b.tech civil pyuhkjroject1

Upload: muhammad-adeel

Post on 03-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    1/197

    ANALYSIS, DESIGN AND ESTIMATION OF TWO

    STOREYED RESIDENTIAL BUILDING

    A PROJECT REPORT

    Submitted by

    In partial fulfillment for the award of the degree

    of

    BACHELOR OF ENGINEERING

    in

    CIVIL ENGINEERING

    1

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    2/197

    BONAFIDE CERTIFICATE

    Certified that this project report "ANALYSIS, DESIGN ANDESTIMATION OF TWO STOREYED RESIDENTIAL BUILDING" is

    the bonafide work of

    .who carried out the project work under my supervision.

    SIGNATURE SIGNATURE

    . ..

    HEAD OF THE DEPARTMENT SUPERVISOR

    Civil Engineering Civil Engineering

    Submitted for the viva-voce held at . on

    Internal Examiner External Examiner

    2

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    3/197

    ABSTRACT

    The Project reports on design of a new two Storeyed Residential

    Building at . near m. This project mainly includes the

    Analysis, Design and Estimation. The next site area of field is

    687.82 Sq.m and the plinth area of the building is 958.53 Sq.m.

    The analysis was done by Kani's Methods, using this method the

    moment of each beam and column was calculated.

    Limit state method of design is used for the design purpose. The

    load condition is taken as per IS:875. Manual estimation was done and the

    cost the building Rs. 3129.8 Per sq.m.

    The plan, section, elevation and reinforcement details are drawn

    using AUTO CAD.

    3

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    4/197

    ACKNOWLEDGEMENT

    We record our sincere thanks and gratitude to our supervisor

    .. Lecturer, Department of Civil Engineering,

    . College of Engineering, .., who evinced keen interest and helped us

    to a lot every now and then to complete and project.

    We express our sincere thanks to Head of the Department of

    Civil Engineering, for his valuable suggestions guidance throughout the course

    of the study.

    Further we express our sincere thanks to ..Principal, .

    College of Engineering, for giving encouraging suggestions for the successful

    completion of the project.

    We express our sincere thanks to correspondent of ourcollege for his valuable suggestion garden throughout the ware about of this

    study.

    We express our sincere thanks to the . Lecturer of our

    Department for his valuable suggestion garden throughout the ware of this

    study.

    We also thank all the faculty members of the Department of

    Civil Engineering, . College of Engineering, for their constant support

    and inspiration for the successful completion of this project .

    4

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    5/197

    CONTENTS

    Page No

    Abstract iii

    List of Tables viii

    List of figures ix

    List of Symbols xi

    I. INTRODUCTION 1

    1.1. General 1

    1.1.1 The Concept of Design 11.1.2 objectives 2

    1.1.3. Components of RC Structures 2

    1.1.3.1 Limit state design 3

    1.1.4 Slabs 3

    1.1.5 Beam 3

    1.1.6 Columns 4

    1.1.6.1. Short Column 4

    1.1.6.2. Slender Column 5

    1.1.7 Footing 5

    1.1.7.1 Types of column base 5

    1.1.8 Staircase 5

    1.1.8.1 Classification of Stairs 6

    1.1.9. Summary 6

    1.2. Methodology 12

    1.2.1 Analysis 12

    1.2.2. Design 12

    5

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    6/197

    1.2.3. Estimation 12

    1.2.4. Limit state design 12

    1.2.5. Partial safety factor 12

    1.3. Analysis 18

    1.3.1. Introduction 18

    1.3.2. Kanis Method 18

    1.3.3. Primary Structure

    2. Designs 85

    2.1. Design of slab 85

    2.1.1. Design Procedure for one way slab 86

    2.1.2. Design Procedure for two way slab 88

    2.1.3. Design of One Way Slab 90

    2.1.4. Design of two way Slabs 95

    2.2. Design of Beams 101

    2.2.1.Types of Beams 101

    2.2.2. Design procedure for beams 102

    2.2.3. Design of singly Reinforced Beam 104

    2.2.4.Design of doubly reinforced Beam 108

    2.3. Design of curved Beam 103

    2.4. Design of Plinth Beam 121

    2.5. Design of lintels 125

    2.6.Design of Lintel Cum Sunshade 126

    2.7.Design of staircase With single beam 133

    2.8. Design of column 139

    6

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    7/197

    2.8.1. Column 139

    2.8.2. Types of columns 139

    2.8.3. Design Procedure for Column 140

    2.8.4. Load calculation of Column 142

    2.8.5. Square Column with Biaxial Bending

    (Intermediate Column) 144

    2.8.6. Square Column with Biaxial Bending

    (Corner Column) 149

    2.9.Design of footing 154

    2.9.1. Footing 154

    2.9.2. Types of footing 154

    2.9.3. Design Procedure 155

    2.9.4. Design of footing 161

    2.10 Estimation and costing 166

    2.10.1. Abstract Estimation 175

    3. CONCLUSION 176

    4. REFERENCE 177

    7

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    8/197

    LIST OF TABLES

    Table No. Description Page. no

    1. Moment for each frame 83

    2. Reinforcement Detail about all beams 119

    3. Estimation and costing 166

    4. Abstract Estimate 175

    8

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    9/197

    LIST OF FIGURES

    Fig. No. Description Page.no

    1.1.1. Site Plan 7

    1.1.2 Ground floor plan 8

    1.1.3 First floor plan 9

    1.1.4. Cross section of AB 10

    1.1.5. Elevation 11

    1.2.1. Analysis of frame AA' 13

    1.2.2. Analysis of frame BB' 13

    1.2.3. Analysis of frame CC' 14

    1.2.4. Analysis of frame DD' 14

    1.2.5. Analysis of frame EE' 15

    1.2.6. Analysis of frame FF' 15

    1.2.7. Analysis of frame GG' 16

    1.2.8. Analysis of frame HH' 16

    1.2.9. Analysis of frame II' 17

    1.2.10 Analysis of frame JJ' 17

    1.3.1. Deformed shape of the member 18

    1.3.2. Final end moment 19

    1.3.3. Multistoreyed frame 21

    1.3.4. Rotation end moment at A 22

    1.3.5. Relative stiffness 24

    2.1.3.1. Reinforcement Details for one way slab 94

    2.1.4.1. Reinforcement Details for two way slab 100

    2.2.3.1. Reinforcement Details for Singly reinforcement beam 107

    9

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    10/197

    2.2.4.1. Reinforcement Details for Doubly reinforcement beam 112

    2.3.1 Reinforcement Details for curved beam 118

    2.4.1 Reinforcement Details for Plinth beam 124

    2.6.1 Reinforcement Details for Lintel cum beam 132

    2.7.1.1. Reinforcement Details for Stair Case 138

    2.8.5.1. Reinforcement Details for Column

    (Intermediate Column)

    148

    2.8.6.1. Reinforcement Details for Column

    (Corner Column)

    153

    2.9.4.1. Reinforcement Details for Footing 165

    10

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    11/197

    LIST OF SYMBOLS

    Mx - Moment in shorter direction

    My - Moment in shorter direction

    d - Effective depth

    D - Overall depth

    Ast - Area of Steel

    P - Load

    Wu (or) Pu - Design load

    Mu - Design moment

    Asc - Area of concrete

    Fy - Characteristic strength of steel

    Fck - Characteristic strength of concrete

    B.M - Bending Moment

    b - Breadth of Beam

    D - Overall depth

    Vus - Strength of shear reinforcement

    L - Clear span

    Le - Effective span

    N.A - Neutral Axis

    MF - Modification factor

    Q - Angle of repose of soil

    M - Modular of rupture

    c - Permissible shear stress in concrete

    v - Nominal shear stress

    11

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    12/197

    CHAPTER I

    INTRODUCTION

    12

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    13/197

    CHAPTER - 1

    INTRODUCTION

    1.1. General

    The main motive of a Civil Engineer is to design a structure,

    which is to be safe, serviceable and economical. Safety means that the

    structure should not fail under loads unless exceeds by a given margin.

    Serviceability means that structures must perform well throughout their service

    life in both appearance and comfort to their clients. This requirement includes

    cracking and deflection under working loads. Economy means that structures

    must be designed in such a way as to minimize the quantities of materials used

    in them. Although safety and serviceability are the basic requirements, the test

    of an acceptable structural design is economy.

    1.1.1 The Concept of Design

    In the design of reinforced concrete structures, all critical sections

    are checked for the effect of forces acting on them. Sizing of columns, beams

    and spacing of frames will affect the economy as well as the stability of a

    framed building. Framed structure mode of construction is more suitable for a

    commercial type of construction. Basically in the framed structures the wallsare not the load carrying structures, so that the size of the walls can be

    decreased. By decreasing the size of the walls the need for building material

    would get reduced and the floor space of the building would also get

    increased. With the reduction in the building material, a reduced amount of

    13

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    14/197

    load will be transmitted to the footing. The modern method of Design, which

    is adopted recently, is the Limit State Design. Limit state method includes

    consideration of structures at both working and ultimate load levels with a

    view to satisfy the requirements of safety and serviceability. The aim of the

    limit stage design is to ensure that a reinforced concrete section does not reach

    any of the limit states to which it may be subjected. The usual approach is to

    design for a limit state which is likely to govern it and them to check it for the

    remaining limit states.

    In this project "Analysis, Design and Estimation of a two storied

    residential building" the structure is completely analyzed by Kanis method

    and as per IS 456:2000 code.

    1.1.2 Objectives

    1. To analyse the soil condition of the site.

    2. To analyse the frames in the building using Kanis method.

    3. To design the structural components of the two storey building

    4. To prepare the detailed drawing for the design carried out.

    5. To analyse the construction cost of building.

    1.1.3 Component of RC Structures

    Reinforced cement concrete members can be designed by the

    following methods.

    1. Working stress method

    2. Limit state method

    14

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    15/197

    1.1.3.1 Limit state design

    Limit state method of design is based on elastic theory.

    Partial safety factors are used in this method to determine thedesign loads and design strength of materials from their

    characteristics values.

    The design aids to IS:456, published by the bureau of Indian

    standards. The design of limit state method is very simple and

    hence widely used in practice.

    This method gives economical results when compared with the

    conventional working stress method.

    1.1.4 Slabs

    Slabs are primary members of a structure, which support the imposed

    load directly on them and transfer the same safety to the supporting

    elements such as beams, walls, columns etc.

    A slab is a thin flexural member used in floor and roof of a structure

    to support the imposed loads.

    The Slabs are classified as Solid Slab, Hollow slab and Ribbed slab

    based on their construction.

    1.1.5 Beam

    A beam has to be generally designed for the actions such as bending

    moments, shear forces and twisting moments developed by the

    lateral loads.

    15

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    16/197

    The size of the beam is designed considering the maximum moment

    in it and generally kept uniform throughout its length.

    IS:456:2000 recommends that the minimum grade of concrete should

    not be less than M20 in RC works.

    When there is a Reinforced concrete slab over a concrete beam, then

    the beam and the slab can be constructed in such a way that they act

    together.

    The combined beam and slab are called as flanged beams. It may be

    'I' or 'L' beams. Here both T-beams and L-beams are designed.

    1.1.6 Column

    Vertical members in compression are called as columns and struts.

    The term column is reserved for members which transfer load to the

    ground. Classification of column, depending upon slenderness ratio

    is, Short Column and Slender column.

    Columns are classified as axially loaded column, Eccentrically

    loaded column & column subjected to axial load and moment

    depending the action of load.

    1.1.6.1 Short Column

    IS:456:2000 classifies rectangular column as short when the ratio

    of effective length (Le) to the least lateral dimension is less than 12. This ratio

    is called slenderness ratio of the column.

