in high power energy conversion devices [59-61]

. For example, Tb-Dy-Fe alloys can be widely used in

the design of a large-scale ultrasonic cleaning device for boat cleaning [62-67]

, device for high power ultrasonic

spot welding (USW),[68-74]

, and device for therapeutic ultrasound (higherpower ultrasound at lower frequencies) [75,76]

. Moreover, Tb-Dy-Fe alloys also have a potential future in oil exploitation and pipeline transportation [77]

,

and the recycling of waste energy , such as the emulsification and desulfurization of waste tires [87,88]

. Figure

16 exhibits a large-scale ultrasonic cleaning system, and the schematic picture of a multi-transducer device for

boat cleaning (20 kHz). Figure 17 shows the application and the component of the ultrasonic transducer in high-

power ultrasonic oil production. Figure 18 shows the state of the pipeline before installation and six months after

installation of the Tb-Dy-Fe ultrasonic transducer.

Page 29: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

28

Fig. 17: Composition of CSYY60H10 high-power

ultrasonic oil production [77]

Fig. 18: State of pipeline (a) before installation and (b) six months after installing Tb-Dy-Fe ultrasonic transducer

6 Conclusion

Giant magnetostrictive material (GMM) is a strategic functional material in the 21st century. Recently, this kind of

material showed a very broad application prospects in military and civilian dual-use high-tech areas. It has

replaced the traditional magnetostrictive materials and has been widely used in advanced technologies, such as

magnetomechanical transducers, actuators and adaptive vibration control systems. As an excellent GMM, Tb-Dy-

Fe alloy possesses large magnetostriction strain, high energy conversion efficiency, and rapid response rate

which have attracted much attention for applications in high power energy conversion devices. However, the cost

of the rare earth element Tb and Dy is too high to be widely applied for the materials. Literatures show that it is

feasible to enhance magnetostrictive properties of the alloy by adding some alloying elements. Nowadays, there

are two different ways to substitute for alloy elements. One is to partially replace Tb or Dy by cheaper rare earth

elements, such as Pr, Nd, Sm and Ho; the other one is using non-rare earth elements, such as Co, Al, Mn, Si,

Ce, B, Be and C, to substitute Fe to form single MgCu2-type Laves phase and a certain amount of Re-rich phase,

which can reduce the brittleness and improve the corrosion resistance of the alloy.

As mentioned above, the properties of the Tb-Dy-Fe alloys play an important role in applications. Therefore, it is

critical to develop new RFe2 compound-based giant-magnetostrictive alloys with excellent properties and lower

cost.

Reference

[1] Clark A E. Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron laves phase

compounds. American Institute of Physics Conference Series, 1974, 18: 1015-1029.

[2] Clark AE , Belson HS . Giant Room - Temperature Magnetostrictions in TbFe2 and DyFe2. Physical Review

B, 1972, 5(9): 3642-3644.

[3] Tian Shi. Physical Properties of Materials. Beihang University Press, Beijing, China, 2004: 301. (in Chinese)

[4] Harsh D C and Manfred W. Non-Joulianmagnetostriction. Nature, 2015, 521: 341-343.

[5] Liu XY, Liu JJ, Pan ZB, et al. Optimization on magnetic anisotropy and magnetostriction in TbxHo0.8-

xPr0.2(Fe0.8Co0.2)1.93 compounds. Journal of Magnetism and Magnetic Materials, 2015, 391: 60-64.

[6] Abbundi R, Clark A E. Anomalous thermal expansion and magnetostriction of single crystal Tb0.27Dy0.73Fe2.

IEEE Transactions on Magnetics, 1977, 1(5): 1519-1520.

[7] Jiles D C. The development of highly magnetostrictive rare earth-iron alloys. Journal of Physics D: Applied

Physics, 1994, 27(1): 1-11.

[8] Clark A E. Magnetostrictive rare earth-Fe2 compounds. Handbook of Ferromagnetic Materials, 1980, 1: 531-

589.

[9] Verhoeven J D, Ostenson J E, Gibson E D. The effect of composition and magnetic heat treatment on the

magnetostriction of TbxDy1-xFey twinned single crystals. Journal of Applied Physics, 1989, 66(2): 772-779.

Page 30: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

29

[10] Clark A E, Teter J P, McMasters O D. Magnetostriction “jumps” in twinned Tb0.3Dy0.7Fe1.9. Journal of Applied

Physics, 1988, 63(8): 3910-3912.

[11] Clark A E. Magnetostriction in twinned [112] crystal of Tb0.27Dy0.73Fe2. IEEE Transaction on Magnetics, 1986,

22(5): 973-975.

[12] Jiles D C, Thoelke J B. Modelling of the combined effects of stress and anisotropy on the magnetostriction of

Tb0.3Dy0.7Fe2. IEEE Transactions on Magnetics, 1991, 27(6): 5352-5354.

[13] Clark A E, Belson H S, Strakna R E. Elastic properties of rare-earth-iron compounds. Journal of Applied

Physics, 1973, 44(6): 2913-2914.

[14] Wang Bo-wen, Yan Rong-ge. Rare-earth Giant Magnetostrictive Materials, Application and Devices. Journal

of Hebei University of Technology, 2004, 33(2): 16-22.

[15] RenZhi, Li Song-tao, Liu He-yan, et al. Structure and magnetostriction of PrxTb0.2Dy0.8-xFe1.85C0.05 alloys. J Magn Mater Devices, 2013, 44(5): 6-7.

[16] Liu JJ, Pan ZB, Liu XY, et al. Large magnetostriction and direct experimental evidence for anisotropy compensation in Tb0.4-xNdxDy0.6(Fe0.8Co0.2)1.93 Laves compounds. Materials Letters, 2014(137): 274-276.

[17] Wun-Fogle M, Restorff JB, Clark AE, et al. Magnetization and magnetostriction of dendritic [112]

TbxDyyHozFe1.95 (x+y+z=1) rods under compressive stress. Journal of Applied Physics, 1998, 83(11): 7279-

7281.

[18] Guo Z J, Busbridge S C, Wang B W, et al. Structure and Magnetic and Magnetostrictive Properties of

(Tb0.7Dy0.3) 0.7Pr0.3 (Fe1-xCox)1.85(0≤x≤0.6). IEEE Transactions on Magnetics, 2001, 37(4): 3025-3027.

[19] Du J, Wang J H, Tang C C, et al. Magnetostriction in twin-free single crystals TbyDy1-yFe2 with the addition of

aluminum or manganese. Applied Physics Letters, 1998, 72(4): 489-491.

[20] LihongXu, Chengbao Jiang, HuibinXua. Magnetostriction and electrical resistivity of Si doped Tb0.3Dy0.7Fe1.95

oriented crystals. Applied Physics Letters, 2006, 89(19): 1-3

[21] Li Xiao-cheng, Ding Yu-tian, Hu Yong. Effects of Zr addition on the microstructure and megnetostriction of

the as cast Tb0.3Dy0.7Fe1.95 alloys. Journal of Functional Materials, 2011, 42(12): 2257-2260.

[22] Mahon C M, Jenner A G, Ahlers H. Magnetization and magnetostriction of melt-spun TbDyCeFe ribbons.

IEEE Transactions on Magnetics, 2000, 36(5): 3214-3216.

[23] Park W J, Kim J C, Ye B J, et al. Macrosegregation in Bridgman growth of Terfenol-D and effects of

annealing. Journal of Crystal Growth, 2000, 212(1): 283-290.

[24] Wang B W, Busbridge S C, Li Y X, et al. Magnetostriction and magnetization process of Tb0.27Dy0.73Fe2

single crystal. Journal of Magnetism and Magnetic Materials, 2000, 218: 198-202.

[25] Bridgman P W. Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium,

Cadmium, Zinc, and Tin. Proceedings of the American Academy of Arts and Sciences, 1925, 60(6): 305-383.

[26] Clark A E, Teter J P, Wun-Fogle M, et al. Magnetomechanical coupling in Bridgman-grown Tb0.3Dy0.7Fe1.9 at

high drive levels. Journal of Applied Physics, 1990, 67(9): 5007-5009.

[27] Verhoeven J D, Gibson E D, McMasters O D, et al. The growth of single crystal Terfenol-D crystals.

Metallurgical Transactions A, 1987, 18(2): 223-231.

[28] Qui W. Growth and characterization of bismuth tri-iodide single crystals by modified vertical Bridgman

method. The United States: University of Florida, 2010, 3436423.

[29] Bi Y J, Abell J S. Microstructural characterization of Terfenol-D crystals prepared by the Czochralski

technique. Journal of Crystal Growth, 1997, 172: 440-449.

[30] Li Kai, Hu Wenrui. Effect of non-uniform magnetic field on crystal growth by floating-zone method in

microgravity. Science in China (series A), 2001, 44(8):1056-1063.

[31] Mei W, Okane T, Umeda T. Magnetostriction of Tb-Dy-Fe crystals. Journal of Applied Physics, 1998, 84(11):

6208-6216.

[32] Higuchi M, Masubuchi Y, Nakayama S, et al. Single crystal growth and oxide ion conductivity of apatite-type

rare-earth silicates. Solid State Ionics, 2004, 174(1-4): 73-80.

