briefing paper factbase

43
Briefing Paper Factbase April 56, 2011 Embassy Suites Dallas DFW Airport North Outdoor World Dallas, TX www.batterysummit.com

Upload: dangdan

Post on 01-Jan-2017

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Briefing Paper Factbase

 

 

   

Briefing Paper Factbase  

  

 April 5‐6, 2011 

  Embassy Suites Dallas ‐ DFW Airport North Outdoor World  

Dallas, TX  

www.batterysummit.com   

 

Page 2: Briefing Paper Factbase

                             Page 1 

  

Table of Contents  

I.  FOREWORD ............................................................................................................................................................ 2 

II.  ACKNOWLEDGMENTS ............................................................................................................................................ 3 

III.  INTRODUCTION TO THE SUMMIT ........................................................................................................................... 6 A.  Who is Hosting the Summit? ................................................................................................................................... 6 B.  Who is Facilitating the Summit?  Who is Blu Skye? ................................................................................................ 6 C.  What is an Appreciative Inquiry Summit? ............................................................................................................... 6 D.  Who is Participating in the Summit and How Were They Invited? ......................................................................... 7 

IV.  BATTERY BACKGROUND ......................................................................................................................................... 8 A.  Overview of the Battery Industry ............................................................................................................................ 8 B.  Synopsis of MIT Life Cycle Assessment of Batteries (2011) ................................................................................... 14 C.  Materials Used in Batteries ................................................................................................................................... 20 

1)  Single‐use Batteries ....................................................................................................................................................... 20 2)  Rechargeable Batteries .................................................................................................................................................. 21 3)  Implications for Storage/Collection of Batteries ............................................................................................................ 23 

V.  BATTERIES AT END‐OF‐LIFE................................................................................................................................... 24 A.  Regulation, Legislation, and Industry Action for Batteries at End‐of‐Life ............................................................. 24 

1)  European Union ............................................................................................................................................................. 26 2)  United States ................................................................................................................................................................. 28 3)  Canada ........................................................................................................................................................................... 30 

B.  The Current State of North American Battery Recovery and Recycling Efforts ..................................................... 30 

APPENDIX I: TERMINOLOGY ....................................................................................................................................... 36 

APPENDIX II: STEWARDSHIP EFFORTS IN OTHER INDUSTRIES...................................................................................... 37 A.  Example: Paint in California .................................................................................................................................. 38 B.  Example: Carpet in California ................................................................................................................................ 39 

APPENDIX III: Blu Skye Background and Involvement in the Summit ........................................................................... 41 

Page 3: Briefing Paper Factbase

 

                             Page 2 

I. FOREWORD  

The Battery Recycling Summit will be held April 5‐6, 2011.  In preparation for the Summit, we have created a Briefing Paper and a Briefing Paper Factbase.  This Briefing Paper Factbase serves as an appendix of additional detail to supplement the Briefing Paper.  We recommend that at a minimum you read the Briefing Paper prior to coming to the Summit.  Both documents are available on the Summit website at www.batterysummit.com.     

Page 4: Briefing Paper Factbase

 

                             Page 3 

II. ACKNOWLEDGMENTS  The Summit and these briefing documents would not have been possible without the contribution and input of many people who volunteered their time to be interviewed, provide data, and help shape the agenda and scope of this effort.  We thank you for your passion, involvement, and participation.  

Project Council  

First  Last  Organization 

Michelle  Atkinson  Energizer Holdings, Inc. 

Michael  Babiak  Energizer Holdings, Inc. 

Mark  Buckley  Staples 

Todd  Coy  Battery Recycling Association of North America (BRANA) 

Rob  D’Arcy  California Product Stewardship Council (CPSC) 

Kevin  Domack  Spectrum Brands (owns Rayovac) 

Sierra  Fletcher  Product Stewardship Institute (PSI) 

Albert  Hardies  Inmetco 

Garth  Hickle  Minnesota Pollution Control Agency 

Becky  Jayne  Product Stewardship Institute (PSI) 

Khush  Marolia  Procter & Gamble (owns Duracell) 

Charlie  Monahan    Panasonic Elsa  Olivetti  Massachusetts Institute of Technology (MIT) 

Bertrand  Schutz  Valdi 

Carl  Smith  Call2Recycle 

Mark  Stennes  Waste Management 

 Project Board Members 

 First  Last  Organization 

Stassi  Anastassov  Procter & Gamble (owns Duracell) 

Jim   Heidendreich   Spectrum Brands (owns Rayovac) 

Joe   McClanathan   Energizer Holdings, Inc. 