    16

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    17/197

    1.1.6.2 Slender Column

    The ratio of effective length (Le) to the least lateral dimension is

    grater than 12 are called as slender column.

    1.1.7 Footing

    Foundation is the most important component of a structure.

    It should be well planned and carefully designed to ensure the

    safety and stability of the structure.

    Foundation provided for RCC columns are called as column base.

    1.1.7.1 Types of column base

    1. Isolated footing

    2. Combined footing

    3. Strap footing

    4. Solid raft foundation5. Annular raft foundation

    1.1.8 Staircase

    A staircase is a flight of steps leading from one floor to another. It

    is provided to afford the means of ascent and descent between various floors of

    the building. It should be suitably located in a building. In a domestic building

    the stair should be centrally located to provide easy access to all rooms. In

    public buildings stairs should be located near the entrance. In big building

    there can be more than one stairs. Fire protection to stairs is important too.

    17

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    18/197

    Stairs are constructed using timber, bricks, stone, steel or reinforced cement

    concrete.

    1.1.8.1 Classification of Stairs

    1. Single flight stairs

    2. Quarter turn stairs

    3. Dog legged stairs

    4. Open well type stairs

    5. Bifurcated stairs

    6. Circular stairs

    7. Spiral stairs

    1.1.9. Summary

    This project deals with the design of two storeyed building using

    limit state method of one way and two way solids slabs are designed. Singly

    and doubly reinforced beams and plinth beam, are designed as per

    IS 456 / 2000. Columns with biaxial loaded column base of isolated column

    footing are design. Single beam staircase designed with working stress

    method.

    18

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    19/197

    Fig : 1.1.1. Site plan

    19

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    20/197

    Fig : 1.1.2. Ground Floor Plan

    20

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    21/197

    Fig : 1.1.3. First Floor Plan

    21

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    22/197

    22

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    23/197

    Fig : 1.1.4. Cross Section at AB

    23

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    24/197

    Fig : 1.1.5. Elevation

    24

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    25/197

    1.2 Methodology

    1.2.1. Analysis

    Various methods are available for the analysis of a structure.

    Kanis Method is adopted in this project.

    1.2.2. Design

    Various methods are available for the design of a structure. Limit

    sate method is adopted in this project.

    1.2.3. Estimation

    Various methods are available for the estimation of a structure.

    Centre line method is adopted in this project.

    1.2.4. Limit state design

    The acceptable limit for safety and serviceability requirement

    before failure occur is called limit state. The aim of design is to achieve

    acceptable probabilities that the structure will not become unfit for use. All

    relevant limit state shall be considered in the design to ensure adequate degree

    of safety and serviceability.

    1.2.5. Partial safety factor

    The value of load which has a 95% probability of a structure of

    structural member for the limit state of collapse the following values of partial

    safety factor is applied for limit state of collapse.

    Ym = 1.5 for concrete

    Ym = 15 for steel

    25

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    26/197

    Fig : 1.2.1. Analysis of Frame AA'

    Fig : 1.2.2. Analysis of Frame BB'

    26

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    27/197

    Fig : 1.2.3. Analysis of Frame CC'

    Fig : 1.2.4. Analysis of Frame DD'

    27

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    28/197

    Fig : 1.2.5. Analysis of Frame EE'

    Fig : 1.2.6. Analysis of Frame FF'

    28

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    29/197

    Fig : 1.2.7. Analysis of Frame GG'

    Fig : 1.2.8. Analysis of Frame HH'

    29

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    30/197

    Fig : 1.2.9. Analysis of Frame II'

    Fig : Analysis of Frame JJ'

    30

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    31/197

    1.3 Analysis

    1.3.1. Introduction

    A multistoried frame is a complicated statically indeterminate

    structure. The analysis by moment distribution method is very lengthy and

    difficult. Hence Rotation Contribution Method (Kanis method) is adopted for

    better and easier calculation.

    1.3.2 Kanis Method

    This is a method developed by Gasper Kanis of Germany. This

    method is an excellent extension of the slope deflection method. Since this

    new method has been recognized as a very useful method, it is proposed to

    discuss this method in detail.

    Let AB represent one of the spans of a framed or continuous

    structure. Let the span carry a loading.

    Fig : 1.3.1. Deformed shape of the member

    Fig 1.3.1. shows the deformed shape of the member AB. Let the

    ends A and B undergo rotations a and b respectively. Let us assume that

    31

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    32/197

    lateral displacements of the ends do not occur. Let Mab and Mba represent the

    end moments for the span AB. Let us follow the following sign conventions

    regarding end moments and rotations.

    i) Clockwise end moments are positive.

    ii) Clockwise rotations at ends are positive.

    In this method the final end moments are split up in to certain

    components. By an orderly successive approximation process these

    components are computed.

    The components to which the final end moments Mab and Mba can

    be split up are shown in Fig.1.3.2.

    Fig: 1.3.2. Final end moments

    The moments are determined by going through the followingstages :

    1. The ends A and B of the member are first regarded as fixed.

    Corresponding to this condition the fixed end moments abM and baM at

    B are determined.

    32

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    33/197

    2. Now maintaining the fixity of the end B, the end A is rotated through an

    angle a by the application of a moment 2 M 'ab at A. For this condition a

    moment of M'ab is induced at the end B. The moment M'ab is called the

    rotation contribution of the end A.

    3. In this stage, the end A is considered as fixed, and the end B is rotated

    through an angle b by the application of a moment 2M'ba at B. For this

    condition a moment of M 'ba is induced at the end A. The moment M'ba is

    called the rotation contribution of the end B.

    Thus, the final moments Mab and Mba can be expressed as follows.

    Mab = abM + 2M'ab + baM

    and

    Mba =baM + 2M

    'ba +

    abM ....................(i)

    For the member AB, when we refer to the final moment Mab at A,

    the end a may be referred to as the near end and the end B as the far end.

    Similarly, when we refer to the final moment Mba at B, the end B

    may be referred so as the near end and the end A as the far end.Relation shown in eq. (i) above may be worded as follows:

    Moment at the near end of a member = sum of

    a) The fixed end moment at the near end due to the loading on the member.

    b) Twice the rotation contribution of the near end,

    c) The rotation contribution of the far end.

    Figure 1.3.3. shows a multistoreyed frame. If no lateral joint displacements

    occur for the members, the equations of the type obtained above are applicable

    to all the members.

    33

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    34/197

    Fig 1.3.3. Multistoreyed frame

    Consider the various members meeting at the joint A. The end

    moments at A for the members meeting at A are therefore given by

    Mab = abM + 2M'ab + M

    'ab

    Ma-10 = 10aM + 2M'a-10 + M

    '10-a

    Ma-5 = 5aM + 2M'a-5 + M

    '5-a

    Ma-2 = 2aM + 2M'a-2 + M'2-a

    For the equilibrium of the joint A, the sum of all the end

    moments at A must be equal to zero. i.e.

    Mab = 0

    Mab = abM + 2M'ab + M'ba = 0 ....................(iii)

    Where,

    abM = algebraic sum of the fixed end moments at A for all the

    members meeting at A.

    M'ab = algebraic sum of the rotation contributions at A for all

    the members meeting at A.

    34

    ....................(ii)

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    35/197

    M'ba = algebraic sum of the rotation contributions at the far end

    joints with respect to joint A.

    For the frame shown in Fig.1.3.3.

    abM = abM + 10aM + 5aM + 2aM

    M'ab = M'ab+ M'a-10+ M'a-5+ M'a-2

    M'ba = M'ba+ M'10-a+ M'5-a+ M'2-a

    From eq. (iii), we have, M'ab = { }baab MM'

    2

    1+

    ....................(i)

    But know for the member AB, with the end B fixed, the moment

    required at A so as to rotate the joint A by a is given by

    Fig : 1.3.4. Rotational end moment at A

    2M'ab =ab

    ab

    l

    El4

    a = 4EKaba

    M'ab = 2EKaba

    Where, Kab =ab

    ab

    l

    l

    and E = Young's modulus

    Now consider the members meeting at the joint A. The end

    rotation at A of each member meeting at A equals a. Assuming that the

    young's moduli to be the same for all the members, we have,

    35

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    36/197

    M'ab = 2EaKab

    ab

    ab

    M

    M

    '

    '

    = abab

    K

    K

    M'ab =

    ab

    ab

    K

    K abM' ..................(v)

    From equations (iv) and (v), we get,

    M'ab =

    abab

    K

    K

    2

    1 { }baab MM

    '+

    The ratio

    abab

    K

    K

    2

    1is called the rotation factor for the member AB at the

    joint A. Let Uab be the rotation factor at the joint A for the member AB.

    M'ab = Uab { }baab MM'+ ................... (vi)

    Now consider equation (vi). The summation abM can be

    computed. This is therefore a known quantity. If trial values be assumed for

    the far end rotation contributions the approximate value of the near end

    rotation contribution can be computed from equation (vi).

    By successive application of equation (vi) to the various joints the

    rotation contributions can be determined.

    For instance as a first approximation assuming that the rotation

    contributions of the far ends of the members meeting at A to be zero, the

    rotation contribution at A for the member AB is given by

    M'ab = Uab abM

    By a similar approximation the rotation contributions at other

    joints are also determined. With the approximate values of the rotationcontributions computed, it is possible to again determine a more correct value

    of the rotation contribution at A for the member AB using the equation.

    M'ab = Uab { }baab MM'+

    36

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    37/197

    The process mentioned above is repeated so that more and more

    accurate values of the rotation contributions are obtained. After attaining the

    desired extent of accuracy in the values of the rotation contributions the final

    moments can be easily computed from the relations like.

    Mab = abM +2M'ab+M

    'ba

    Some important points to be remembered

    a) If an end of a member is fixed the rotation at the end being zero, the

    rotation contribution at the end is also zero.

    b) If an end of a number is hinged or pinned, it will be convenient to

    consider the end as fixed and to take the relative stiffness as .43ll

    Fig : 1.3.5. Relative Stiffness

    37

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    38/197

    Load Calculation on Analysis of frame

    Roof

    Live load =73.4

    6.52+

    73.4

    8.1

    = 2.75 kN/m

    Parapet = 2.25 kN/m

    D.L (Roof. beam) = 3.75 + 2.58

    = 6.34 kN/m

    Floor terrazo = 0.89 kN/m

    Plastering = 0.3 kN/m

    Finishing = 0.47 kN/m

    Total load W = 13 kN/m

    Factored load Wu = 1.5 x 13

    = 19.5 kN/m

    I Floor

    Live load = 2.75 kN/m

    Dead load(Roof, beam) = 6.34 kN/m

    Brick wall (230mm)

    of 3m height = 13 kN/m

    Stone Floor = 0.71 kN/m

    Plastering = 0.3 kN/m

    Finishing = 0.9 kN/m

    Total load W = 24 kN/m

    Factored load Wu = 1.5 x 24

    = 36 kN/m

    38

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    39/197

    Frame @ AA'

    Fixed End Moment

    BDM =12

    2wl

    =12

    )88.4(36 2

    = -71.44 kN.m

    DB = 71.44 kN.m

    CFM =12

    )1.6(5.19 2

    = -60.46 kN.m

    FCM = 60.46 kN.m

    DGM =12

    )1.6(36 2

    = -111.63 kN.m

    GDM = 111.63 kN.m

    GIM =

    12

    )96.3(36 2

    = -47.04 kN.m

    IGM = 47.04 kN.m

    39

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    40/197

    Joint Member R.S T.R.S D.F R.F

    BBA I/3

    0.538 I0.62 -0.31

    BD I/4.88 0.38 -0.19

    CCD I/3

    0.49I0.68 -0.34

    CF I/6.10 0.32 -0.16

    D

    DC I/3

    1.03 I

    0.32 -0.16

    DB I/4.88 0.20 -0.1

    DG I/6.1 0.16 -0.08

    DE I/3 0.32 -0.16

    FFC I/6.1

    0.49I0.32 -0.16

    FG I/3 0.68 -0.34

    G

    GF I/3

    1.08 I

    0.31 -0.155

    GD I/6.1 0.15 -0.175

    GI I/3.96 0.23 -0.115

    GH I/3 0.31 -0.155

    IIG I/3.96

    0.58 I0.43 -0.215

    IJ I/3 0.57 -0.285

    40

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    41/197

    41

    CF

    -60.46 -0.