[33] Xie J W, Fort D , Bi Y J , etal . Microstructure and magnetostrictive properties of Tb-Dy-Fe (Al) alloys. Journal

of Applied Physics, 2000, 87(9): 6295-6297.

[34] Reinhard U. The historical development of the Czochralski method. Journal of Crystal Growth, 2014, 401: 7-

24.

[35] Clark AE ,Verhoven J D , Mc Masters OD , etal . Magnetostriction in twinned [112] crystals of Tb0.27Dy0.73Fe2.

IEEE Transactions on Magnetics, 1986, 22(5): 973-975.

[36] Hu Yong, Ding Yu-tian, Wang Xiao-li, et al. Heat treatment technology of <110> oriented TbDyFe alloy.

Transactions of Materials and Heat Treatment, 2012, 33(11): 6-11.

Page 31: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

30

[37] Wu W, Tang H, Zhang M, et al. Effect of heat treatment on the mechanical properties of<110> oriented

TbDyFe giant magnetostrictive material. Journal of Alloys and Compounds, 2006, 413(1): 96-100.

[38] Wang Bowen, Cao Shuying, Huang Wenmei. Magnetostrictive materials and devices. Metallurgical Industry

Press, 2008, 070625: 122. (in Chinese)

[39] Li Kuo-she, Xu Jing, Yang Hong-chuan, et al. Development of Rare Earth Giant Magnetostrictive Materials.

Chinese Rare Earths, 2004, 25(4): 51-56.

[40] Zeng F, Lou J J, Zhu S J. Study on Giant Magnetostrictive Material with Design and Simulation of

Displacement Magnifying Mechanism. Advanced Materials Research, 2013, 675: 219-226.

[41] S r i s u k h u m b o w o r n c h a i N , G u r u s w a m y S . L a r g e magnetostriction in directionally

solidified FeGa and FeGaAl alloys. Journal of Applied Physics, 2001, 90(11): 5680-5688

[42] Yin H Y, Liu J J, Pan Z B, et al. Magnetostriction of TbxDy0.9- xNd0.1 (Fe0.8Co0.2)1.93 compounds and their

composites (0.20≤x≤0.60). Journal of Alloys and Compounds, 2014, 582: 583-587.

[43] Restorff J B, Wun-Fogle M, Clark A E. Temperature and stress dependences of the magnetostriction in

ternary and quaternary Terfenol alloys. Journal of Applied Physics, 2000, 87(9): 5786-5788.

[44] Wang B, Lv Y, Li G, et al. The magnetostriction and its ratio to hysteresis for Tb-Dy-Ho-Fe alloys. Journal of

Applied Physics, 2014, 115(17): 902-904.

[45] Busbridge S C, Piercy A R. Mannetomechanical properties and anisotropy compensation in quaternary rare

earth-iron materials of the type TbxDyyHozFe2. IEEE Transactions on Magnetics, 1995, 31(6): 4044-4046. [46] Guo Z J, Busbridge S C, Zhang Z D, et al. Microstructure, magnetic properties, and spontaneous

magnetostriction of Tb0.2Pr0.8(Fe0.4Co0.6)x. IEEE Transactions on Magnetics, 2000, 36(5): 3217-3218.

[47] Wang B W. Microstructure and magnetostriction of (Dy0.7Tb0.3)1-xPrxFe1.85 and (Dy0.7Tb0.3)0.7Pr0.3Fey alloys.

Applied Physics Letters, 1996, 69(22): 3429-3431.

[48] Tang Y M, Chen L Y, Zhang L, et al. Temperature dependence of the magnetostriction in polycrystalline

PrFe1.9 and TbFe2 alloys: Experiment and theory. Journal of Applied Physics, 2014, 115(17): 173902.

[49] Yin Hongyun, Liu Jinjun. Research Progress of MgCu2-Type Giant Magnetostrictive Materials with Pr. Rare

Metal Materials and Engineering, 2014, 43(5): 1275-1280.

[50] Ren W J, Zhang Z D, Zhao X G. Magnetostriction and anisotropy compensation in TbxDy1-xPr0.3(Fe0.9B0.1)1.93

alloys. Applied Physics Letters, 2004, 84(4): 562-564.

[51] Ren W J, Zhang Z D, Song X P, et al . Composition anisotropy compensation and spontaneous

magnetostriction in Tb0.2Dy0.8-xPrx (Fe0.9B0.1)1.93 alloys. Applied Physics Letters, 2003, 82(16): 2664-2666.

[52] Ren W J, Liu J J, Li D, et al. Direct experimental evidence for anisotropy compensation between Dy3+

and

Pr3+

ions. Applied Physics Letters, 2006, 89(12): 122506.

[53] Pan Z B, Liu J J, Liu X Y, et al. Structural, magnetic and magnetoelastic properties of Laves – phase Tb 0 .

3Dy0 . 6Nd0 . 1 (Fe 1 - x Co x )1 . 93 compounds (0≤x≤0 . 40) . Intermetallics, 2015, B64: 1-5.

[54] LihongXu, Chengbao Jiang, Chungen Zhou, et al .Magnetostriction and corrosion resistance of Tb0.3Dy0.7(Fe1-xSix)1.95 alloys. Journal of Alloys and Compounds, 2008, 455(1-2):203-206.

[55] Wei Wu, Maocai Zhang, XuexuGao, et al. Effect of two-steps heat treatment on the mechanical properties and magnetostriction of <110> oriented TbDyFe giant magnetostrictive material. Journal of Alloys and Compounds, 2006, 416: 256-260.

[56] Chengbao Jiang, Yan Zhao, LihongXu, et al. Orientation, morphology and magnetostriction of a heat-treated <110> oriented TbDyFe alloy. Journal of Alloys and Compounds, 2004, 373: 167-170.

[57] Jiang C, Zhao Y, Xu L, et al. Orientation, morphology and magnetostriction of a heat-treated<110> oriented TbDyFe alloy. Journal of Alloys and Compounds, 2004, 373(1): 167-170.

[58] Wang Bo-wen, Yan Rong-ge. Rare-earth Giant Magnetostrictive Materials, Application and Devices. Journal of Hebei University of Technology, 2004, 33(2): 16-22.

[59] Jia Z Y, Liu H F, Wang F J, et al. Research on a novel force sensor based on giant magnetostrictive material and its model.

[60] Olabi A G, GrunwaldA . Design and application of magnetostrictive materials. Materials & Design, 2008,

29(2): 469-483.

[61] Joseph M K, Yutang D, Xian Z, et al. Femtosecond Laser Ablated FBG Multitrenches for Magnetic Field

Sensor Application. IEEE Photonics Technology Letters, 2015, 27 (16):1717-1720.

[62] Kubo E, Haibara T, Mori Y, et al. Ultrasonic cleaning method and ultrasonic cleaning apparatus: U.S. Patent

Application 13/892, 327, 2013-5-13.

[63] Niemczewski B. Observations of water cavitation intensity under practical ultrasonic cleaning conditions.

UltrasonicsSonochemistry, 2007, 14(1): 13-18.

[64] Kwan J J, Graham S, Myers R, et al. Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles.

Physical Review E, 2015, 92(2): 023019.

[65] Eskin G I, Eskin D G. Ultrasonic treatment of light alloy melts. CRC Press, 2014: 32-44.

Page 32: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

31

[66] Mazue G, Viennet R, Hihn J Y, et al. Large-scale ultrasonic cleaning system: Design of a multi-transducer

device for boat cleaning (20 kHz). UltrasonicsSonochemistry, 2011, 18(4): 895-900.

[67] Zhimei M. Research Progress in Ultrasonic Scale Inhibition and Elimination. Sino-Global Energy, 2008,

13(4): 92-96. (In Chinese)

[68] Bhosale S B, Pawade R S, Brahmankar P K. Effect of process parameters on MRR, TWR and surface

topography in ultrasonic machining of alumina–zirconia ceramic composite. Ceramics International, 2014,

40(8): 12831-12836.

[69] Liu D F, Cong W L, Pei Z J, et al. A cutting force model for rotary ultrasonic machining of brittle materials.

International Journal of Machine Tools and Manufacture, 2012, 52(1): 77-84.

[70] Panteli A, Robson J D, Brough I, et al. The effect of high strain rate deformation on intermetallic reaction

during ultrasonic welding aluminium to magnesium. Materials Science and Engineering: A, 2012, 556: 31-42.

[71] Panteli A, Chen Y C, Strong D, et al. Optimization of aluminium-to-magnesium ultrasonic spot welding. JOM,

2012, 64(3): 414-420.

[72] Watanabe T, Sakuyama H, Yanagisawa A. Ultrasonic welding between mild steel sheet and Al-Mg alloy

sheet. Journal of Materials Processing Technology, 2009, 209(15): 5475-5480.

[73] Matsuoka S, Imai H. Direct welding of different metals used ultrasonic vibration. Journal of Materials

ProcessingTechnology, 2009, 209(2): 954-960

[74] Matsuoka S. Ultrasonic welding of ceramics/metals using inserts. Journal of Materials Processing

Technology, 1998, 75(1): 259-265.

[75] Mason T J. Therapeutic ultrasound an overview. UltrasonicsSonochemistry, 2011, 18(4): 847-852.

[76] Inoue K, Nakane Y, Michiura T, et al. Ultrasonic scalpel for gastric cancer surgery: a prospective randomized

study. Journal of Gastrointestinal Surgery, 2012, 16(10): 1840-1846.