Greg  Moeller  Kodak 

Ted  Tsumori   Panasonic 

 Project Leads 

 First  Last  Organization 

Marc   Boolish  Energizer Holdings, Inc. 

Khush  Marolia  Procter & Gamble (owns Duracell) 

  

Page 5: Briefing Paper Factbase

                             Page 4 

Additional Contributors  

First  Last  Organization  Type 

Linda  Barr   US EPA   Federal Govt  

Yona   Belfort   IDEO   Other Expert  

Chris  Boik   Best Buy   Retail  

Kathy  Bruce   Toxco, Inc.    Recycler  

Michael   Chenard  Lowe's  Retail  Rick   Cochrane   Waste Management   Waste Mgmt Companies 

Hans  Craen  EPBA  Industry Association  Cliff  Feldman  Rethink Waste (San Jose area)  Municipal Govt  

Linda   Gabor   Call2Recycle  NGO/Academic 

Ron   Gonen   Gonen Partners   Other Expert  

Jeremy   Gregory   MIT   NGO/Academic 

Garth  Hickle  Minnesota Pollution Control Agency   State Govt  

Tom  Huetteman  US EPA   Federal Govt  Frank   Hurd   Carpet and Rug Institute  Other Expert  

Sego   Jackson   Snohomish County Washington   Municipal Govt  

Becky  Jayne  Illinois EPA/Product Stewardship Institute (PSI) Board   State Govt  

Alison   Keane   American Coatings Association   Other Expert  

Mark  Kohorst  National Electrical Manufacturers Association (NEMA)  Industry Association 

Lee   Kranefuss   Former CEO of iShares   Other Expert  

Mark   Kurschner  Product Care (Paint Care)  Other Expert  

Clare  Lindsay  US EPA   Federal Govt  John   Lingelbach  R2 Solutions   NGO/Academic 

Jacob  Madsen   ERM   Other Expert  

Chris  Michalski  Department of Transportation   Transportation  

Steve   Moreno   E to E Process   Other Expert  

Hilary  Nixon  San Jose State University  NGO/Academic Cassandra  Palmer  Best Buy   Retail  

Ron   Pope  Waste Management   Waste Mgmt Companies 

Andrew  Radin  Onondaga County Resource Recovery Agency  Municipal Govt  

Rahul  Raj  Walmart   Retail  

Bob   Richard   Label Master   Transportation  Amy  Roering  Hennepin County (MN)  Municipal Govt  

Heidi   Sanborn   California Product Stewardship Council   NGO/Academic 

Steve   Sloop   OnTo Technology LLC  Other Expert  

Ray  Smith   Nucor Steel  End‐of‐life Material User Mark   Stennes   Waste Management   Waste Mgmt Companies 

Louisa  Tallman  Hennepin County (MN)  Municipal Govt  

Terry   Tamminen  Pegasus Group  Other Expert  

David  Thompson   Panasonic  Device Manufacturers  Erich  Tscherteu  Lee County (Ft. Myers) Solid Waste  Municipal Govt  

Rich   Von Stetten   Delaware Solid Waste Authority   State Govt  

Page 6: Briefing Paper Factbase

                             Page 5 

First  Last  Organization  Type 

Rand  Waddups   Walmart   Retail  

Bill   Worrell   San Luis Obispo Solid Waste Management Authority  Municipal Govt  

Ian   Yolles   RecycleBank   Other Expert  

     

Page 7: Briefing Paper Factbase

                             Page 6 

III. INTRODUCTION TO THE SUMMIT 

A. Who is Hosting the Summit? The Summit is being convened by the leading U.S. primary battery manufacturers, including:  

• Procter & Gamble (owns Duracell) • Eastman Kodak Company Digital Capture and Devices, Consumer Digital Group • Energizer Holdings, Inc. • Panasonic Energy • Spectrum Brands, Inc. (owns Rayovac) 