    16

    -0.34

    -60.46 3.75

    -0.

    16

    60.46

    -0.34

    8.99

    11.16

    11.19

    11.23

    11.24

    -11.11

    -10.39

    -10.61

    -10.64

    -10.6519.11

    23.7223.77

    23.86

    23.88

    0.850.872

    0.908

    1.8

    4.25

    -0.16

    -0.

    1

    -40.19 -0.

    08

    D-111.63 111.63

    2.13

    0.9

    0.45

    0.43

    0.42

    -3.23

    -2.57

    -2.49

    -2.48

    -2.48

    -5.13-5.13

    -5.15

    -5.32

    -6.68

    -23.61

    22.07

    -22.55-22.62

    -22.63

    4.25

    1.8

    0.9080.872

    0.85

    -0.155-0.

    075

    64.59

    -0.155

    -0.

    115

    0.16

    -4.95

    -3.95

    -3.82

    -3.80

    -3.80

    -47.04

    B -71.44

    -0.31

    -0.

    19

    -71.44 71.44

    13.57

    13.06

    13.3613.46

    13.47

    2.66

    1.12

    0.56

    0.54

    0.5322.1421.32

    24.71

    21.97

    21.97

    HEA

    47.04

    -0.285

    -0.

    12

    -11.99-12.28

    -12.31

    -12.32-12.32

    J

    47.04

    -9.04

    -9.26

    -9.29-9.29

    -9.29

    -0.

    215

    -6.68

    -5.32

    -5.15-5.13

    -5.13

    G

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    42/197

    42

    B

    C-60.46 60.46

    11.24

    11.24-10.65

    -48.63

    -10.65

    -10.6511.24

    50. 4

    25.58

    23.88

    0.850.85

    -111.63 111.63

    0. 42

    0. 42

    -2 . 48

    -113.27

    -2. 48

    -2. 48

    0. 42

    -113.27

    0.85

    0.85

    1. 7

    F

    -22.63

    -22.63

    -5.13

    50. 4

    -32.87

    -5.12

    -5.12

    -22.63

    -47.04G 47.04

    -3.80

    -3.80

    -9.29

    -48.63

    -9.29

    -9.29

    -3.80

    24.66

    -5. 13

    -5. 13

    -10.26

    I

    -12. 3

    -12. 3

    -24.6

    D

    0. 53

    0. 53

    13 .47

    85. 97

    13.47

    13.47

    0.53

    -43.97

    21.97

    21.97

    43.94

    -71.44 71.44

    A E H J

    43.94

    0.85 -5.13 -12

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    43/197

    43

    B

    C-48.63 50.4

    -113.27 107.09

    F

    - 63.93G 24.66I

    D-43.97 85.97

    A E H J

    - 50.448.63

    43.94

    25.58

    1.7

    -32.87

    - 10.26- 24.6

    43.94 0.85 -5.13 -12.32

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    44/197

    Frame @ BB'

    Fixed End Moment

    MBC =12

    )88.4(36 2

    = -71.44 kNm

    MCB = 71.44 kN.m

    MEF =12

    )88.4(5.19 2

    = -38.69 kNm

    MFE = 38.69 KN.M

    MFG =12

    )1.6(5.19 2

    = -60.46 KNM

    MGF = 60.46 KNM

    MGH =12

    )96.3(5.19 2

    = -25.48 kNm

    MHG = 25.48 kNm

    MIJ =12

    )96.3(362

    = -47.04 kNm

    MJI = 47.04 KN.M

    44

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    45/197

    Joint Member R.S T.R.S D.F R.F

    B

    BA I/3

    0.87 I

    0.38 -0.14

    BC I/4.88 0.24 -0.12BE I/3 0.38 -0.14

    C

    CB I/4.88

    0.87 I

    0.24 -0.12

    CD I/3 0.38 -0.19

    CF I/6.10 0.38 -0.19

    EEB I/3

    0.54 I0.62 -0.31

    EF I/4.88 0.38 -0.19

    FFE I/4.88

    0.70 I0.29 -0.145

    FG I/6.1 0.23 -0.115

    FC I/3 0.48 -0.24

    G

    GF I/6.1

    0.75 I

    0.22 -0.11

    GH I/3.96 0.33 -0.165

    GI I/3 0.45 -0.225

    HHG I/3.96

    0.58 I0.44 -0.22

    HJ I/3 0.56 -0.28

    I

    IG I/3

    0.92 I

    0.36 -0.18

    IJ I/3.96 0.28 -0.14

    IK I/3 0.36 -0.18

    J

    JH I/3

    0.92 I

    0.36 -0.18

    JI I/3.96 0.27 -0.135

    JL I/3 0.37 -0.185

    45

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    46/197

    46

    FG

    -21.78 -0.

    115

    -0.24

    -60.46 60.46

    -0.

    11

    34.98

    -0.225

    3.37

    3.90

    4.014.02

    -4.22

    -5.17

    -5.45-5.40

    -16.89-16.84

    -16.53

    -14.93

    -0.19

    -0.

    12

    -7.44 -0.

    08

    D

    11.78

    11.78

    11.77

    10.22

    -8.63

    -10.56

    -11.16

    -11.05

    -14.93

    -16.54

    -16.84-16.89

    -0.18

    -47.04

    -0.18

    0.

    14

    0.19

    7.79

    9.15

    9.169.16

    -47.04 47.04

    -7.80

    -7.25

    -7.38

    -7.30

    47.04-0.

    135

    -0.185

    I

    -10.69

    -9.94

    -10.12-10.01

    B -71.44

    -0.19

    -0.

    120

    -71.44 71.44

    7.13

    8.84

    9.09

    9.13

    -9.43

    -10.47

    -10.64

    -10.6711.29

    14.0114.4

    14.46

    LKDA

    -0.

    145

    -0.

    165

    -6.33

    -7.75

    -8.18

    -8.14

    -1.93

    -1.15

    -1.64

    -1.03

    -25.48 25.480.

    22

    25.28

    -0.28

    -2.45

    -1.47-2.08

    -1.31 -9.74

    -9.85

    -9.67

    -10.40J

    -0.18

    10.22

    11.7711.78

    11.78

    I

    C

    -0.19

    14.46

    14.40

    14.0111.29

    12.00

    7.176.125.96

    7.35

    4.39

    3.75

    3.65

    4.25

    4.93

    5.06

    5.07

    -38.69

    -0.31

    -0.

    19

    -38.69 38.69

    E

    7.05

    8.158.368.40

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    47/197

    47

    B

    F-60.46 60.46

    4.024.02

    -5.40

    -57.82

    -5.40-5.40

    4.02

    53.68

    -25.38

    8.40

    -16.89

    -16.89

    -16.89

    -16.89

    -33.78

    11.78

    11.78

    23.56

    -8.17

    -8.17

    -1.03

    -42.85

    12.5

    -11.05

    11.78

    11.78

    -47.04G 47.04

    9.16

    9.16

    -7.30

    -36.02

    -7.30

    -7.30

    -9.16

    41.60

    J

    -10.01

    -10.01

    -20.02

    C

    -10.67

    -10.67

    9.13

    59.23

    9.13

    9.13

    -10.67

    -63.85

    14.4614.46

    28.92

    -71.44 71.44

    A D K L

    14.64

    -16.89 11.78 -10.01

    G -25.48 25.48H

    8.40

    -16.89

    -16.89

    I

    - 1.03- 1.03

    -8.17

    -15.25

    - 1.31

    - 1.31

    -9.74

    -12.36

    -11.05

    11.78

    11.7810.32 -20.79

    - 1.31- 9.74

    -9.74

    38.69-38.69

    E

    3.653.65

    5.07

    -26.32

    5.075.07

    3.65

    52.48

    5.965.96

    14.46

    26.38

    34.88

    5.96

    14.46

    14.46

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    48/197

    48

    B

    F-57.82 53.65

    36.02I 41.60J

    C-63.85 59.23

    A D K L

    14.64

    -16.89 11.78 -10.01

    G -42.85 15.25H

    52.48-26.32

    E

    26.38 -0.09-10.32 -12.36

    34.88

    28.92 -33.78 -2356

    -25.38

    12.51

    -20.79

    -20.02

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    49/197

    Frame @ CC'

    Fixed End Moment

    CDM =12

    2wl

    =12

    )27.4(5.19 2

    = -29.62 kN.m

    DCM = 29.62 kN.m

    DGM =

    12

    )1.6(5.19 2

    = -60.46 kN.m

    GDM = 60.46 kN.m

    BEM =12

    )27.4(36 2

    = -54.69 kN.m

    EBM = 54.69 kN.m

    EHM =12

    )1.6(36 2

    = -111.63 kN.m

    HEM = 111.63 kN.m

    49

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    50/197

    Joint Member R.S T.R.S D.F R.F

    B

    BA I/3

    0.9 I

    0.37 -0.185

    BE I/4.27 0.26 -0.130

    BC I/3 0.37 -0.185

    CCB I/3

    0.56 I0.59 -0.295

    CD I/4.27 0.41 -0.205

    D

    DC I/4.27

    0.73 I

    0.32 -0.16

    DG I/6.10 0.22 -0.11

    DE I/3 0.46 -0.23

    E

    ED I/3

    1.06 I

    0.31 -0.15

    EB I/4.27 0.22 -0.11

    EH I/6.10 0.15 -0.08

    EF I/3 0.31 -0.15

    GGD I/6.10

    0.497 I0.33 -0.165

    GH I/3 0.67 -0.335

    H

    HG I/3

    0.83 I

    0.40 -0.2

    HE I/6.10 0.20 -0.1

    HI I/3 0.40 -0.2

    50

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    51/197

    51

    D G

    -30.84 -0.

    11

    -0.23

    -60.46 60.46-0.

    165

    60.46

    -0.335

    2.95

    3.43

    2.95

    2.87

    2.86

    -10.46

    -7.44

    -7.13-7.09

    -7.09

    8.31

    8.31

    8.278.01

    6.55

    -0.15

    -0.

    12

    -56.94 -0.

    08

    D

    -20.33-20.33

    -20.31

    -20.15

    -18.77

    6.55

    8.01

    8.27

    8.318.31

    -18.77

    -20.15

    -20.31

    -20.33-20.33

    -0.2

    111.63

    -0.2

    0.

    1

    0.15

    B -54.69

    -0.185

    -0.

    130

    -54.69 54.69

    7.10

    5.73

    5.68

    5.68

    5.65

    4.80

    5.87

    6.066.09

    6.10

    10.118.16

    8.09

    8.098.05

    KFA

    -0.

    16

    C

    -0.185

    8.05

    8.09

    8.098.16

    10.11

    5.75

    5.06

    4.875.10

    5.13

    3.99

    3.51

    3.393.53

    3.56

    4.29

    4.99

    4.304.18

    4.16

    -29.62

    -0.295

    -0.