[77] Wang Z, Xu Y, Suman B. Research status and development trend of ultrasonic oil production technique in

China. UltrasonicsSonochemistry, 2015, 26: 1-8.

[78] Chen T C, Shen Y H, Lee W J, et al. An economic analysis of the continuous ultrasound-assisted oxidative

desulfurization process applied to oil recovered from waste tires. Journal of Cleaner Production, 2013, 39:

129-136.

[79] Adhikari B, De D, Maiti S. Reclamation and recycling of waste rubber. Progress in Polymer Science, 2000,

25(7): 909-948.

[80] Wan M W, Yen T F. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted

oxidative desulfurization(UAOD) process.Applied Catalysis A: General, 2007, 319: 237-245.

[81] Quek A, Balasubramanian R. Liquefaction of waste tires by pyrolysis for oil and chemicals-a review. Journal

of Analytical and Applied Pyrolysis, 2013, 101: 1-16.

[82] Holst O, Stenberg B, Christiansson M. Biotechnological possibilities for waste tyre-rubber treatment.

Biodegradation, 1998, 9(3-4): 301-310.

[83] Al-Lal A M, Bolonio D, Llamas A, et al. Desulfurization of pyrolysis fuels obtained from waste: Lube oils, tires

and plastics. Fuel, 2015, 150: 208-216.

[84] Liu L, Wen J, Yang Y, et al. Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency.

UltrasonicsSonochemistry, 2013, 20(2): 696-702.

[85] Chen T C, Shen Y H, Lee W J, et al. The study of ultrasound-assisted oxidative desulfurization process

applied to the utilization of pyrolysis oil from waste tires. Journal of Cleaner Production, 2010, 18(18): 1850-

1858.

[86] Wan M W, Yen T F. Portable continuous ultrasound-assisted oxidative desulfurization unit for marine gas oil.

Energy & Fuels, 2008, 22(2): 1130-1135.

[87] Yao Xiu-qing, Zhang Jie, Li Fei-fei, et al. Recent Process of Desulfurization Technology of the Clean Fuel.

Journal of Liaoning University of Petrol EUM and Chemical Technology, 2004, 24(1): 39-42.1

[88] Dong Chengchun . A brief introduction of ultrasonic desulfurization. Rubber & Plastics Resources Utilization,

2012(3): 27-29. (In Chinese)

----oooo----

Page 33: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

32

Effects of Si alloying and T6 treatment

on mechanical roperties and wear

resistance of ZA27 alloys

Rui Zhang, Guang-lei Liu, *Nai-chao Si, Yu-yang Peng, Hao Wan, and Ting Liu

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract: To improve the mechanical properties and wear resistance of ZA27 alloy, Si was introduced to

thealloy, and the effect of Si alloying and T6 heat treatment on the microstructure, mechanical properties and

wear resistance was investigated. The results show that with 0.55% Si, the microstructure of the alloy can be

refined effectively, which leads to the increase of hardness. But the tensile strength and elongation decrease

because Si undermines the integrity of the matrix. On the other hand, the dendrites are transformed into a

desired α+η+(α+η) mixture with T6 heat treatment, which introduces a remarkable increase to the elongation and

hardness of the alloy. The wear resistance of the ZA27 alloy with Si alloying is significantly better than that of the

ZA27 alloy without Si. With the increase of Si addition, the wear resistance of the alloy firstly increases and then

decreases. In the alloy without Si alloying, severe plastic deformation and large delamination were observed on

the worn surface of the alloy. However, with the increase of Si, the main wear mechanism transformed to

abrasive wear gradually. In addition, the T6 treatment can further improve the wear resistance of the alloy with Si

alloying.

Key words: ZA27 alloy; Si alloying; mechanical properties; wear resistance

CLC numbers: TG146.21 Document code: A Article ID: 1672-6421(2016)02-093-08

As-cast zinc-aluminum alloy has been developedfrom late 1930s, which attracted attention of researchers for

decades as a promising material [1-3]

. The alloy has been widely applied to various fields. One of the most

important applications of ZA alloy is as wear parts under low-speed heavy-duty conditions, as a substitute for tin-

bronze due to its better wear resistance, lower cost and longer service life [4-6]

. ZA alloys show advantages in

mechanical properties as compared with traditional non-ferrous alloy. The study by Chen T J, et al [7]

revealed

that ZA alloys have lower friction coefficient and higher bearing capacity than traditional wear resistant materials.

The friction coefficient of the ZA27 alloy is even lower than copper alloys through complex modification with RE,

Ti, B and Zr [8]

. However, composition segregation, poor dimensional and property stability are the main

disadvantages, limiting the application of ZA alloy in modern industry. To extend its application area, many

optimized processes are used to improve and balance the properties.

In recent years, many new effective alloying elements (Cu, Mn, Ti, Re, Si) [9-13]

and alloying methods were

discovered, which can improve the mechanical properties and wear resistance of ZA alloys. For example, with

0.4% Ni addition, the microstructures of ZA27 alloys were refined effectively and the wear resistance under high -

speed heavy - duty conditions was significantly improved [14]

. Li Zi-quan and Zhou Heng-zhi [15]

investigated the

microstructure characteristics of aged SiCp/ZA27 composite, and their study results demonstrated that SiC

particulates strongly accelerate neighboring β phase decomposition in the aging process. Stabilizing and

solution-aging treatments were typically used in the heat treatment of ZA alloys for refinement, stability and

homogenization of the microstructures [16]

. Almost all the previous studies were involved in single optimizing

process. Very few literatures could be found focusing on composite process for ZA27 alloys. In this paper, Si

alloying and T6 heat treatment were used for improving the mechanical properties and wear resistance of the

ZA27 alloy. The results will provide a basis for the complex treatment of ZA alloys.

* Nai-chao Si

Male, born in 1956, Professor, Ph.D supervisor. His research interests mainly focuse on seismic and vibration damping performance in engineering structure of Cu based shape memory alloys, application of high strength thin walled gray cast irons and austempered ductile irons in automobile engine; and performance optimization of nonferrous alloys.

Page 34: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

33

1 Experimental procedure

1.1 Alloy preparation

The nominal compositions of the ZA27 alloy (in wt.%) are shown in Table 1. Silicon addition in wt.% was 0, 0.3,

0.55 and 0.8, respectively. The alloy was made from commercial purity aluminum (99.80%), zinc (99.99%),

magnesium (99.5%), Al-50wt.%Cu master alloy and Al-7wt.%Si master alloy. The aluminum was melted at 700

°C at first, and then the Al-50wt.%Cu and Al-7wt.%Si master alloys were added into the melt. After the master

alloys were melted, the zinc was added into the melt. Mechanical mixing for 15 min through a stainless steel

stirrer coated with aluminite was applied to ensure homogeneous distribution of the elements in the melt. Then

magnesium was pressed into the bottom of the melt to reduce the amount of burning loss. After 5 min, the

C2H2Cl6 agent was bubbled into the melt for degassing. Then the melt was refined with 0.2% dewatered ZnCl2 for

10 min. The overheated melt (600 °C) was cast into a preheated columnar steel mold (200 °C) to obtain alloy

samples (Φ35 mm × 270 mm). Wear samples (20 mm × 10 mm × 8 mm) were fabricated using a Wire-Electronic

Discharging Machine and tensile samples through machining. One group of the specimens were subjected to

heat treatment of solution at 365 °C for 6 h, then quenched in water and artificially aged at 160 °C for 4 h (T6).

Table 1: Nominal chemical compositions of ZA27 alloy (wt.%)

1.2 Measurement of mechanical properties and microstructural characterization

Tensile tests were carried out at room temperature on a 600 kN hydraulic universal testing machine (WE-600) at

a 3 mm·min-1

tensile rate. Dimensions of the tensile bar are shown in Fig. 1. Three sets of measured data were

used to calculate averages. Bulk hardness of all samples was measured using a Brinell hardness tester with a 5

mm diameter steel ball indenter and under a load of 2.452 kN. The measured impression diameter was used in

equation 1 for calculation.

Where F is the load, D is the diameter of steel ball, and d is the indentation

Microstructures of corroded surfaces of the samples were observed under a NIKONPIPHOT300 optical

microscope. The corrosives applied consisted of diluted hydrochloric acid (1 vol.%), dilute nitric acid (1 vol.% ),

diluted hydrofluoric acid (2 vol.%) and distilled water (96 vol.%)[17]

.

Al Cu Mg Zn

26-28 2.0-2.5 0.030-0.04 Balance

Page 35: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

34

1.3 Sliding wear tests

Wear tests were carried out on a block-on-disc friction and wear tester (M-2000). Figure 2 shows the operating principle of the sliding wear process. The wear test cycle lasted 3 h under the load of 600 N with a rotational speed of 200 r·min

-1, and the friction counterpart was made of GCr15. Lubrication was provided by dropping

lubricating oil SAE 30 onto the friction surface of the rotating disk at a rate of 15 to 20 drops per min. Wear mass loss was calculated by the difference in sample weight measured before and after the wear test. Coefficients of friction were recorded per min from 30 min after the test start to the end. The coefficient of friction was calculated by equation 2.

where T is time, r the radius of circle, b the width of worn surface, p the load, and θ is equal

2 Results

2.1 Mechanical properties

Mechanical properties of the ZA27 alloys with different contents of silicon, and in both as-cast and heat-treated conditions, are shown in Table 2. The increase of Si content caused a slight decrease of the tensile strength and elongation, while their hardness increased with the increase of Si%. A remarkable increase of the elongation and a decrease of the tensile strength were caused by T6 heat treatment. In addition, the hardness of heat treated samples slightly increased compared to that of the as-cast alloy.

