btev trigger architecture vertex 2002, nov. 4-8 michael wang, fermilab (for the btev collaboration)

25
BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Post on 22-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

BTeV Trigger Architecture

Vertex 2002, Nov. 4-8

Michael Wang, Fermilab

(for the BTeV collaboration)

Page 2: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

BTeV - a hadron collider B-physics experiment

BTeV at C0CDF

D0 pp

Tevatron

Fermi National Accelerator Laboratory

Page 3: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

BTeV detector in the C0 collision hall

Page 4: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

BTeV detector

MuonEM Cal

Straws &Si Strips

SM3 Magnet

RICH

30 StationPixel Detector

Page 5: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Pixel detector half-station

Multichip module

Si pixel detector

50 m

400 m5 cm

1 cm

6 cm

10 cm

HDI flex circuitWire bonds

Sensor module

Readout module Bump bonds

Si pixel sensors

sensor module

5 FPIX ROC’s

128 rows x22 columns

14,080 pixels (128 rows x 110 cols)

380,160 pixelsper half-station

total of 23Million pixelsin the full pixel detector

Page 6: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Simulated B event

Page 7: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Simulated B event

Page 8: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Primary interaction vertex

Page 9: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Primary interaction vertex

Page 10: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

B decay vertex

Ds

K

KK

Bs

Page 11: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

L1 vertex trigger algorithm

1) Segment finding stage: Use pixel hits from 3 neighboring stations to find the beginning and ending segments of tracks. These segments are referred to as triplets

Two stage trigger algorithm:1. Segment finding2. Track/vertex finding

Page 12: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

1a) Segment finding stage: phase 1 Start with inner triplets close to the interaction region. An inner triplet represents the start of a track.

Segment finding: inner tripletes

Page 13: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

1b) Segment finding stage: phase 2 Next, find the outer triplets close to the boundaries of the pixel detector volume. An outer triplet represents the end of a track.

Segment finding: outer triplets

Page 14: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

2a) Track finding phase: Finally, match the inner triplets with the outer triplets to find complete tracks.

2b) Vertex finding phase:• Use reconstructed tracks to locate interaction vertices• Search for tracks detached from interaction vertices

Track/vertex finding

Page 15: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Trigger decision

• Generate Level-1 accept if “detached” tracks in the same arm of the BTeV detector with:

2

2.0

6

25.02

b

b

pT

(GeV/c)2

cm

Execute Trigger

b

p p

B-meson

Page 16: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

GlobalLevel-1

ITCH

Information Transfer Control Hardware

GL1

Level-1 Buffers

12 x 24-port Fast Ethernet Switches

Level 2/3Processor Farm

Pixel Processors

FPGA Segment Finder

Track/Vertex Farm

Gigabit Ethernet Switch

Data Combiners +Optical Transmitters

OpticalReceivers

BTeV Detector

Front End Boards

8 Data Highways

Data Logger

Cross Connect Switch

BTeV trigger architecture

Page 17: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Pixel data readout

Counting RoomCollision Hall

Pixelprocessor

Pixelprocessor

Pixelprocessor

FPGA tracker

to neighboring FPGAsegment tracker

to neighboring FPGAsegment tracker

Pixel stations

Optical links

Pixel processor

time-stamp expansion

time ordering

clustering algorithm

xy table lookup

FPIX2 Read-out chip

DCB

DCB

DCB

Data combiners

Row (7bits) Column (5bits) BCO (8bits) ADC (3bits)

sync (1bit)

Chip ID (13bits)

Page 18: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Level 1 vertex trigger architecture

FPGA segment trackers

Merge

Trigger decision to Global Level 1

Switch: sort by crossing number

track/vertex farm(~2500 processors)

30 station pixel detector

Page 19: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

L1 trigger pre-prototype board

32-bit input32-bit output

FIFO

Buffer ManagerFPGA

CMC connectors

Page 20: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

L1 pre-prototype with DSP mezzanine cards

TI C6711

McBSP

McBSP

GL1/HPI FPGA

Hitachi H8SHitachi H8S

FPGA bootdevice

CF/LCDFPGA

ArcNetArcNet

Hitachi programming

Hitachi serial consoles

Page 21: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

L1 trigger pre-prototype test stand

PCI test adapter

TI DSP JTAGemulator

Xilinx programmingcable

Hitachi programming

ArcNet

serial console

Page 22: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Level 2/3 trigger R&D

Processing nodes fromretired Fermilab farm

24-port fanout switch

High-density blade serverunder evaluation

Page 23: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

End

Page 24: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

Backup slides

Page 25: BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)

Michael WangVertex 2002, BTeV trigger architecture

L1 vertex trigger efficiencies

Process Eff. (%) Monte Carlo

Minimum bias 1 BTeVGeant

Bs D+sK- 74 BTeVGeant

B0 D*+- 64 BTeVGeant

B0 00 56 BTeVGeant

B0 J/s 50 BTeVGeant

Bs J/*0 68 MCFast

B- D0- 70 MCFast

B- Ks- 27 MCFast

B0 2-body modes 63 MCFast

()