    205

    -29.62 29.62

    C

    -111.63 111.63

    3.49

    4.27

    4.41

    4.43

    4.43

    -9.38

    -10.07

    -10.15

    -10.16

    -10.16

    -21.24

    -15.11

    -14.49-14.41

    -14.40

    6.17

    7.186.186.01

    6.01

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    52/197

    52

    5.13

    5.13

    8.05

    18.31

    B

    60.46

    2.86

    2.86

    -7.09

    -61.83

    - 4. 43

    4. 43

    -10. 16

    -111.83

    12.5

    -10.16-10.16

    4.43

    95.74

    J

    -20. 33

    -20. 33

    -40.66

    6. 106. 10

    5. 65

    59.23

    5. 65

    5. 65

    6. 10

    -37.31

    8.318.31

    16.62

    -54.69

    A F I

    - 14.40- 14.40

    -20.33

    -49. 13

    -29.62

    21.23

    5.13

    8.05

    8.05

    EB H

    D GC

    54.69

    3. 56

    3. 56

    4. 16

    -18.34

    4. 16

    4. 16

    3. 56

    41. 5

    29.62 - 60.46

    8.316.01

    6.01

    53.68

    -7.09

    -7.09

    2.86

    49.14

    -55.06

    -14.40

    -20.33

    -20.33

    - 111.63 111.63

    6.01

    8.31

    8.31

    8.058.05

    16.10

    8.05 8.31 -20.3

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    53/197

    53

    B

    D-61.83

    22.63

    E95.74

    H-37.31 72.54

    A D I

    49.14G

    -18.34E 41.5

    -111.83

    -55.0

    16.62 -40.6

    21.23

    16.1

    8.05 8.31 -20.

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    54/197

    Frame @ DD'

    Fixed End Moment

    ABM =12

    2wl

    =12

    )73.4(5.19 2

    = -36.35 kN.m

    BAM = 36.35 kN.m

    BCM =

    12

    )52.1(5.19 2

    = -3.75 kN.m

    CBM = 3.75 kN.m

    DEM =12

    )73.4(36 2

    = -67.12 kN.m

    EDM = 67.12 kN.m

    EFM =

    12

    )52.1(36 2

    = -6.93 kN.m

    FEM = 6.93 kN.m

    54

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    55/197

    FGM =12

    )96.3(36 2

    = -47.04 kN.m

    GFM = 47.04 kN.m

    Joint Member R.S T.R.S D.F R.F

    AAB 0.211 I

    0.544 I0.39 -0.195

    AD 0.333 I 0.61 -0.305

    B

    BA 0.211 I

    1.202 I

    0.17 -0.085

    BC 0.658 I 0.55 -0.275

    BE 0.333 I 0.28 -0.14

    C

    CB 0.658 I

    0.991 I

    0.66 -0.33

    CF 0.333 I 0.34 -0.17

    D

    DA 0.333 I

    0.877 I

    0.38 -0.19

    DH 0.333 I 0.38 -0.19

    DE 0.211 I 0.24 -0.12

    E

    EB 0.333 I

    1.535 I

    0.22 -0.11

    ED 0.211 I 0.14 -0.07

    EF 0.658 I 0.42 -0.21

    EI 0.333 I 0.22 -0.11

    F

    FC 0.333 I

    1.576 I

    0.21 -0.105

    FE 0.658 I 0.42 -0.21FJ 0.333 I 0.21 -0.105

    FG 0.252 I 0.16 -0.08

    GGF 0.252 I

    0.585 I0.43 -0.215

    GK 0.333 I 0.57 -0.285

    55

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    56/197

    56

    BC

    32.6 -0.

    275

    -0.14

    -3.75 3.75

    -0.

    33

    3.75

    -0.17

    -10.91

    -9.32

    -8.21

    -7.82

    -7.8

    2.36

    0.043

    -0.83

    -0.95

    -1.0-5.56

    -4.74-4.18

    -3.98

    -3.9

    -8.62-8.61

    -8.53

    -8.12

    -6.75-0.11

    -0.

    07

    60.19 -0.

    21

    E-6.93 6.93

    -12.88

    -15.50

    -16.29

    -16.43

    -16.45

    10.87

    13.98

    14.29

    14.34

    14.35

    7.177.17

    7.15

    6.99

    5.44

    1.22

    0.022

    -0.43-0.49

    -0.5

    -6.75

    -8.12

    -8.53-8.61

    -8.62

    5.446.99

    7.15

    7.177.17

    -0.105-0.

    21

    -40.11

    -0.105

    0.

    08

    0.11

    4.14

    5.33

    5.45

    5.46

    5.46

    -47.04 47.04-11.00

    -11.26

    -11.28

    -11.28

    -11.28

    47.04

    -0215

    -0.285

    G

    -14.59

    -14.93

    -14.96

    -14.96-14.96

    D -67.12

    -0.19

    -0.

    12-67.12 67.12

    6.72

    7.50

    7.687.75

    7.74

    -4.29

    -5.17

    -5.43

    -5.48

    -5.4810.6411.88

    12.15

    12.27

    12.26

    KJIH

    A

    -36.35

    -0.305

    11.098.87

    8.34

    8.15

    8.10

    7.095.67

    5.33

    5.21

    5.27

    -3.37-2.86

    -2.54

    -2.42

    -2.4

    -0.

    088

    12.2612.27

    12.1511.88

    10.64

    -0.19

    -0.

    195

    -36.35 36.35

    F

    12.26-8.62 7.17

    -14.9

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    57/197

    57

    -21.14

    E

    -67.12

    -36.35A

    -6.93

    8.1

    12.26

    12.26

    12.26

    12.2624.52

    -0.5

    -0.5

    7.17

    6.17

    -47.04F

    6.93

    36.35 -3.75 3.75

    -1. 0

    -1. 0

    -7. 8

    -6.05

    -7. 8

    -7. 3

    -1. 0

    -20.35

    -2.4

    -2.4

    5.2

    36.75

    5. 2

    5. 2

    -2 .4

    -28.35

    8. 1

    8. 1

    12.26

    28.46

    32.62

    67.12

    7. 74

    7. 74

    -5.48

    -57.12

    -5.48

    -5.48

    7.74

    63 .9

    -16.45

    -16.4514.35

    - 25.48

    14.35

    14.35

    -16.45

    19.18

    -8. 62

    -8. 62

    -17.24

    47.04

    5.46

    5.46

    -11.28

    25.48

    -11.28

    -11. 28

    5.46

    29.94

    -14

    -14.9-29

    H I J K

    BC

    -3.90

    -8.62

    -8.62

    -3.9-3.9

    -8.6

    -16.40

    G

    7.17

    7.17

    -17.24

    12.26-8.62 7.17

    -14.9

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    58/197

    58

    -57.12

    -28.35A

    -25.48

    24.52

    -47.4E

    19.18

    36.75 -20.35 -6.05

    63.9 29.94

    12.26 -8.62 7.17-14.96

    BC

    -16.4

    32.62

    D

    E

    6.17

    13.84

    G

    14.34-17.24

    28.46

    H I JK

    -29.92

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    59/197

    Frame @ EE'

    Fixed End Moment

    ABM =12

    2wl

    =12

    )96.3(5.19 2

    = -25.48 kN.m

    BAM = 25.48 kN.m

    CDM =12

    )98.1(36 2

    = -11.76 kN.m

    DCM = 11.76 kN.m

    DEM =12

    )96.3(36 2

    = -47.04 kN.m

    EDM = 47.04 kN.m

    EFM =12

    )27.4(362

    = -54.69 kN.m

    FEM = 54.69 kN.m

    Joint Member R.S T.R.S D.F R.F

    59

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    60/197

    CCD 0.505 I

    0.838 I0.60 -0.3

    CG 0.333 I 0.40 -0.2

    D

    DE 0.253 I

    1.406 I

    0.18 -0.09

    DH 0.333 I 0.24 -0.12

    DC 0.505 I 0.34 -0.17

    DA 0.333 I 0.24 -0.12

    AAB 0.253 I

    0.586 I0.43 -0.215

    AD 0.333 I 0.57 -0.285

    BBA 0.253 I

    0.586 I0.43 -0.215

    BE 0.333 I 0.57 -0.285

    E

    EF 0.234 I

    1.153 I

    0.20 -0.1

    ED 0.253 I 0.22 -0.11

    EI 0.333 I 0.29 -0.145

    EB 0.333 I 0.29 -0.145

    FFE 0.234 I

    0.567 I0.40 -0.2

    FI 0.333 I 0.60 -0.3

    60

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    61/197

    61

    AB

    -25.48 -0.

    215

    -0.285

    -25.48 25.48-0.

    215

    25.48

    -0.285

    4.66

    6.25

    6.47

    6.58

    6.59

    -6.48

    -7.24

    -7.69

    -7.74

    -7.75

    6.17

    8.288.58

    8.73

    8.75

    -0.12

    -0.

    17

    -35.28 -0.

    09

    D

    -47.04 47.04

    2.86

    2.17

    1.96

    1.92

    1.90

    1.47

    2.89

    3.01

    3.02

    3.02

    3.98

    3.98

    3.96

    3.811.94

    -8.59

    -9.59-10.19

    -10.26

    -10.27

    3.812.89

    2.62

    2.55

    2.53

    1.94

    3.81

    3.963.98

    3.98

    -0.145-0.

    11

    -7.65

    -0.145

    0.

    1

    0.12

    1.34

    2.63

    2.73

    2.75

    2.75

    -54.69 54.69

    -11.21

    -11.46

    -11.48

    -11.49

    -11.49

    54.69-02

    -0.3

    F

    -16.81

    -17.19

    -17.23-17.23

    -17.23

    C

    -11.76

    -0.2

    -0.

    3-11.76 11.76

    3.528

    1.912.3

    2.4

    2.4

    5.39

    4.09

    3.71

    3.62

    3.592.352

    1.27

    1.53

    1.61

    1.62

    JIHG

    -0.19

    2.53

    2.55

    2.62

    2.893.81 E

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    62/197

    62

    B

    A-25.48 25.48

    6.59

    6.59-7. 75

    -20.05

    -7.75

    -7.756.59

    16.57

    13.818.75

    2.53

    2.53

    -47.04 47.04

    1. 90

    1. 90

    3. 02

    -40.22

    3.02

    3.02

    1.90

    54.98

    2.532.53

    5.06

    B

    -10.27

    -10.27

    3.98

    -16.56

    -5.12

    -5.12

    -22.63

    -54.69E 54.69

    2. 75

    2. 75

    -11.49

    -60.68

    -11.49

    -11.49

    2.75

    34.46

    3.983.98

    7.96

    F

    -17.2

    -17.2

    -34.4

    D

    3. 59

    3. 59

    2. 4

    21.34

    2.4

    2.43.59

    -3.37

    1.62

    1.623.24

    -11.76 11.76

    G H I J

    1.62 2.53 -3.98 -17.2

    8.75

    8.75

    2.53

    20.03

    13.81 -2.31

    -10.27

    3.983.98

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    63/197

    63

    C

    A-20.05 16.57

    -40.22 54.98

    B

    -60.68E 34.46

    F

    D-3.37 21.34

    G H I J

    1.62 2.53 -3.98 -17.23

    13.81 2.31

    7.963.24 5.06

    -34.46

    20.03 -16.57

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    64/197

    Frame @ FF'

    Fixed End Moment

    CDM =12

    2wl

    =12

    )96.3(5.19 2

    = --25.48 kN.m

    DCM = 25.48 kN.m

    BEM =12

    )96.3(36

    2

    = -47.04 kN.m

    BBM = 47.04 kN.m

    EGM =

    12

    )27.4(36 2

    = -54.69 kN.m

    GEM

    = 54.69 kN.m

    64

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    65/197

    Joint Member R.S (I/l) T.R.S D.F R.F

    B

    BA I/3

    0.92 I

    0.36 -0.18

    BC I/3 0.36 -0.18

    BE I/3.96 0.28 -0.14

    CCB I/3

    0.58 I0.57 -0.285

    CD I/3.96 0.43 -0.215

    D DC I/3.96 0.58 I 0.43 -0.215

    DE D/3 0.57 -0.285

    E

    ED I/3

    1.15 I

    0.29 -0.145

    EB I/3.96 0.22 -0.11

    EG I/4.27 0.20 -0.10

    EF I/3 0.29 -0.145

    GGE I/4.27

    0.56 I0.41 -0.205

    GH I/3 0.59 -0.295

    65

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    66/197

    D

    -0.