2.2 Microstructure

Microstructures of the as-cast alloys are shown in Fig. 3. In the alloy without Si alloying, substantial amounts of large dendritic crystals, developed second dendrite arms and bits of third dendrite arms can be observed (Fig. 3a). However, in the alloy with 0.3% Si, large dendritic crystals decreased and second dendrite arms reduced and shortened, as shown in Fig. 3b. It can be seen in Fig. 3c that, as the content of Si reached 0.55%, almost all the dendrites transformed into equiaxial snowflake grains or blocky crystals. However, coarse dendrites appeared again with 0.8wt.% Si, as shown in Fig. 3d. It reveals that a certain amount of silicon can refine the microstructure of ZA27 alloy. In the process of solidification, the constitutional supercooling formed in the front of solid-liquid interface due to the enrichment of Si, resulted in branches necking and fusing in the process of crystal

Page 36: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

35

Fig. 3: Microstructure of as-cast alloy with Si content (wt.%): (a) 0, (b) 0.3, (c) 0.55, (d) 0.8

growth. In other words, the growth of α-dendrites was prevented from the enrichment of Si. At the same time, the

growth of separated grains was promoted with temperature-fluctuation which benefited the refinement of grains.

However, excessive Si would precipitate as primary Si and reduce the content of Si in melt, which weakened the

effect of constitutional supercooling and resulted in coarsening of grains.

Figures 4a-4c show magnified microstructures of the ZA-27 alloys containing 0.3wt.%, 0.55wt.% and 0.8wt.% Si,

respectively, presenting dendritic structure comprising primary α dendrites surrounded by α+η eutectoid phase,

residual η phase, ε phase and some black phases in the interdendritic regions. (A- α dendrites core, B- α+η

eutectoid structure, C- black phase, D-ε phase). Spectral analysis was carried out on the black phase in Fig. 4c,

and the result is shown in Fig. 4d, identifying that the marked zone was primary Si phase. It can also be seen that

the morphology of primary Si changed from rod-like to blocky with the increase of Si addition.

The microstructure of the ZA27 alloy with 0.55wt.% Si in solution and aging treated condition is shown in Fig. 5.

Granular zinc-rich η phases were uniformly distributed in gray matrix structures instead of dendritic structure.

After solution treatment at 350 °C, the matrix was β phase. When the specimens were quenched in water (70

°C), part of β phases transformed into (α+η) phase through eutectoid reaction, and a large proportion of β phases

retained. When aged at 160 °C, supersaturated η phase precipitated from the residual β phases. The matrix

transformed into a α+η mixture. The magnified microstructure in Fig. 5b shows two different mixtures, the lamellar

structure produced by eutectoid reaction and the small spherical mixture produced by aging. Through aging heat

treatment, η phase was formed by zinc enrichment in local area, and other zinc elements were dispersively

distributed in the matrix structure. With the combined effects, the microstructure of fine η phase and α+η mixture

was produced by the heat treatment.

Page 37: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

36

2.3 Wear properties

The effect of T6 heat treatment on wear loss of ZA27 alloys with different silicon additions is shown in Fig. 6. It can be noticed that wear loss reached the maximum when silicon content was zero and wear loss of the as-cast alloy with 0.55wt.% Si alloying reached the minimum. Thus, Si alloying appears to do the best optimization for wear resistance of ZA27 alloy when Si was 0.55wt.%. Wear losses of T6 heat-treated alloys decreased drastically. Similarly, wear loss of the heat-treated alloy reached the minimum with 0.55wt.% Si.

Page 38: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

37

Figure 7 shows worn surfaces of the as-cast ZA27 alloy. Figure 7a is the worn surface of the alloy without Si alloying. Distorted polishing scratches, sags and crests can be found on the surface which may be caused by friction heat. In Fig. 7b (0.3wt.% Si), large-scale of delamination was observed on the worn surface, which could be attributed to adhesive wear mechanism. Continuous scratches appeared on the surface when Si% increased up to 0.55wt.%, which was caused by abrasive wear mechanism (Fig. 7c). Although adhesive wear still existed, the extent was greatly reduced, and the worn surface became relatively smooth. Abrasive wear became the main wear mechanism. When Si addition increased to 0.8wt.%, adhesive

wear became aggravated (Fig. 7d), because blocky or rod-shaped primary Si phases had undermined the integrity of the matrix alloy. In this case, Si phase can be separated by friction force along the direction perpendicular to the force. Stress concentrations arising in these small gaps led to the formation of cracks and delamination.

Worn surfaces of the T6 heat-treated alloys are shown in Fig. 8. The worn surface of the alloy without Si alloying is displayed in Fig. 8a. Slight adhesive wear occurred on the worn surface. Delamination still existed on the worn surface of the alloy without Si alloying, but the thickness and size decreased significantly. Abrasive wear mechanism became the main wear mechanism of the alloy with 0.3% Si (Fig. 8b). But polishing scratches were still thick and broad. As the Si% increased to 0.55% (Fig. 8c), abrasive wear became the predominant wear mechanism and the worn surface tended to be smooth and clean with fine polishing scratches. When the Si addition reached 0.8wt.% (Fig. 8d), abundant blocky Si phase formed, which could easily split away from the matrix. The blocky Si phase could serve as wear debris to cut the matrix, leading to relatively thick scratches again.

Fig. 7: Wear appearances of as-cast alloys with Si addition (wt.%): (a) 0, (b) 0.3, (c) 0.55, (d) 0.8

Page 39: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

38

Fig. 8: Worn surfaces of heat-treated alloys with Si addition (wt.%): (a) 0, (b) 0.3, (c) 0.55, (d) 0.8

3 Discussion

The effects of Si alloying on mechanical properties of the ZA27 alloys are shown in Table 2. The results indicate

that the addition of Si reduced the tensile strength, while increased the hardness. Si alloying refined the

microstructure of the alloy (Fig. 3), but at the same time, primary Si phases undermined the integrity of the matrix

alloy (Fig. 4a, 4b, 4c). The morphologies of primary Si phases are usually rod-shaped and blocky. The small-

angle gap in the matrix alloy formed by sharp ends of Si phase easily produces stress concentration, leading to

the decrease of the tensile strength and elongation. But the hardness should not be impacted by this effect. On

the contrary, the hardness of the alloy increased due to the high hardness silicon crystal and the refined

microstructure.

Through the T6 heat treatment, the tensile strength decreased, but the elongation increased significantly (Table

2). This result is in line with Babic Miroslav’s research [18]

. A new α + η + (α+η) microstructure was reformed by

the heat treatment.

Deformation on the mixture was more uniform, which increased the elongation. The soft η phase was dispersively

distributed on the matrix, decreasing the difficulty of deformation, which led to the decrease of deformation force.

The friction coefficient of the as-cast ZA27 alloys during the sliding wear test is shown in Fig. 9. Since the initial

30 min was the running-in period, records of friction coefficients started from 30-min mark. From the diagram, it

can be clearly noticed that high friction coefficient and drastic fluctuation occurred in the curve of the ZA27 alloy

without Si alloying (Curve-A)

because of adhesive wear. With the increase in Si content, the average friction coefficient decreased significantly

(Curve-B, Curve-C). But when Si content reached 0.8wt.%%, friction coefficient of the alloy (Curve-D) increased

to 0.04 on average, and fluctuation of the friction coefficient increased. This is in accordance with Fig. 7.

In Fig. 6, the T6 heat-treated ZA27 alloy with 0.55wt.% Si shows the best wear resistance. Silicon particles and

ε(CuZn4) phases acted as supporting load and limited the direct contact between Zn-Al matrix and the steel

slider. At the microcosmic level, soft matrix phases were first worn off, and hard spots highlighted on the wear

Page 40: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

39

contact surface and acted as the supporting load, avoiding abrasions of the soft matrix. At the same time, the

worn parts played a good storage function in the

Fig. 9: Friction coefficient of as-cast alloys

condition of oil lubrication. The ε(CuZn4) phase showed the feature of high hardness, but due to its small

proportion in the matrix, it cannot support the heavy load perfectly, and may even have the opposite effect.

Namely, the ε(CuZn4) phase may be forced to cut into the matrix. The situation happened in the wear process of

the ZA27 alloy without Si alloying. The temperature on surface of the alloy increased rapidly due to the direct

contact between the matrix and the steel slider, resulting in the softening effect of the surface layers. Adhesive

wear mechanism became an important wear mechanism, leading to the drastic fluctuation of friction coefficient.

When excessive Si was added, primary rod-shaped Si phases changed to blocky particles. The blocky Si

particles could easily split away from the matrix, and then became abrasive particles to cut the alloy matrix. Thus

the wear property deteriorated when Si increased to 0.8wt.%.