    16

    60.46

    -0.34

    -8.30-9.13

    -9.17

    -9.84

    -9.86

    1.36

    3.13

    3.44

    3.48

    3.49

    -0.145

    -0.

    11

    -7.69

    -0.145

    0.

    10

    0.94

    2.16

    2.37

    2.40

    2.40

    -47.04

    -11.40

    -11.65

    -11.69-11.70

    -11.70

    54.69

    -0205

    -0.295

    G

    -16.41

    -16.77

    -16.83

    -16.84

    -16.84

    B -47.04

    -0.18

    -0.

    14 -47.04

    6.58

    5.76

    5.28

    5.19

    5.178.46

    7.40

    6.796.68

    6.65

    HFA

    C

    -25.48

    -0.285

    6.65

    6.68

    6.79

    7.40

    8.46

    3.65

    5.32

    5.49

    5.61

    5.64

    4.85

    6.93

    7.29

    7.44

    7.48

    -0.18

    -0.

    215

    -25.48 25.48

    -6.26

    -6.89

    -7.33

    -7.42

    -7.43

    47.04

    1.03

    2.38

    2.61

    2.64

    2.64

    E

    3.493.48

    3.44

    -3.13

    1.36

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    67/197

    B

    C -25.48 25.48

    7. 48

    7. 486. 65

    21.61

    5. 64

    5. 64-7. 43

    -21.63 -16.23

    2. 64

    2. 64

    5. 17

    57.49

    3.49

    3.49

    6.98

    -54.69 54.69

    2. 40

    2. 40

    -11 70

    -61.59-16.84

    -16.84

    -33.68

    G

    5. 17

    5. 17

    2. 64

    -34.06

    6.65

    6.65

    13.3

    -47.04 47.04

    A F H

    6.65 3.49 -16.84

    -7.43

    -7.43

    5.64

    16.26

    E

    -11.70

    -11.70

    2.40

    33.69

    20.78

    7.48

    6.65

    6.65

    -9.86

    -9.863.47

    -9.86

    3.47

    3.47

    -2.88

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    68/197

    B

    C -21.63 16.26

    -61.59 33.69G

    -34.06 57.49

    A F H

    6.65 3.49 -16.84

    E

    -16.23

    -2.58

    D

    33.686.98

    21.61

    -20.78

    13.3

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    69/197

    Frame @ GG'

    Fixed End Moment

    CDM =12

    2wl

    =( )

    12

    98.15.192

    = -6.37 kN.m

    DCM = 6.37 kN

    .m

    BEM =( )12

    98.1362

    = -11.76 kN.m

    EBM = 11.76 kN.m

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    70/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    71/197

    @ C

    Sum of F.E.M. @ C = -6.37

    Rotation Contributions of far ends,

    @ B = 0@ D = 0

    -6.37

    M'CD = Ucd cdc MM'

    +

    = -0.3 [-6.37 + 0]

    = 1.91 kNm

    M'CB = Ucb cbc MM'

    +

    = -0.2 [-6.37 + 0]

    = 1.27 kNm

    @ B

    Sum of F.E.M. @ B = -11.76

    Rotation Contributions of far ends,

    @ C = 1.27

    @ A = 0.00

    @ E = 0.00

    -16.37

    M'BE = -10.47 x -0.22

    = 2.3 kNm

    M'BC = -10.47 x -0.14

    = 1.46 kNm

    M'BA = -10.47 x -0.14

    = 1.46 kNm

    4-1

    -1

    -1

    -1

    -1

    47

    -0

    -14

    -14

    -14

    -14

    -14

    4-1

    -1

    -1

    -1

    -1

    47

    -0

    -14

    -14

    -14

    -14

    -14

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    72/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    73/197

    4-1

    -1

    -1

    -1

    -1

    47

    -0

    -14

    -14

    -14

    -14

    -14

    4-1

    -1

    -1

    -1

    -1

    47

    -0

    -14

    -14

    -14

    -14

    -14

    CD

    EB

    -

    3.

    4

    5

    A

    -6.37

    1. 46

    1 .46

    0. 00-3.45

    6.37

    0.000.00

    1.46

    7.83

    0.00

    0.97

    0.971.51

    3.45

    3.99

    0.971.51

    1.510.00

    -11.76 11.76

    2. 37

    2. 37

    0. 00

    -7.02

    0. 00

    0. 00

    2. 37

    14.13

    0. 00

    1. 51

    1.51

    0. 00

    3.02

    1.51

    1.51

    0.00

    0.00

    0.00

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    74/197

    C -3.457.83 D - 7.83 3.45

    3.99 -7.02 14.13 - 14.13 7.02

    G

    E

    H

    - 3.99

    - 1.511.51

    B

    3.02 - 3.02

    A F I

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    75/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    76/197

    Joint Member R.S T.R.S D.F R.F

    B

    BA I/3

    0.99 I

    0.34 -0.17

    BC I/1.52 0.66 -0.33

    C

    CB I/1.52

    1.24 I

    0.53 -0.265

    CD I/3 0.217 -0.135

    CE I/3.96 0.2 -0.1

    E

    EC I/3.96

    0.58 I

    0.43 -0.215

    EF I/3 0.57 -0.285

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    77/197

    CB

    -3.75-0.

    33

    -0.17

    -3.75 3.75

    1.24

    -0.55-1.23

    -1.3

    -1.3

    5.43

    7.477.69

    7.72

    7.72

    -0.

    265

    -21.73-0.

    1

    -0.135

    -25.48 25.48

    2.049

    2.822.90

    2.91

    2.91

    -5.92

    -6.08-6.10

    -6.1

    -6.1

    E

    25.48-0.

    215

    -0.285

    -7.85

    -8.06

    -8.08

    -8.09

    -8.09

    2. 766

    3.81

    3.92

    3.93

    3.93

    0.64

    -0.28

    -0.63

    -0.67

    -0.67

    A D F

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    78/197

    @ B

    Sum of F.E.M = -3.75

    @ C = 0.00@ A = 0.00

    -3.75

    -3.75 x -0.33 = 1.24

    -3.75 x -0.17 = 0.64

    @ C

    Sum of F.E.M = -21.73

    1.24

    0.00

    0.00

    -20.49

    -20.49 x -0.265 = 5.43

    -20.49 x -0.1 = 2.049

    -20.4 x -0.135 = 2.766

    @ E

    Sum of F.E.M =

    2.48

    @ C = 2.049

    @ F = 0.000

    27.529

    27.53 x -0.215 = -5.92

    27.53 x -0.285 = -7.85

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    79/197

    @ B

    -3.75

    @ A = 0.00

    @ C = 5.43

    1.68

    1.68 x -0.33 = -0.55

    1.68 x -0.17 = -0.28

    @ C

    -21.73

    @ B = -0.55

    @ E = -5.92

    @ D = 0.00

    -28.20

    -28.2 x -0.265 = 7.47

    -28.2 x -0.135 = 3.81

    -28.2 x -0.1 = 2.82

    @ E

    2548

    @ C = 2.82

    @ F = 0.0028.30

    28.3 x -0.215 = -6.08

    28.3 x -2.85 = -8.06

    @ B

    -3.75

    @ C = 7.47

    @ A = 0.003.72

    3.72 x -0.33 = -1.23

    3.72 x -0.17 = -0.63

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    80/197

    @ C

    -21.73

    @ B = -1.23

    @ D = 0.00

    @ E = -6.08-29.04

    -29.04 x -0.265 = 7.69

    -29.04 x -0.135 = 3.92

    -29.04 x -0.1 = 2.9

    @ E

    25.48

    @ C = 2.90@ F = 0.00

    28.38

    28.38 x -0.215 = -6.10

    28.38 x -0.285 = -8.08

    @ B

    -3.75

    @ C = 7.69

    @ A = 0.003.94

    3.94 x -0.17 = -0.67

    3.94 x -0.33 = -1.3

    @ C

    Sum of F.E.M = -21.73

    @ B = -1.3

    @ E = -6.10

    @ D = 0.00-29.13

    -29.13 x -0.265 = 7.72

    -29.13 x -0.135 = 3.93

    --29.13 x -0.1 = 2.913

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    81/197

    @ E

    Sum of F.E.M = 25.48

    2.91

    0.00

    28.3928.39 x -0.215 = -6.1

    28.39 x -0.285 = -8.09

    @ B

    -3.75

    7.72

    0.00

    3.973.97 x -0.17 = -0.67

    3.97 x -0.33 = -1.3

    @ C

    -21.73

    -1.3

    -6.1

    -29.13

    -29.13 x -0.265 = 7.72

    -29.13 x -0.135 = 3.93

    -29.13 x -0.1 = 2.913

    @ E

    25.48

    2.91

    0.00

    28.3928.39 x -0.215 = -6.10

    28.39 x -0.285 = -8.09

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    82/197

    H

    - 1.51

    A

    B

    -0.67

    -0.67

    -1.34

    -3.753.75 C

    -1.33

    -1.37

    7.72

    1.37

    7.72

    7.72

    -1.3

    17.89

    3.93

    3.93

    0

    0

    0

    3.93

    3.93

    0.0

    7.86

    -6.1

    -6.1

    2.91

    16.11

    -8.09

    -8.09

    0.00

    16.18

    -8.09

    -8.09

    0

    0

    0

    0.67

    -0.67

    0.00

    0.00

    0.00

    D F

    H

    - 1.51

    A

    B -3.753.75 C

    -1.33

    -1.37

    7.72

    1.37

    7.72

    7.72

    -1.3

    17.89

    3.93

    3.93

    0

    0

    0

    3.93

    3.93

    0.0

    7.86

    -6.1

    -6.1

    2.91

    16.11

    -8.09

    -8.09

    0.00

    16.18

    -8.09

    -8.09

    0

    0

    0

    0.67

    -0.67

    0.00

    0.00

    0.00

    D F

    -25.76

    -6.1

    2.91

    2.91-25.48

    25.48

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    83/197

    E

    A

    B

    -1.34

    C

    1.3717.89

    3.93

    -25.76

    16.18

    -8.09-0.67

    D F

    16.11

    7.86

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    84/197

    Frame @ II'

    Fixed End Moment

    BDM =12

    2wl

    =( )

    12

    61.0362

    = -1.116 kN.m

    DBM = 1.116 kN.m

    CFM =( )12

    27.45.192

    = -29.62 kN.m

    FCM = 29.62 kN.m

    DGM =

    ( )

    12

    27.4362

    = -54.69 kN.m

    GDM = 54.69 kN.m

    Joint Member R.S T.R.S D.F R.F

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    85/197

    B

    BA I/3

    1.97 I

    0.17 -0.085

    BD I/0.61 0.83 -0.415

    C

    CD I/3

    0.56 I

    0.59 -0.295

    CF I/4.27 0.41 -0.205

    D

    DB I/0.61

    2.54 I

    0.64 -0.32

    DC I/3 0.13 -0.065

    DG I/4.27 0.1 -0.05

    DE I/3 0.13 -0.065

    F

    FC I/4.27

    0.56 I

    0.41 -0.205

    FG I/3 0.59 -0.295

    G

    GF I/3

    0.9 I

    0.37 -0.185

    GD I/4.27 0.26 -0.13

    GH I/3 0.37 -0.185

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    86/197

    CF

    -29.62 -0.