The characteristics of the friction coefficient of T6 heat-treated

ZA-27 alloys during sliding are illustrated in Fig. 10. The

monolithic friction coefficient and the fluctuation decreased

enormously compared with the as-cast alloy. The friction

coefficient of the heat treated alloy without Si alloying was

about 0.042. It reached the minimum (about 0.015) when Si

content was 0.55%, while with further increase of Si addition,

the friction coefficient increased again. It can be seen that the

reduction in friction coefficient occurred in the rear part of

curves C and D, which may be caused by surface hardening.

T6 heat treatment transformed the microstructure into a fine

mixture. Under the condition of oil lubrication, small spherical

η phases were worn away first, then the pits in reserve were

filled with lubricated oil. This structure improved the wear

resistance of the alloy.

Figure 11 shows the deformation on the edge of the alloy specimen without Si alloying. The lamellar structure

was caused by extrusion force, which was the product of stress fatigue.

The wear debris is shown in Fig. 12. The debris of the alloy without Si alloying is displayed in Fig. 12a,

presenting water ripples on the surface. The wear process can be repeated based on all the above facts

presented in Figs. 7a, 11 and 12a: micro-cracks in the subsurface formed under the shear stress, and

Page 41: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

40

extended parallelly in a certain depth from the surface, creating a gap between the surface and subsurface. Due to the plastic deformation and instantaneous high temperature caused by local high press, cold welding spot formed between the steel slider and the alloy surface. Along with the slide of the grinding wheel, the local surface of the alloy peeled off. It can be concluded that adhesive wear and fatigue wear are the main wear mechanism of the alloy without Si alloying. The temperature on the surface of the alloy increased rapidly due to the direct contact between the matrix and the steel slider, resulting in the softening effect of the affected layers. The debris of the alloy with

0.55wt.% Si is shown in Fig. 12b. Granulated particles, like globular, cubic or other shapes were the products of

abrasive wear. In addition, the dimension of the debris decreased obviously. At this time, abrasive wear became

the main wear mechanism.

4 Conclusions 1) The microstructure refined by Si alloying is the main reason for the increase of hardness. Meanwhile the

integrity of the matrix undermined by Si alloying causes the decrease of the tensile strength and elongation.

2) A α + η + (α+η) mixture formed through T6 heat treatment causes the decrease of the tensile strength. As

compared to the as-cast alloy, the heat-treated samples obtain remarkable increase of elongation and

hardness.

3) Wear resistance of both the as-cast and T6 treated alloys firstly increases and then decreases with the

increase of Si content. With same Si content, wear resistance of the T6 alloy is better than the as-cast. When

Si addition reaches 0.55wt.%, wear resistance achieves the best for both as-cast and T6 treated alloys.

Fig. 12: Wear debris of alloys (0% Si in as-cast

and 0.55wt.% Si in T6 temper)

Page 42: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

41

4) For the as-cast alloy, wear mechanism transforms from adhesive wear and fatigue wear into abrasive wear

with the increase of Si content. T6 heat treatment is beneficial to the wear resistance, and abrasive wear is

the main wear mechanism.

References

[1] Sastry S, Krishna M, Uchil J. A study on damping behaviour of aluminite particulate reinforced ZA-27 alloy metal matrix composites. Journal of Alloys and Compounds, 2001, 314(1):268-274.

[2] Li Yuan-dong, Zhang Xin-long, Ma Ying, et al. Effect of mixing rate and temperature on primary Si phase of hypereutectic Al-20Si alloy during controlled diffusion solidification (CDS) process. China Foundry, 2015, 12(3): 173-179.

[3] Geng Hao-ran, Tian Xian-fa, Cui Hong-wei, et al. Antifriction and wear behaviour of ZAS35 zinc alloy. Influence of heat treatment and melting technique. Materials Science and Engineering A, 2001, 361: 109-114.

[4] Chen Fei, Wang Tong - min, Chen Zong - ning, et al . Microstructure, mechanical properties and wear behaviour of Zn-Al-Cu-TiB2 in situ composites. Trans. Nonferrous Met. Soc. China, 2015, 25: 103-111.

[5] Bobic Biljana, Bajat Jelena, Aimovic-Pavlovic Zagorka, et al. Corrosion behaviour of thixoformed and heat-treated ZA27 alloys in NaCl solution. Trans. Nonferrous Met. Soc. China,2013, 23: 931−941.

[6] Chen T J, Hao Y, Sun J. The microstructural and constitutional evolution of cast dendritic ZA27 alloy during partial remelting. Journal of Materials Processing Technology. 2004, 148: 8-14.

[7] Chen T J, Hao Y, Sun J, et al. Effects of processing parameters on tensile properties and hardness of thixoformed ZA27 alloy. Materials Science and Engineering A, 2004, 382: 90-103.

[8] Tan Yinyuan. Effects of compound modifier on microstructure and performance of ZA27 alloy. Journal of Nanjing University of Science and Technology, 2002, 05: 547-551.

[9] Zhu Y H, Man H C, Dorantes-Rosales H J, et al. Ageing characteristics of furnace cooledeutectoid Zn-Al based alloy. Journal of Materials Science, 2003, 38: 2925-2934.

[10] Zuo Yu-bo, Liu Xu-dong, Sun Chao, et al. Grain refinement and macrosegregation behavior of direct chill cast Al-Zn-Mg-Cu alloy under combined electromagnetic fields. China Foundry, 2015, 12(5): 333-338.

[11] Chen Ti-jun, Li Yuan-dong, Hao Yuan. Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27.Science and Technology of Advanced Materials, 2003, 4(6):495-502.

[12] Xu Xiao-qing, Li Dr-fu, Guo Sheng-li, et al. Microstructure evolution of Zn-8Cu-0.3Ti alloy during hot deformation. Transactions of Nonferrous Metals Society of China, 2012,22(7): 1606−1612.

[13] Chen Ti-jun, Zhang Da-hua, Wang Wei, et al. Effects of Y content on microstructures and mechanical properties of as-cast Mg-Zn-Nd alloys. China Foundry, 2015, 12(5): 339-348.

[14] Wang Huai-qing, Si Nai-chao, Si Song-hai, et al. Effect of Ni Alloying on Microstructure and Wear of ZA27 Alloy. Tribiology,2013, 33(1): 57-64.

[15] Li Zi - quan, Zhou Heng - zhi, Luo Xin - yi, et al . Aging microstructural characteristics of ZA-27 alloy and SiCp/ZA-27 composite. Trans. Nonferrous Met. Soc. China, 2006, 16: 98-104.

[16] Liu Yang, Li Hong-ying, Jiang Hao-fan, et al. Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Trans. Nonferrous Met. Soc. China, 2013, 23: 642-649.

[17] Wu Yong-yong, Si Nai-chao, Liu Guang-lei, et al. Effect of Mn Alloying on Microstructures and Wear Property of ZA43 Alloy.Foundry, 2014(10): 1019-1023.

[18] Babic Miroslav, Aleksandar Vencl, Slobodan Mitrovic, et al.Influence of T4 Heat Treatment on Tribological Behavior of Za27 Alloy Under Lubricated Sliding Condition. Tribol Lett, 2009, 36: 125-134.

Page 43: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

42

Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature Zi-qi Jie 1, Jun Zhang 1, *Tai-wen Huang 1, Lin Liu 1, Hai-jun Su 1, Yan-li Shi 2, and Heng-zhi Fu 1

1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

2. Xi’an Jiaotong University City College, Xi’an 710072, China

Abstract: In order to improve the filling ability of large complex thin wall castings, the pouring temperature should be increased, but this will result in the grain coarsening. To overcome this problem, two kinds of grain refiners of Co-Fe-Nb and Cr-Fe-Nb ternary alloys, which contain high stability compound particles, were prepared. The effects of the refiners on the as-cast structures and tensile properties of the K4169 superalloy with different casting conditions were studied by analyzing specimens 110 mm long and 20 mm in diameter. Results showed that the mixture addition of the two refiners in the melt of K4169 can reduce the columnar grain region and decrease the equiaxed grain size greatly. After refinement, the amount of Laves phase decreases and its morphology changes from island to blocky structure. The carbides in the fine grain samples are fine and dispersive. Meanwhile, the porosity in specimens is decreased due to grain refinement. As a result, the yield strength, ultimate strength and the elongation of the specimens are increased. The grain refinement mechanisms are also discussed.

Key words : superalloy; K4169; grain refinement; tensile properties

CLC numbers: TG143.9 Document code: A Article ID: 1672-6421(2016)02-101-06

With the continuous improvement of the engine thrust-weight ratio, the turbine disk and the intermediate case in the turbine engine become more complex in structure. Meanwhile, the operating temperature of these superalloy castings reaches approximately 700 °C. Under such a high temperature, a uniform and fine-grained microstructure is desirable in order to obtain good low cycle fatigue resistance and high tensile strength

[1, 2].

Therefore, the production of such components challenges metallurgists and requires the development of advanced casting technology. One of the effective methods of improving the filling ability of large-size thin-wall castings is to increase the pouring temperature, but this will lead to a coarse grain size and decrease the low cycle fatigue resistance and tensile strength. The addition of the grain refiners in the melt is an effective way to overcome the problem and to get fine grain size

[1].

Grain refinement of as-cast structure means increasing the heterogeneous nucleation sites during the solidification of castings. Fine grain casting techniques of superalloys mainly include the thermal control method

[3], the

chemical approach [1, 4, 5]

and the dynamic method [6-8]

. Among these, the chemical fine grain process is an efficient method, where the heterogeneous nucleation can be increased by the addition of a specially designed master alloy, which contains suitable solid particles with high stability in the melt. This method needs neither complicated equipment nor complex process. Refractory metal oxides, carbides, nitrides and boron have been used as refiners in some superalloys

[1, 9]. However, this kind of refiner will introduce inclusions in the castings, which may become

crack initiation sites, and deteriorate the mechanical properties [10]

. Especially, the addition of boron will decrease incipient melting temperature of the alloys, which reduces the plastic properties greatly

[11]. Liu et al

[1] developed

two kinds of refiners Co-Fe-Nb and Cr-Mo-Nb used in Ni-Fe based super alloys. These refiners possess effective refinement capability without introducing inclusions. However, Co-Fe-Nb and Cr-Mo-Nb can only be used at temperatures of 1,360-1,420 °C, far below the melting and pouring temperatures for most superalloy castings.

Ni-based superalloy K4169 is widely used in turbine disk and intermediate case components, due to its high-temperature mechanical properties in addition to an excellent corrosion resistance

[12, 13]. While the shape of

these components tends to become more complex and thin-walled, leading to the bad filling. In order to improve the filling ability of complex and thin-walled castings, the pouring temperature should be increased, but this will result in grain size coarsening. To obtain good filling ability and fine microstructure, two inter-metallic compounds Co3FeNb2 and CrFeNb were prepared as refiners of the K4169 alloy. The constituent elements are also the elements presented in the superalloy K4169, ensuring that the grain refiners do not introduce inclusions and pose any harmful influence on the mechanical properties of the alloy. The effect of grain refiner on cast structure and tensile properties of K4169 at the pouring temperatures of 1,470-1,520 °C was investigated.

* Tai-wen Huang Male, born in 1975, Ph. D., Professor. His research interests mainly focus on superalloys. E-mail: [email protected]

Page 44: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

43

Fig. 1: Grain structures for different treatment conditions and pouring temperatures: (a) without refiner addition, 1,520 °C,

(b) without refiner addition, 1,470 °C; (c) with refiner addition, 1,520 °C; (d) with refiner addition, 1,470 °C

1. Materials and experimental procedure Two kinds of ternary alloy grain refiners with the nominal compositions of Co3FeNb2 and CrFeNb were designed

and the button ingots of the refiners were prepared by melting an appropriate proportion of the constituents in an

arc melting furnace in an argon atmosphere. The raw materials were 99.95% Cr powder, 99.9% Co powder,

99.5% Fe powder and 99.97% Nb block. They were ground into powders with a size of 60-100 μm. The physical

and crystallographic parameters of the refiners are listed in Table 1. The melting point of the refiners was

analyzed by differential thermal analysis (DTA). The mixture of the two refiners was prepared by mixing

physically with the proportion of 1:1 in weight percentage.

Table 1: Physical and crystallographic parameters of experimental refiners

Refiner Crystal

structure Density (g·cm-3

) Melting point

(°C)

Co3FeNb2 Hexagonal 8.8 1,550

CrFeNb Hexagonal 8.2 ﹥1,650

The commercial K4169 alloy with the composition (wt.%): 0.056 C, 0.01 Co, 52.54 Ni, 19.15 Cr, 3.11 Mo, 0.61 Al,

0.94 Ti, 5.03 Nb, 0.0026 B, 0.028 Zr with the balance being Fe was used for the grain refinement experiments.

The equilibrium liquidus and solidus temperatures of the alloy are 1,349 and 1,270 °C, respectively, according to

DTA results.

A vacuum melting furnace was used to cast ingots of K4169 superalloy. The melt was first superheated up to

1,550 °C and held for 2-4 min and then cooled down to the pouring temperature. For the conventional cast

samples, the melt was poured into the preheated mold directly. However, for chemical grain refinement samples,

the refiner was added into the melt at the pouring temperature. The addition amount was 0.3wt.% of the charge.

After that, the melt was stirred for the refiner particles to be dispersed in the melt uniformly. Then the melt was

held for 30-60 s for homogenization of the refiner and subsequently poured into the mould. The ceramic moulds

with inner size of 120 mm in length and 20 mm in diameter and the preheating temperature of 900 °C were used

in all cases.

The as-cast ingots were sectioned along the cross-section and the samples were ground, polished and

subsequently chemically etched with a solution etchant of 15 g CuSO4, 3.5 ml H2SO4 and 50 ml HCl to expose

grain structures. The average equiaxed grain size and fraction of equiaxed grains at transverse cross-section

were determined by a standard quantitative metallographic technique. The grain size was measured by the line

intercept method and estimated with reference to the ASTM standard. The distribution of the alloying elements

was determined using Electron-probe microanalysis (EPMA). The tensile tests were conducted using an Instron

3382 testing machine at room temperature. At least three identical specimens were tested for each case.

2. Results

The structures of transverse sections of different as-cast samples are shown in Fig. 1. For the samples without

grain refinement, only columnar grains were observed. By adding the refiners, an equiaxed grain region was

formed and the average grain sizes were reduced. For the samples with the pouring temperature of 1,520 °C,

Page 45: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

44

after the addition of mixture refiners of the two ternary inter-metallic compounds, the average grain size was refined from 10.56 to 2.84 mm and the proportion of equiaxed grains at cross-section was increased from 10% to 81%. Similar results were obtained for the samples with the pouring temperature of 1,470 °C, where the average grain size was refined from 8.98 to 1.85 mm and the proportion of equiaxed grains was increased from 15% to 93%. The dendritic morphologies are shown in Fig. 2. It can be seen that the dendritic morphologies with highly developed branches were obtained in the case without grain refiner

addition. However, the average length of the primary dendrite axes decreases with the addition of the grain

refiners. The secondary dendrite arm spacing (SDAS) of both samples (a) and (b) was about 65 μm, and for (c)

and (d) was about 58 μm, indicating that the grain refinement has a negligible effect on the SDAS, but the SDAS

decreases with the decrease of the pouring temperature.

K4169 superalloy has a wide solidification temperature range. Therefore, porosity is likely to form in its castings. Figure 3 shows the morphology and the distribution of porosity in the samples with the grain sizes of 10.56 mm and 1.85 mm. It was shown that there exist some intensively distributed large-sized porosities in coarse grain samples. However, it becomes uniform and much smaller in the chemically refined specimen

Fig. 3: Porosity of samples with different casting conditions: (a) grain size, 10.56 mm; (b) grain size, 1.85 mm

Fig.2 : Dendritic morphologies for different casting conditions: (a) without refiner addition, 1,520 °C; (b) with addition, 1,520 °C; (c) without refiner addition, 1,470 °C; (d) with addition, 1,470 °C

Page 46: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

45

The typical as-cast microstructure of K4169 consists of the primary gamma phase dendrites, carbides, laves and delta phase

[13]. Micrographs of laves and MC carbides in test bars of different grain sizes were obtained. In the

test bars with the grain size of 10.56 mm and 2.84 mm, block carbides and eutectic laves can be observed. The carbide morphology in the fine grain samples is fine and dispersive. However, the laves phase is mainly contained in the eutectic phase in the coarse grain.

Fig. 4: Microstructure of alloy with different casting conditions: (a) without grain refiner addition, 1,520 °C,

grain size 10.56 mm, (b) with refinement, 1,520 °C, grain size 2.84 mm

Figure 5 shows the correlation of grain size and ultimate tensile strength and yield strength obtained at the room temperature tensile tests. The ultimate tensile strength and yield strength of K4169 superalloy are significantly

improved along with the grain refinement. When the grain size of K4169 superalloy is decreased from 10.56 mm to 2.84 mm at the pouring temperature of 1,520 °C, the tensile and yield strength are increased by 11.76% and 9.8%,

respectively. For the pouring temperature of 1,470 °C, the tensile and yield strength are increased by 19.07% and

29.16%, respectively, corresponding to the grain size decreases from 8.98 mm to 1.85 mm. In addition, the elongation is increased with the addition of grain refiners at different pouring temperatures. At the pouring temperature of 1,520

°C, when the grain size is samples, and the block laves are found in the fine grain samples. The quantity of laves

decreases with the decrease of grain size. Besides, the quantity of carbides remained about the same for the same pouring temperature. The results in Fig. 4 show that the volume fraction of laves phase is about 3.35% when the grain size is 10.56 mm. It was reduced to 1.48 % if the grain is refined to 2.84 mm. refined from 10.56 mm to 2.84 mm, the elongation is increased by 53%. When the pouring temperature is 1,470 °C, the elongation is increased by 38% corresponding to the grain size decreases from 8.98 mm to 1.85 mm.

Page 47: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

46

3 Discussion

Results of this study show that the refiners can lead to grain refinement and increase the proportion of equiaxed

grains. The main principle is a fine epitaxial fit between low-index planes of the heterogeneous nucleation particle

substrate offered by the grain refiners and the nucleated solid phase. The lower the lattice disregistry, the more

effective the refiner will be in promoting nucleation. According to the calculation model of lattice disregistry (δ)

between refiners and the nucleated phase proposed by Bramfitt [14]

, when the value of δ for some specific crystal

planes is less than 12%, the refiner will have a good refining effect. Wang et al [15]

calculated and simulated the

planes matching models and matching orientations. The results show that (0001) and (0110) planes of refiners

Co3FeNb2 and CrFeNb have a fine crystallographic matching relationship with the (110), (111) planes of γ matrix

of K4169. Therefore, the refiners can act as the nucleation substrate of γ matrix and allow its epitaxial growth.