    205

    -0.295

    -29.62 29.62 -0.

    205

    29.62

    -0.295

    5.36

    6.93

    6.65

    6.61

    6.61

    -7.17

    -5.70

    -5.58

    -5.57

    -5.572.91

    2.92

    2.88

    2.94

    3.45

    -0.065

    -0.

    32

    -53.57 -0.

    05

    D

    -54.69 54.69

    2.653

    2.26

    2.21

    2.24

    2.24

    -6.11

    -6.33

    -6.35-6.35

    -6.36

    -9.05

    -9.03

    -9.01

    -8.70

    -10.31

    -8.21

    -8.04-802

    -8.02

    3.45

    2.942.88

    2.92

    2.91

    -8.70

    -9.01

    -903

    -9.04

    -9.05

    -0.185-0.

    13

    54.69

    -0.185

    0.

    1

    0.065

    B

    -1.116

    -0.085

    -0.

    415

    -1.116 1.116

    0.46

    -6.58

    -5.56

    -5.52

    -5.50

    16.99

    14.52

    14.1914.38

    14.360.094

    -1.34

    -1.13-1.11

    -1.12

    HEA

    -0.19

    7.72

    9.98

    9.56

    9.52

    9.52

    G

    -1.12 2.91-9.05

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    87/197

    F 29.62-29.62 D - 7.83

    54.69 -54.69 1.116

    E

    H

    H

    G

    -5.57

    -5.57

    6.61

    25.09

    6.61

    6.61

    -5.57

    -21.97

    9.52

    9.52

    2.91

    21.95

    15.34

    9.52

    2.91

    2.91

    -26.12

    -8.02

    -9.05

    -9.05

    -6.36

    -6.362.24

    44.21

    -9.05

    -9.05

    -18.1

    2.24

    -2.24-6.36

    -56.57

    D

    14.36

    14.365.50

    35.30

    -5.50

    -5.5014.36

    2.244

    -1.116

    -1.1

    -1.12.24

    2.91

    -2.91-5.82

    E A

    -8.02

    -8.09-9.05

    -25.09

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    88/197

    F25.09 -21.97

    C

    21.95

    44.21 -56.57 35.33B

    H

    G

    D

    2.244

    E A

    -25.09

    -26.12

    -18.1-5.82

    -2.24

    -9.052.91

    -1.12

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    89/197

    Frame @ JJ'

    Fixed End Moment

    CDM =

    12

    2wl

    =( )

    12

    73.45.192

    = -36.35 kN.m

    DCM = 36.35 kN.m

    BEM =( )

    12

    73.4362

    = -67.12 kN.m

    EBM = 67.12 kN.m

    Joint Member R.S T.R.S D.F R.F

    76

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    90/197

    B

    BA I/3

    1.29 I

    0.43 -0.215

    BE I/9.46 0.14 -0.07

    BC I/3 0.43 -0.215

    CCB I/3

    2.27 I0.76 -0.38

    CD I/9.46 0.24 -0.12

    77

    -36.35 -0.

    12

    -0.38

    -36.35

    4.36

    2.99

    2.87

    2.8713.819.46

    9.11

    9.08

    CD

    E

    12.47

    12.39

    11.46

    -67.12

    -0.215

    -0

    .07

    -0.215

    B -67.12

    3.73

    4.04

    4.06

    4.0611.46

    12.39

    12.47

    12.47

    A

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    91/197

    78

    CD

    EB

    -

    3.

    4

    5

    A

    -36.35

    2.87

    2.870. 00

    -30.61

    0.00

    9.089.08

    12.47

    30.63

    34.029.08

    12.4712.47

    0.00

    0. 00

    12.47

    12.47

    0. 00

    24.94

    12.41

    12.47

    0.00

    0.000.00

    -67.12

    4.06

    4.06

    -59.00

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    92/197

    79

    C

    B

    -

    3.

    45

    A

    -30.61

    -59.00 59.00

    -30.61

    -30.63

    -34.02

    -30.63

    34.02

    -24.9424.94

    12.47 - 12.47

    D

    E

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    93/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    94/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    95/197

    -36.35

    12.47

    -23.88

    -23.88 x -0.12 = 2.87-23.88 x -0.38 = 9.08

    @ E

    -67.12

    9.08

    -58.04

    -58.04 x -0.07 = 4.06

    -58.04 x -0215 = 12.48

    82

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    96/197

    Table: 1

    Moment for each frame

    Frame MemberMax. B.M

    Design MomentPositive

    (wl2/8)

    Joint Moment

    Negative

    AA'

    A1 A2 90.69 48.63 50.4 48.17 50.4

    A3 A4 107.16 43.97 85.97 42.19 85.97

    A4 A5 167.44 113.27 107.09 57.26 113.27

    A5 A6 70.67 63.93 24.66 26.37 63.93

    BB'

    B1 B2 58.04 26.32 52.48 18.64 52.48

    B2 B3 90.69 57.82 53.68 34.94 57.82

    B3 B4 38.22 42.85 15.25 9.17 42.85

    B4 B5 107.16 63.85 59.23 45.62 63.85

    B5 B6 107.16 63.85 59.23 45.62 63.85

    B7 B8 70.56 36.02 41.60 31.75 41.60

    CC'

    C1 C2 44.44 18.34 41.5 14.52 41.50

    C2 C3 90.69 61.83 49.14 35.20 61.83

    C4 C5 82.04 37.31 72.54 27.11 72.54

    C5 C6 167.44 111.83 95.74 63.65 111.83

    DD'

    D1 D2 54.53 28.35 36.75 21.98 36.75

    D2 D3 5.63 20.35 6.05 -7.57 20.35

    D4 D5 100.67 57.12 63.9 40.51 63.9

    D5 D6 10.39 25.48 19.18 -11.94 25.48

    D6 D7 70.56 47.4 29.94 31.89 47.4

    83

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    97/197

    EE'

    E1 E2 38.22 20.05 16.57 19.91 20.05

    E3 E4 17.64 3.37 21.34 5.28 21.34

    E4 E5 70.56 40.22 54.98 22.96 54.98

    E5 E6 82.04 60.68 34.46 34.47 60.68

    FF'

    F1 F2 38.22 21.63 16.26 19.27 21.63

    F3 F4 70.56 34.06 57.49 24.78 57.49

    F4 F5 82.04 61.59 33.69 34.4 61.59

    GG'

    G1 G2 9.55 3.45 7.83 3.91 7.83

    G2G3 9.55 7.83 3.45 3.91 7.83

    G4 G5 17.64 7.02 14.13 7.06 14.13

    A2 B2 17.64 14.13 7.02 7.06 14.13

    HH'H1 H2 5.63 1.37 17.89 -4.00 17.89

    H2 H3 38.22 25.76 16.11 17.28 25.76

    II

    '

    I1 I2 44.44 25.09 21.97 20.91 25.09

    I3 I4 0.90 44.21 56.57 -49.49 56.57I4 I5 82.04 35.33 22.44 63.25 63.25

    JJ'J1 J2 54.53 30.61 30.61 6.69 30.61

    J3 J4 100.67 59.00 59.00 -17.33 59.00

    84

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    98/197

    CHAPTER IIDESIGNS

    85

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    99/197

    CHAPTER - 2

    DESIGN

    2.1 Design of slab

    Slabs

    The most common type of structural element used to cover floors

    and roofs of building are reinforced concrete slabs of different types. One-

    way slabs are those supported on the two opposite sides so that the loads are

    carried along one direction only. Two-way slabs are supported on all four

    sides with such dimensions such that the loads are carried to the supports

    along both directions.

    If Ly / Lx < 2, then the slab is designed as two way slab

    If Ly / Lx > 2, then the slab is designed as one way slab

    Where,

    Ly = Longer span dimension of the slab

    Lx = Shorter span dimension of slab

    Restrained slabs are referred to as slabs whose corners are prevented form

    lifting. They may be supported on continuous or discontinuous edges.

    1. Types of Slabs

    i) One way slab

    ii) Two way slab

    86

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    100/197

    i) If 2>panshortersspanlonger

    the slab is designed as one way slab.

    ii) If 2 v

    Hence safe the stress is with in permissible limit.

    93

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    107/197

    Check for deflection control

    %of reinforcement Pt =bd

    Ast100

    = 1201000

    600100

    = 0.5%

    Ast (pro) Sv =Ast

    As1000

    150 =Ast

    1000104 2

    Ast (pro) = 523.5mm2

    Kt = 1.1Kc = 1

    Kf = 1

    d

    lmax = 1.1x1x1x20

    = 22

    d

    lactual =

    120

    1620= 13.5

    = 22 > 13.5

    Hence safe against deflection

    94

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    108/197

    95

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    109/197

    Fig : 2.1.3.1. Reinforcement Details for one way slab

    2.1.4. Design of two way Slabs

    1. Master Bed Room (Two adjacent sides are discontinuous)

    lx = 3.96 m

    ly = 4.87 m

    fy = 415 N/mm2

    fck = 20 N/mm2

    x

    y

    l

    l

    = 96.3

    87.4

    = 1.23 < 2

    It is designed as two way slab

    Live load = 3 kN/m2

    Floor finish = 1.06 kN/m2

    Depth =20

    span

    =20

    3960

    = 158 mm

    Over all depth = 120mm

    Effective depth = 100mm

    Effective Span

    i) c/c distance = 3.96 + 0.23 = 4.19m

    ii) Span + Effective depth = 3.96 + 0.1 = 4.06m

    Effective span = 4.060m

    Total service load = 7.00 kN/m2

    Design load = 1.5x7.00,

    96

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    110/197

    Wu = 10.50 kN/m2

    Ultimate moment

    Mux = 2xux l

    Muy =2

    xwy l

    x = 1.2 0.060

    1.3 0.065

    x = 0.060 + )2.13.1()060.0065.0(

    (1.23 - 1.2)

    x = 0.0615

    y = 0.047

    Mx = 0.0615 x 10.5 x 4.062

    = 10.64 kNm

    My = 0.047 x 10.5 x 4.062

    = 8.13 kNm

    Shear Force Vux =2

    xulw

    =2

    060.4505.10

    = 21.31 kN

    Check for depth

    d =bf

    Mu

    ck138.0

    =100020138.0

    1050.106

    d = 65.74 mm < 100mm

    Hence safe

    97

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    111/197

    Tension Reinforcement

    Reinforcement of Shorter Span

    Mu = 0.87 fy Ast d

    bdf

    Astf

    ck

    y1

    10.64x106 = 0.87x415x100

    100100020

    4151

    Ast

    10.64x106 = 36105 Ast - 7.49 Ast2

    Ast = 310.86 mm2

    Spacing =Ast

    ast1000

    =

    08.277

    4

    101000

    2x

    = 252.5 mm

    Provide 10 mm # Bars @ 200 mm c/c distance

    (Astpro = 392.69mm2)

    Reinforcement at Longer Span

    9.12x106 = 0.87x415xAstx 120

    120100020

    4151

    Ast

    9.12x106

    = Ast - 7.49Ast2

    Ast = 209.35mm2

    Min Ast =100

    12.0x1000x150

    = 180 mm2

    Spacing =Ast

    Ast1000

    Assume 10mm # bars.