Presence of a great number of active refiner particles in the melt would cause enormous heterogeneous nuclei of

crystallites, which would impinge on one another and restrict further growth. Hence, the formation of numerous

nuclei and the restriction on their further growth result in the refinement of grains. However, due to the higher

pouring temperature, the refining effect is reduced.

It can be seen from Fig. 1 that adding refiner to the melt makes the equiaxed fraction increase along with the

grain refinement. The addition of refiner is beneficial for forming the equiaxed grain zone. Additionally, refiner

particles dispersed uniformly in the melt causes a large quantity of equiaxed grains formation. The growth of

these nuclei will release a great amount of latent heat, which prohibits their further growth. In addition, the

formation and growth of many equiaxed grains impede the growth of columnar grains.

The decrease of porosity in the specimen with grain refinement is due to the fact that the alloy flow distance is

increased with grain refinement. The fluidity of two different conditions is tested by spiral fluidity. The fluidity is

360 mm at the condition of coarse grain and that of the fine grain is 371 mm. Dahle et al [16]

also reported that

finer grain size should improve fluidity of molten aluminum. This is due to grain refinement postponing dendrite

coherency.

The important consequence of the solidification in superalloy K4169 is the segregation of Nb and the formation of

Laves phase. Laves phase is a brittle inter-metallic topologically close-packed phase with hexagonal structure,

known for its detrimental effect on mechanical properties at room temperature [17]

. The main reason of laves

formation is Nb and Ti segregation [17]

. Figure 6 shows the correlation of grain size and segregation ratios in the

K4169 superalloy. The segregation ratio is defined as the average concentration in the dendritic core over the

average concentration in inter-dendritic region. The segregation ratio close to 1 indicates that the elements can

reduce segregation. It can be clearly seen that the segregation of Al, Mo, Cr and Fe has little change, whereas

the segregation of Nb and Ti decreases with decreasing grain size. So, this is the most important reason for the

decreasing of the quantity of Laves phase.

Fig. 6: Relationship between dendrite segregation ratio and grain size

The increase of the mechanical properties at room temperature in the grain refined samples is mainly due to the

increase of the grain boundaries, which inhibits dislocation slide, and increases the yield strength and ultimate

Page 48: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

47

strength. At room temperature, the strength of the grain boundary is higher than that of the grain interior [2, 7, 18]

.

Therefore, the crack propagation would be impeded

when encountering a grain boundary. The carbides and Laves phase in fine-grain castings are smaller than those

in the coarse grain, which can also increase the yield and ultimate strength. However, high density and large size

of micro-porosities in the coarse grain samples will lead to the test bars premature fracture, and cause low

elongation and ultimate tensile strength.

4 Conclusions

The effects of the refiners on the as-cast structures and tensile properties of K4169 superalloy were studied. The

results are summarized as follows:

1. When adding mixed refiner of Co3FeNb2 and CrFeNb to the melt of K4169 superalloy, the equiaxed grain

size could be refined and the proportion of equiaxed grains at cross-section could be increased in the

samples with pouring temperature of 1,470- 1,520 °C. Refiner particles with good lattice compatibility with

matrix act as substrata of matrix, thereby causing grain refinement.

2. As the grain refines, the amount of Laves phase decreases and its morphology changes from island to

blocky structure. The carbides in the fine grain samples are fine and dispersive.

3. The amount of porosity in the specimen could be reduced greatly after grain refinement due to the alloy flow

distance being increased with grain refinement.

4. Yield strength and ultimate tensile strength at room temperature increases significantly due to grain

refinement.

When the grain size of K4169 superalloy is 1.85 mm, the highest tensile and yield strength obtained are 1,189.32

MPa and 1,138.47 MPa, respectively.peralloy is 1.85 mm, the highest tensile and yield strength obtained are

1,189.32 MPa and 1,138.47 MPa, respectively.

References

1. Liu Lin, Huang Taiwen, Xiong Yuhua, et al. Grain refinement of superalloy k4169 by addition of refiners: cast

structure and refinement mechanisms. Materials Science and Engineering A, 2005, 394: 1-8.

2. Du Beining, Yang Jinxia, Cui Chuanyong, et al. Effect of grain refinement on the microstructure and tensile

behavior of K417G superalloy. Materials Science and Engineering A, 2015,59-67.

3. Ma Yue, Sun Jiahua, Xie Xishang, et al. An investigation on fine-grain formation and structural character in

cast IN718 superalloy. Journal of Materials Processing Technology, 2003,35-39.

4. Xiong Yuhua, Wei Xiuying, Du Jun, et al. Grain refinement of superalloy IN718C by the addition of

inoculants. Metallurgical and Materials Transaction A, 2004, 35(7): 2111-2114.

5. Liu Lin, Zhang Rong, Wang Liuding, et al. A new method of fine grained casting for nickle-base superalloys.

Journal of Materials Processing Technology, 1998, 77: 300-304.

6. Ma Xiaoping, Li Yingju and Yang Yuansheng. Grain refinement effect of pulsed magnetic field on solidified

microstructure of superalloy IN718. Journal of Materials Research, 2009, 24(10): 3174-3181.

7. Wei C N, Bor H Y, Ma C Y, et al. A study of IN713LC superalloy grain refinement effects on microstructure

and tensile properties. Materials Chemistry and Physics, 2003, 80(1): 89-93.

8. Jin Wenzhong, Bai Fudong, Li Tingju, et al. Grain refinement of superalloy IN100 under the action of rotary

magnetic fields and inoculants. Materials Letters, 2008, 62(10-11): 1585-1588.

9. Bashir S and Thomas M C. Effect of interstitial content on High-temperature fatigue crack propagation and

Low-cycle fatigue of alloy 720. Journal of Materials Engineering and Performance, 1993, 2(4): 545-550.

10. Miao Jiashi, Pollock T M and Jones J W. Crystallographic fatigue crack initiation in Nickel-based superalloy

Rene′ 88DT at elevated temperature. Acta Materialia, 2009, 57(20): 5964-5974.

11. Liu R, Xi S Q, Kapoor S, et al. Effect of chemical composition on Solidification, microstructure and hardness

of Co-Cr-W-Ni and Co-Cr-Mo-Ni alloy systems. IJRRAS, 2010, 5(2): 110-122.

12. Li Ailan, Tang Xin, Gai Qidong, et al. Effect of heat treatment on microstructure of K4169 superalloy. Journal

of Aeronautical Materials, 2006, 26(3): 311-312. (In Chinese)

Page 49: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

48

13. Li Yamin, Liu Hongjun, Liu Jie, et al. Effect of Zr addition on precipitates in K4169 superalloy. China

Foundry, 2012, 9(1): 6-10.

14. Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid

iron. Metallurgical Transactions, 1970, 1(7): 1987-1995.

15. Wang Fu, Zhang Jun, Huang Taiwen, et al. Preparation of inoculants used in superalloy and analysis of the

atomic matching models. Journal of Materials Science & Technology, 2013, 29(4): 387-392.

16. Dehle A K, Tondel P A, Paradies C J, et al. Effect of grain refinement on the fluidity of two commercial Al-Si

foundry alloys. Metallurgical and Materials Transactions A, 1996, 27(8): 2305-2313.

17. Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, et al. Control of Laves phase in Inconel 718 GTA

welds with current pulsing. Science and Technology of Welding & Joining, 2004, 9(5): 390-398.

18. Yang Jinxia, Sun Yuan, Jin Tao, et al. Microstructure and mechanical properties of a Ni-based superalloy

with refined grains. Acta Metallurgical Sinica, 2014, 50(7): 839 -844. (In Chinese)

Page 50: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

49

Data Kendaraan Bermotor

1. Data Kendaran Roda 4

a. Penjualan Kendaraan roda 4 (unit) tahun 2012-2016 di Indonesia

No. Bulan Penjualan (Unit)

2012 2013 2014 2015 2016

1 Januari 76.427 96.718 103.609 94.194 85.012

2 Februari 86.486 103.278 111.824 88.740 88.224

3 Maret 87.917 95.996 113.067 99.410 93.990

4 April 87.144 102.257 106.124 81.600 84.685

5 Mei 95.541 99.697 96.872 79.375

6 Juni 101.746 104.268 110.614 82.172

7 Juli 102.511 112.178 91.334 55.615

8 Agustus 76.445 77.964 96.652 90.537

9 September 102.100 115.974 102.572 93.038

10 Oktober 106.754 112.039 105.222 88.408

11 Nopember 103.703 111841 91.327 86.937

12 Desember 89.456 97.691 78.802 73.264

Total 1.116.230 1.229.901 1.208.019 1.013.290 351.911 Sumber : Gaikindo

b. Produksi Kendaraan roda 4 (unit) tahun 2012-2016 di Indonesia

No. Bulan Produksi (Unit)