    Spacing =35.209

    41000

    2

    = 240 mm

    Provide 10mm # bars @ 250mm c/c distance

    98

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    112/197

    Reinforcement in edge strip

    Astmin = 1501000100

    12.0

    = 180mm2

    Provide 10mm # bars @ 300 c/c distance

    Check for shear stress

    v =bd

    Vu

    =1001000

    1034.21 3

    = 0.18 N/mm2

    % of tension reinforcement Pt =bd

    Ast100

    =1001000

    69.392100

    = 0.39%

    From table. 19 Page. 73, IS 456/2000

    1.25 0.36

    1.50 0.48

    = 0.36 + )25.039.0()25.050.0(

    36.048.0

    = 0.42

    kc = 1.3x0.42

    = 0.5555 N/mm2 > 0.18

    Check for deflection

    Pt = 0.225

    d

    lbasic = 28

    99

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    113/197

    fs = 0.58x415x96.392

    86.310

    = 190.41

    Kt = 2.0

    Kc = 1

    Kf = 1

    d

    lmax = 28x2x1x1

    = 48

    d

    lactual =

    100

    3960

    = 39 < 48 Hence safe

    Check for crack control

    1) Reinforcement provided in more than minimum % of steel.

    =100

    12.0x1000x120

    = 144 mm2 < 392.96

    2) Spacing of main reinforcement >3d

    = 3x120

    = 360mm

    3) Diameter of reinforcement should be less than d/8

    =8

    920

    = 15 mm

    100

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    114/197

    Fig : 2.1.4.1. Reinforcement Details for Two way slab

    101

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    115/197

    102

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    116/197

    2.2. Design of Beams

    Beams are defined as structural members subjected to transverse

    load that caused bending moment and shear force along the length. The plane

    of transverse loads is parallel to the plane of symmetry of the cross section of

    the beam and it passes through the shear center so that the simple bending of

    beams occurs. The bending moments and shear forces produced by the

    transverse loads are called as internal forces.

    2.2.1.Types of Beams

    Depending upon the supports and end conditions, beams are

    classified as below.

    1. Simply supported beams

    2. Over hanging beams

    3. Cantilever beam

    4. Fixed beam

    The reinforced concrete beams, in which the steel reinforced is

    placed only on tension side, are known as singly reinforced beams, the

    tension developed due to bending moment is mainly resisted by steel

    reinforcement and compression by concrete.

    When a singly reinforced beams needs considerable depth to

    exist large bending moment, then the beam is also reinforced in the

    compression zone. The beams having reinforcement in compression and

    tension zone is called as doubly reinforced beam.

    103

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    117/197

    2.2.2.Design procedure for beams

    1. Find the cross sectional dimensions of the beam

    Over all depth D =20

    Span

    Effective depth = Overall depth - Effective cover

    2. Effective span of the beam

    i. Clear Span + effective span

    ii. c/c distance between two supports

    The effective span of the beam is taken from the above

    conditions which ever is less than that is taken as effective span of the beam.

    3. Find the moment of the sections

    4. Refer IS: 456 / 2000, Page No: 96, Annex G. 1.1(5)

    Limiting moment Mu limit = 0.138 fck bd2

    If Mu < Mu limit the section is under reinforced since the beam is

    designed as singly reinforced beam If Mu > Mu limit the section is over

    reinforced. Since the beam is designed as Doubly reinforced beam.5. Tension reinforcement

    Refer IS : 456 / 2000, page No : 96, Annex G. 1.1(5)

    Mu = 0.87 fy Ast d

    bdfck

    Astfy1

    6. Check for shear stress

    Refer IS : 456 / 2000, Page No : 72, Clause 40.1

    Nominal shear stressbd

    Vuv=

    7. Find the percentage of steel Pt =bd

    Astpro

    100

    Refer IS : 456 / 2000, Page No : 73, table - 19

    104

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    118/197

    The value cis taken as based on the percentage of steel and grade of

    concrete.

    If c < v, minimum shear reinforcement is to be provide.

    Refer IS : 456 / 2000, Page No : 48, Clause 26.5.1.6

    fybs

    A

    v

    st

    87.0

    4.0

    If c < v, shear reinforcement is to be provide. in following method.

    IS :456 / 2000 page no : 73, Clause 40.4

    Strength of shear reinforcement Vus [vu - c bd]

    for vertical stirrups Vus = v

    sv

    s

    dAfy87.0

    105

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    119/197

    2.2.3. Design of singly Reinforced Beam

    Frame DD'

    Span = 4.73 m

    Width = 230 mm

    fck = 20 N/mm2

    fy = 415 N/mm2

    Cross sectional dimensional

    Effective depth d =20

    Span

    =

    20

    4730

    = 236.5 mm

    Provide overall depth D = 450mm

    Effective depth d = 400 mm

    Moment taken form the analysis,

    Mu = 63.9 KNm

    Check for depth

    d =bfck

    Mu

    138.0

    =23020138.0

    109.63 6

    xx

    x

    = 317.27 mm < 400 mm

    Hence safe

    Area of tension Reinforcement

    Mu = 0.87 fy Astd

    bdfck

    Afy st1

    63.9 x 106 = 0.87 x 415 x Ast x 400

    40023020

    4151

    Ast

    63.9 x 106 = 144420 Ast - 32.57 Ast2

    106

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    120/197

    Ast = 498.50 mm2

    Provide 3 nos of 16mm # bars

    Astpro = 3 x4

    102

    = 603.18mm2

    Check for shear stress

    v =bd

    Vu.

    Ultimate load Wu = 13.50

    73.4

    9.63

    Shear load Vu = 2

    lwu

    = 31.95 KN

    v =400230

    1095.31 3

    = 0.34 N/mm2

    Percentage of steel Pt = bd

    Ast100

    = 40023018.603100

    = 0.65%

    0.50 0.48

    0.75 0.56

    = 0.48 + ( )50.065.050.075.0

    48.056.0

    c = 0.53 N/mm2

    CV < Since minimum shear reinforcement is to be provided

    Sv =b

    Asvfy

    4.0

    87.0

    Assume 8 mm # 2 legged vertical stirrups

    107

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    121/197

    Sv =2304.0

    4

    8241587.0

    2

    = 394. 52 mm

    Provide 8mm # 2 legged vertical stirrups at 300 mm c/c distance.

    Size of beam = 230 x 450 mm

    Mu = 36.75 KNm

    Tension Reinforcement

    Mu = 0.87 fy Ast d

    bdfck

    Astfy1

    36.75 x 106 = 0.87 x 415 x Ast x 400

    40023020

    4151 st

    A

    36.75 x 106 = 144420 Ast - 32.57 Ast2

    Ast = 271.03 mm2

    Provide 3 nos of 12mm # bars

    Provide 8mm # 2 legged vertical stirrups at 300 mm c/c

    108

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    122/197

    109

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    123/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    124/197

    2.2.4.Design of doubly reinforced Beam

    Frame AA'

    L = 6.1 m

    fck = 20 N/mm2

    fy = 415 N/mm2

    Cross section dimension

    Effective depth =20

    span

    = mm30520

    6100=

    Over all depth D = 450mm

    Effective depth d = 400 mm

    Breadth b = 230 mm

    Moment taken from the Analysis

    Mu = 113.27 KN.m

    Check for depth

    d =bfck

    Mu

    ..138.0

    =23020138.0

    1027.113 6

    = 422 mm < 450mm

    Hence ok

    Area of tension Steel

    Mu = 0.87 fy.Ast d

    dbf

    fA

    ck

    yst

    ..

    .1

    113.27 x 106 = 0.87 x 415 Ast (400)

    400230204151

    xxAst

    113.27x106 = 144420 Ast - 32.57 Ast2

    Ast = 1018.04 mm2

    Provide 4 nos of 20 mm # bars

    111

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    125/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    126/197

    Assume 8mm # 2 legged stirrups

    Sv =( )

    2304.0

    84

    241587.0 2

    = 394.mm 300mm

    Provide 8mm # 2 legged stirrups300 mm c/c distance

    Frame AA' @ top

    fck = 20 N/mm2

    fy = 415 N/mm2

    Cross section dimension

    Effective depth =20

    Span

    = mm30520

    6100=

    Over all depth D = 450mm

    Effective depth d = 400 mm

    Breadth b = 230 mm

    Moment taken from the analysis

    Mu = 50.4 KN.m

    Check for depth

    d =bfck

    Mu

    .138.0

    =23020138.0

    104.506

    = 281.77 < 450 mm

    Tension reinforcement

    Mu = 0.87 fy.Ast.d

    dbfck

    fyAst

    ..

    .1

    113

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    127/197

    50.4x106 = 0.87 x 415 Ast (400)

    40023020

    4151

    Ast

    50.4x106 = 144420 Ast - 32.57 Ast2

    Ast = 381.86 mm2

    Provide 4 nos of 12mm # bars.

    Provide 8mm # 2 legged stirrups of 300 mm

    114

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    128/197

    Fig : 2.2.4.1. Reinforcement Details for doubly reinforced Beam

    115

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    129/197

    116

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    130/197

    2.3. Design of curved Beam

    Thickness of slab = 120 mm

    Radious R0 = 2.43 m

    L.L = 3 KN/ m2

    fck = 415 N/mm2

    fy = 415 N/mm2

    Live load = 3 KN/m

    Inner radious R = 1.97 m

    Weight of slab = 0.12 x 25

    = 3 KN/m2

    Total load = 3+3

    = 6 KN/m2

    Total load from Slab per meter =R

    wR so

    2

    2

    =21.22

    643.2 2

    = 8.01 KN/m

    Assume size of Beam = 230 x 450 mm

    Self weight of beam = 0.23 x 0.45 x 25

    = 2.58 KN/m

    Total load = 8.01 + 2.58

    = 10.59

    Ultimate load Wu = 10.59 x 1.5= 15.88 KN

    q =2

    2

    6

    5.3

    b

    h

    =2

    2

    23.06

    4.05.3

    117

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    131/197

    = 1.76

    C =

    4= 1.27

    Critical moment at mid span

    at = 0 the mid Span

    Moc = WR2 ( cos -1)

    WR2 = 15.88 x 1.972

    = 61.63 KN.m

    Moc = 61.63 (1-27-1)

    = 16.64 KNm

    At = 900 at the support

    Mof = WR2 (cos -1)

    = - 61.63 KNm

    Mof = WR2 (c sin -1)

    = 61.63 (1.27 - 1.57)

    = -18.48 KNm

    M = 61.63 KNmT = 18.48 KNm

    Design of section

    Max. Bm Mc = m + M1

    Mt =

    +

    7.1

    /1 bDu

    = 18.48

    +

    7.1

    23.0

    45.01

    = 32.14 KNm

    Me = 61.63 + 32.14

    = 93.77 KNm

    118

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    132/197

    = 1 KNm

    Check for depth d =23020138.0

    77.93 6

    xx

    x

    = 384.34 < 400 mmHence Safe

    The areas of the bottom and top reinforcement

    Mu = 0.87 fy Ast d

    bdfck

    Astfy1

    16.64 x 106 = 0.87 x 415 x Ast x 400

    40023020

    4151

    Ast

    16.64 x 106 = 144420 Ast - 32.57 Ast2

    Ast = 118 mm2

    Minimum Ast = 0.12% cross sectional area

    = 230450100

    12.0xx

    = 124.2 mm2

    Provide 2 nos of 10 mm # bar at bottom

    Mu = 0.87 f y Ast d

    bdfAf

    ck

    sty1

    93.77x106 = 0.87 x 415 x Ast x 400

    40023020

    4151 st

    A

    93.77x106 = 144420 Ast - 32.57Ast2

    Ast = 790mm2

    Provide 4 nos of 16mm # bars.