2012 2013 2014 2015 2016

1 Januari 77.036 97.793 104.728 99.102 91.068

2 Februari 86.469 100.491 112.501 93.113 91.529

3 Maret 85.507 89.073 123.007 108.066 102.483

4 April 84.426 101.805 121.114 97.676 103.089

5 Mei 97.367 99.661 94.353 89.579

6 Juni 94.400 97.939 117.309 91.807

7 Juli 97.330 106.519 93.613 59.225

8 Agustus 71.113 77.354 105.259 103.567

9 September 94.488 116.974 119.346 104.702

10 Oktober 100.298 115.533 116.654 95.731

11 Nopember 99.168 110.570 102.423 88.493

12 Desember 77.955 94.499 88.216 67.719

Total 1.065.557 1.208.211 1.298.523 1.098.780 388.169

Page 51: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

50

b. Penjualan Kendaraan roda 4 (unit) tahun 2012-2016 di ASEAN

No. Bulan

Penjualan (Unit)

2012

2013

2014

2015

Jan-April 2016

1 Brunai 18.634 18.642 18.114 14.406 3.843

2 Indonesia 1.116.230 1.229.901 1.208.019 1.013.291 351.911

3 Malaysia 627.753 655.793 666.465 666.674 173.432

4 Philipina 156.654 181.738 234.747 288.609 104.176

5 Singapura 37.247 34.111 47.443 78.609 35.286

6 Thailand 1.436.335 1.330.672 881.832 799.632 236.546

7 Vietnam 80.453 98.649 133.588 209.267 79.218

Total 3.473.306 3.549.506 3.190.208 3.070.488 984.412

sumber : AAF

c. Produksi Kendaraan roda 4 (unit) tahun 2012-2016 di ASEAN

No. Bulan

Produksi (Unit)

2012

2013

2014

2015

Jan-April

2016

1 Indonesia 1.065.557 1.208.211 1.298.523 1.098.780 388.169

2 Malaysia 569.620 601.407 596.418 614.664 174.385

3 Philipina 75.413 79.169 88.845 98.768 33.833

4 Thailand 2.453.717 2.457.057 1.880.007 1.913.002 645.111

5 Vietnam 73.673 93.630 121.084 171.753 68.581

Total 4.237.980 4.439.474 3.984.877 3.896.967 1.310.079

sumber : AAF

2. Data Kendaraan Roda 2 / Sepeda Motor

a. Penjualan sepeda motor 2012-2016 Di Indonesia

No. Bulan

Penjualan (Unit)

2012 2013 2014 2015

Jan-April

2016

1 Januari 652.601 649.983 580.288 513.816 443.449 2 Februari 670.757 653.357 681.267 570.524 551.930 3 Maret 626.689 657.483 728.820 562.185 583.339 4 April 622.929 660.505 729.279 538.746 501.564 5 Mei 619.540 647.215 734.030 482.691 6 Juni 550.468 661.282 753.789 588.675 7 Juli 585.658 704.019 539.171 439.245 8 Agustus 433.741 490.824 599.250 645.997 9 September 628.739 678.139 706.938 632.227

10 Oktober 634.575 717.272 675.962 626.725 11 Nopember 627.048 688.527 592.635 565.066 12 Desember 488.841 552.408 556.586 542.487

Total 7.141.586 7.771.014 7.908.914 6.708.384 2.080.282

sumber : AISI Diolah

Page 52: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

51

b. Produksi sepeda motor 2012-2016 Di Indonesia

No. Bulan Produksi (Unit)

2012 2013 2014 2015 Jan-April

2016

1 Januari 685.688 662.920 595.636 524.368 315.994

2 Februari 665.570 659.417 659.258 552.543 382.495

3 Maret 606.984 654.760 729.476 593.592 460.731

4 April 619.839 672.370 748.401 563.566 378.315

5 Mei 619.829 644.881 722.192 483.872

6 Juni 535.621 653.384 761.117 559.956

7 Juli 577.488 694.492 553.626 290.972

8 Agustus 428.662 484.428 611.235 450.719

9 September 620.250 683.066 747.992 445.301

10 Oktober 627.352 729.876 686.101 475.758

11 Nopember 625.865 691.115 598.560 429.630

12 Desember 466.573 549.586 512.510 328.361

Total 7.079.721 7.780.295 7.926.104 5.698.637 1.537.535

sumber : AISI Diolah

c. Penjualan sepeda motor 2012-2016 di ASEAN

No. Bulan

Penjualan (Unit)

2012

2013

2014

2015

Jan-April

2016

1 Indonesia 8,043,535 7.141.586 7.771.014 7.908.014 2.080.282

2 Malaysia 494.586 537.753 546.719 442.749 139.289

3 Philipina 731.130 702.599 752.835 790.245 351.102

4 Singapura 8.046 9.923 11.650 8.145 2.656

5 Thailand 2.007.383 2.130.067 2.004.498 1.701.535 535.500

Total 11.284.680 10.521.928 11.086.716 10.851.615 3.108.829

sumber : AAF

d. Produksi sepeda motor 2012-2016 Di ASEAN

No. Bulan

Produksi (Unit)

2012

2013

2014

2015

Jan-April

2016

1 Indonesia 7.780.295 7.926.104 5.698.637 5.698.637 1.537.535

2 Malaysia 549.244 439.907 382.218 382.218 137.156

3 Philipina 729.480 755.184 795.840 795.840 319.225

4 Thailand 2.218.625 1.842.708 1.807.325 1.807.325 583.451

Total 11.277.644 10.963.903 8.684.020 8.684.020 2.577.367

sumber : AAF

Page 53: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

52

Informasi Umum & Pameran

A. Web site Pemerintah yang dapat diakses :

1. www.setneg.go.id (Sekretariat Negara)

2. www.kemenperin.go.id (Kementerian Perindustrian)

3. www.kemenkeu.go.id (Kementerian Keuangan)

4. www.kemendag.go.id (Kementerian Perdagangan)

5. www.beacukai.go.id (Direktorat Bea & Cukai, Kementerian Keuangan)

6. www.esdm.go.id (Kementerian ESDM)

7. www.bkpm.go.id (Badan Koordinasi Penanaman Modal)

8. www.bps.go.id (Biro Pusat Statistik)

B. Web site Asosiasi Industri Pengecoran Logam Indonesia (APLINDO)

Kini APLINDO telah tersedia Web site sendiri :

www.aplindo.web.id, mohon dukungan partisipasi aktif Bapak-bapak sekalian dan

diharapkan saran, masukan, permasalahan dan perkembangan yang terjadi di industri

pengecoran logam di Indonesia. Saran dan masukan anda dapat berupa artikel ke

alamat [email protected]

C. Web site Himpunan Ahli Pengecoran Logam Indonesia

Kini HAPLI telah tersedia Web-site sendiri :

http://hapli.wordpress.com/ , mohon dukungan partisipasi aktif Bapak-bapak

sekalian dan diharapkan saran serta masukan anda berupa artikel sesuai page yang

tersedia dalam format *.doc ke alamat [email protected] untuk

diupload, ataupun komentar langsung anda pada Blog.

D. Pameran dan Seminar

1. 5th Metal & Steel/FABEX Saudi Arabia Exhibition: 1 May 2016 - 4 May 2016 Riyadh Int Convention and Exhibition Centre www.arabian-german.com/

2. Metal & Metallurgy China: 17 May 2016 - 20 May 2016 China International Exhibition Center, Beijing www.mm-china.com/en/

3. 21-25 May, 2016

The 72nd World Foundry Congress 2016, Nagoya, Japan, This intellectually and professionally stimulating biennial congress offers you a golden

Page 54: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2015/09/BULETIN-APLINDO-481.pdf · sebagai tempat penimbunan produk atau barang industri dan perdagangan di Indonesia ... PT Kamadjaja

BULETIN - APLINDO No.48/2016

53

opportunity to meet fellow foundrymen from all over the world and exchange ideas in

order to develop a common vision for the future of the global foundry industry.

The WFC2016 will have presentations of technical papers and meetings as well as

enjoyable social events.through which you can learn more about traditional Japanese

culture.

The WFC2016 will be held in Nagoya,Japan’s third largest metropolitan region located

on central Honshu. Nagoya is known as one of the centres of the manufacturing

industry and also for its famous historical castle. Nagoya Castle, built by the first

shougun of the Tokugawa shougunate, has a pair of golden shachihoko (carp-like

mythical animals) on its roof, and they have become the symbol of Nagoya.

www.wfc2016.jp

4. China Diecasting: 12 Jul 2016 - 14 Jul 2016 Shanghai, China Diecasting exhibition. www.diecastexpo.cn/en/

5. Indometal , 25-27 Oct 2016 Jakarta International Expo Kemayoran, Indonesia

International Metal & Steel Trade Fair for Southeast asia

www.indometal.net

6. ANKIROS/ANNOFER/TURKCAST 2016: 29 Sep 2016 - 1 Oct 2016 TUYAP Fair Ground, Istanbul, Turkey International exhibition of metal casting companies and foundry supply companies. www.ankiros.com

7. The 24th Annual International Scientile and Technical Conference “Foundry

Production and Metallurgy 2016, 19-21 October 2016 Binsk, BNTU (Belarus National Technical University) Belarus

8. Manufacturing Indonesia 2016 Jakarta International Expo Kemayoran, Indonesia

The 27th International Manufacturing, Machinery, Equipment, Material and Services

Exhibition

WWW.manufacturingindonesia.com

9. Alucast 2016: 1 Dec 2016 - 3 Dec 2016 Bangalore, India Diecasting Exhibition. www.alucast2016.com