    Ast pro = 804mm2

    119

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    133/197

    Design for Shear

    Pc =bd

    Ast100

    = 400230804100

    = 0.87%

    0.75 0.56

    1.0 0.62

    = 0.56 +)75.01(

    )56.062.0(

    (0.87-0.75)

    c = 0.59 N/mm2

    Shear Capacity of the section Ve = c bd

    = 0.59 x 230 x 400

    = 54.28x103N

    Critical Shear force

    V = w(R-d)

    = 15.88 (1.9) ( )2/ - 400

    = 19.65x103N

    Tersional force at the section which should be converted in to

    equivalent shear.

    Ve = V + 1.6b

    T

    = (19.65x103) + 1.6

    30.2

    1048.18 6

    = 19.77x106N

    Nominal Shear Stress,

    v =bd

    ve

    120

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    134/197

    =3

    3

    10230

    1077.19

    v = 0.24 N/mm2

    Minimum shear reinforcement is to be provided,

    sv

    sv

    B

    A= 87.0

    4.0

    yf

    Sv =b

    fy

    4.0

    87.0

    Assume 10mm # of two legged vertical stirups

    Asv = 24

    102

    = 157.08mm2

    Sv =2304.0

    08.15741587.0

    = 616.45mm

    Provide 10mm # bars at 300mm c/c distance.

    121

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    135/197

    Fig : 2.3.1. Reinforcement Details for curved Beam

    122

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    136/197

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    137/197

    EE'

    E1 E2 2-16 # - 8# @ 300mm c/c

    E3 E4 2-16 # - 8# @ 300mm c/c

    E4 E5 3-16 # 1-16 # 8# @ 300mm c/c

    E5 E6 3-16 # 1-16 # 8# @ 300mm c/c

    FF'

    F1 F2 2-16 # - 8# @ 300mm c/c

    F3 F4 3-16 # 1-16 # 8# @ 300mm c/c

    F4 F5 3-16 # 1-16 # 8# @ 300mm c/c

    GG'

    G1 G2 2-12 # - 8# @ 300mm c/c

    G2G3 2-12 # - 8# @ 300mm c/c

    G4 G5 2-12 # - 8# @ 300mm c/c

    A2 B2 2-12 # - 8# @ 300mm c/c

    HH'H1 H2 2-12 # - 8# @ 300mm c/c

    H2 H3 3-12 # 1-16 # 8# @ 300mm c/c

    II'

    I1 I2 3-16 # 1-16 # 8# @ 300mm c/c

    I3 I4 3-16 # 1-16 # 8# @ 300mm c/c

    I4 I5 3-16 # 1-16 # 8# @ 300mmc/c

    JJ'J1 J2 2-16 # - 8# @ 300mm c/c

    J3 J4 2-16 # - 8# @ 300mm c/c

    124

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    138/197

    2.4. Design of Plinth Beam

    1. Span = 6.09m

    Deed load = 15.18 KN/m

    Effective depth =20

    6090

    = 304.5mm

    Overall depth D = 300 mm

    Effective. depth d = 250mm

    Effective span :-

    i). c/c distance = 6.09 + 0.23 = 6.32m

    ii) Span + Effective. depth = 6.09 + 0.25 = 6.34m

    Effective. Span = 6.32 m

    Load Calculations

    Self weight of Beam = 0.23 x 0.3 x 25

    = 1.725 KN

    Dead Load = 15.18 KN/m

    Total Load = 16.905 KN/m

    Max .ultimate load = 25.35 KN/m

    Max. ultimate moment =8

    2Wl

    =8

    32.635.25 2x

    = 126.60 KNm

    Mulimit = 0.138 f ckbd2

    = 0.138 x 20 x 230 x 4002

    = 101.56

    Mu > Mu limit

    Balanced Moment = 126.60 - 101.56

    125

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    139/197

    = 86.93 KNM = 25.04

    fsc = 361

    ASc =250

    04.25

    = 198.17 mm2

    Provide 6 nos

    Ast2 = fyfAscsc

    87.0

    .=

    41587.0

    361198

    = 197.97

    Ast1 = fyitxbfck u

    87.0

    )lim(36.0

    =41587.0

    )40048.0(2302036.0

    x

    = 880.63mm2

    Total Ast = 1078 mm2

    Provide 6 nos of 16 mm # bars

    Shear reinforcement

    V = bd

    Vu

    Vu =2

    Wul

    =2

    32.635.25 x

    = 80.106 KN

    =400230

    10106.803

    x

    x

    = 0.87 N/mm2

    Pt =bd

    Ast100 =400230

    1206100

    =1.3

    1.25 -> 0.67

    126

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    140/197

    1.5 -> 0.72

    = 0.67 + )25.13.1(25.15.1

    62.072.0

    = 0.69 N/mm2

    Vus = (80.106 x 103 - 0.69 x 230 x 400)

    = 16.626 x 103

    Spacing = 310626.16

    40010141587.0

    = 877 mm

    Provide 8mm # 2 legged vertical stirrups at 300mm c/c

    Deflection

    actuald

    l

    =400

    6090= 15.22

    Safe against deflection

    127

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    141/197

    128

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    142/197

    Fig : 2.4.1. Reinforcement Details for Plinth Beam

    2.5.Design of lintels

    Lintels are horizontal structural elements provided over the

    opening on walls (doors, window etc.,) to carry the masonry over them. When

    they are very near to the roof level, they have to carry the loads transmitted

    from the roof also.

    They are designed, as small rectangular beams of width always

    equal to the thickness of wall in which they are provided. Since lintels are of

    minor structural importance, the minimum requirements of reinforcement

    specified for beams need not be strictly complied with in lintels.

    A minimum of 20mm nominal cover may be provide for the

    main reinforcement bars of lintels. The lintels shall have a bearing of at least

    150mm on walls at their ends.

    129

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    143/197

    2.6.Design of Lintel Cum Sunshade

    step1. Design Constant and limiting depth of N.A

    fy = 415 N/mm2

    fck = 20 N/mm2

    for Fe 415 steel

    d

    xu max = 0.479

    Ru = 0.36

    fck =d

    xu max (1-0.416d

    xu max )

    = 0.36 x 20 x 0.479 (1-.416 x 0.479)

    = 2.761

    Design of sunshade

    Live Load = 1 KN/m

    Dead Load = 1 x 1 x 0.1 x 25 = 2.5 KN/m

    Total = 3.5 KN/m

    Factored load = 1.5 x 3.5 = 5.25 KN/m

    Mu =2

    2lWu

    =2

    )45.0(25.5 2

    = 0.531 kNm

    Vu = 5.25 x 0.45 = 2.36 KNm

    d =1000761.210531.0

    6

    = 13.86mm

    d = 80 mm

    D = 100 mm

    130

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    144/197

    Mu = 0.87 f y Ast.d

    dbf

    fA

    ck

    yts

    ..

    .1

    0.538 x 106 = 0.87 x 415 Ast (80)

    80100020

    4151 st

    A

    0.538 x 106 = 28884 Ast - 7.491 Ast2

    Ast = 18.71mm2

    Ast (min) = 10012.0 x 1000 x 100 = 120 mm2

    Spacing =st

    st

    A

    a1000=

    120

    )(4

    10002

    d

    = 418

    Provide 8 mm # bars @ 250 mm c/c

    Ast (Pro.) = 201 .06 mm2

    Check for shear

    V =bd

    Vu

    =8010

    1036.2 3

    = 0.0029 N/mm2

    Pt =bd

    Ast100

    =801000

    120100

    = 0.15 %

    c = 0.28 N/mm2

    K = 1.3

    K. c = 0.195

    K. c > n

    Hence safe

    131

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    145/197

    Check for development length

    Ld = 47

    = 47 x 8

    = 376 mm

    xu =bf

    Af

    ck

    sty

    .36.0

    87.0

    =10002026.0

    06.20141587.0

    = 10.08mm

    Mu = 0.87 fyAst (d - 0.416 xu)

    = 0.87 x 415 x 201.06 (80 - 0.416 x 10.08)

    = 5.50 x 106 Nmm

    Provided 900 bend and clear cover 35mm

    L0 =2

    sL - x1 + 3

    =2

    300- 35 + 3 x 8

    = 139mm

    1.3.u

    u

    V

    M+ L0 = 3

    6

    1036.2

    1050.53.1

    = 3029.66 > Ld

    Hence Safe

    Design of Lintel Beam

    Self weight of slab = 0.12 x 1x 2.5 = 3 kN/m

    B.w. Load = (1.8 x 0.23 x 0.5) 25

    = 4.65 kN/m

    Self wt. of lintel beam = 0.23 x 0.45 x 1

    = 0.1035 kN/m

    132

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    146/197

    Dead load of sunshade = 1 x 1 x 0.1 x 25

    = 2.5 kN/m

    Finish Load = 1 x 1x 0.025 x 2

    = 0.55 kN/m

    Total load = 10.80 kN/m

    Factored Load = 16.2 kN/m

    Mu =8

    2lWu

    =8

    )8.1(2.16 2

    = 6.56 kNm

    d =Fasd

    Mu

    =230761.2

    1056.6 6

    = 101.63mm

    d = 120mm

    D = 150mm

    Main Reinforcement

    6.56 x 106 = 0.87 x 415 Ast (120)

    120100020

    4151 st

    A

    = 43326 Ast - 7.491Ast2

    Ast = 155.59mm2

    Assume 10mm# bar, use

    Check for deflection

    Pt =bd

    Ast100

    =120230

    59.155100

    133

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    147/197

    = 0.56%

    Modification factor = 1.05

    d =05.120

    L

    = 85.714

    = 85.714 < 120mm

    Check for shear

    Vud =2

    .LWu -

    + 261.0

    2

    30.0uW

    =2

    )8.1(102.16 3- (16.2x103) x 0.411

    = 7921.8 N

    v =bd

    VuD

    =120230

    8.7921

    = 0.028 N/mm2

    Pt =bd

    Ast100

    =120230

    57.155100

    = 0.56%

    c = 0.499 N/mm2

    Providing 8mm legged stirrups

    Sv =b

    fA ysv.175.2

    =230

    4155.100175.2

    = 394mm

    Max

    134

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    148/197

    Sv = lesser of 0.75 d

    Hence provide 8mm # 2 legged stirrups @ 150mm c/c

    Check for development length

    xu =bf

    Astf

    ck

    y

    .36.087.0

    =2302036.0

    59.15541587.0

    = 33.92mm

    Mu = 0.87 fy Ast (d-0.416 ux )

    = 0.87 x 415 x 155.59 (120-0.416x33.92)

    = 5.9 x 106

    Nmm

    Vu =2

    .Lu

    =2

    8.12.16

    = 14.58 kN

    Use 10mm dia. bar,

    Ld = 47

    = 47 x 10= 470mm

    L0 =2

    sL - x1

    =2

    300-30

    = 120mm

    1.3u

    u

    V

    M

    +L0 = 3

    6

    1058.14

    1094.53.1

    +120

    = 649.62mm > Ld

    Hence ok.

    135

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    149/197

    Fig : 2.6.1. Reinforcement Details for Lintel Cum Sunshade

    136

  • 7/28/2019 B.tech Civil Pyuhkjroject1

    150/197

    2.7.Design of staircase With single beam

    1. Assume the rise and tread of the step; normally Rise of the steps is 150

    to 250 mm. Tread is 250 to 350mm.

    2