B. Who is Facilitating the Summit?  Who is Blu Skye? The summit will be facilitated by Sean Martin and John Whalen, principals at Blu Skye Sustainability Consulting.  Blu Skye is a team of business strategists with deep sustainability expertise who work with leading organizations to develop and implement value‐creating strategies. Many of the largest sustainability opportunities lie outside the direct control of any one company; they reside across the value chain. Through a focus on systems change, Blu Skye helps clients transform their value chain in ways that reinforce their strategy while providing environmental and social benefit.  Please see the Appendix for more information.  Sean brings over 15 years of experience in helping companies create long term competitive advantage through skills in clarifying direction, planning for action and improving team effectiveness. Leading engagements focused on new market entry, supply chain, organizational redesign, culture change, etc., has led him to conclude that sustainability has taken a seat at the table of CEO’s who aspire to long term organizational health and performance.  John has 20 years of experience in management consulting in business strategy and operations, with a specialty in large‐scale change efforts that cross organizational boundaries.  John has facilitated many large summits in the past, and his facilitation strength lies in engaging stakeholders and experts, who don't usually work together, in conversations they’ve never had, creating a shared vision of a future they all want to see happen, and aligning around the actions that create real value for the industry and its stakeholders. He uses a variety of methods that break down barriers, challenge assumptions, open avenues for innovation and foster collaboration.   The facilitation method that Sean and John will use at the Summit is called Appreciative Inquiry (see below for more information on AI). 

C. What is an Appreciative Inquiry Summit? The summit will use a large‐group facilitation technique known as Appreciative Inquiry (AI).1 To “appreciate” means to value — to understand those things worth valuing. To “inquire” means to study, to ask questions, to explore. Appreciative Inquiry is, therefore, a collaborative exploration to identify and understand a particular group’s strengths, their greatest opportunities, and their aspirations and hopes for the future, and to build a shared plan of action that will help create that future.   An Appreciative Inquiry Summit is a whole‐system working meeting that engages a cross‐section of as many internal and external stakeholder groups as possible — groups that care about and have a stake in the future of the industry. This means more diversity and less hierarchy than is usual in a working meeting, and a chance for each person and stakeholder group to be heard and to be exposed to other perspectives on the challenges and opportunities facing the group. Each individual participant has been selected because of his/her ability to contribute as a decision‐maker, influencer, or activator to make the opportunities for spent battery material reuse viable. 

                                                             1 Go to http://appreciativeinquiry.case.edu/ for more information on Appreciative Inquiry.  

Page 8: Briefing Paper Factbase

                             Page 7 

 This summit is task focused, not simply an educational event or a conference. Through a highly participative process you will build a shared vision, explore opportunity areas, and create a practical action plan. This plan will build on previous efforts and will engage the core decision‐makers that affect the ability to significantly increase the reuse of spent battery material.  To orient you to Appreciative Inquiry, below are some questions to consider as you read the Briefing Paper and this Briefing Paper Factbase:  

• What additional opportunities come to mind to maximize the recovery and reuse of the material contained in spent batteries? 

• If the industry could start from scratch and design batteries knowing that all of them will be recovered, how might this change the considerations for end of life? 

• What role can you play in helping realize these opportunities both during and after the Summit? • How can these opportunities be more widely adopted? • Who are the key stakeholders to champion these opportunities? • What are the business models that will make these opportunities a viable reality and a resounding success? • What regulatory and financial realities need to be true in order to achieve your desired result? 

D. Who is Participating in the Summit and How Were They Invited? Participants were chosen to ensure that the entire “system” pertaining to battery material recovery and reuse is in the same room at the same time.  We want to ensure that no solutions are developed with one or more perspectives absent.  The Battery Recycling Project Council recommended many people to invite and also for Blu Skye to interview.  In these interviews, additional names were uncovered and considered for invitation to the Summit.  Below is a list of the types of stakeholders we have invited to participate:  

• Federal government • State government • Local/Municipal government • Battery retailers • Battery manufacturers/OEMs • Battery recyclers • Non‐governmental organizations (NGOs) • Users of battery end‐of‐life materials • Waste management companies/haulers • Academics • Industry trade associations 

Page 9: Briefing Paper Factbase

 

                             Page 8 

IV.BATTERY BACKGROUND 

A. Overview of the Battery Industry The Encyclopedia Britannica defines “battery” as “any of a class of devices that convert chemical energy directly into electrical energy”2.  “Household batteries” are the small portable batteries used daily by most people in devices such as radios, toys, flashlights and lanterns, games, watches, calculators, hearing aids, cameras, telephones and other communications devices, but do not include the larger batteries used in motor vehicles, commercial and industrial, military and other applications.3  Household batteries are typically divided into primary or single use and secondary or rechargeable types.  Single‐use batteries are not designed to be electrically recharged whereas secondary types are designed to be electrically recharged and can be used multiple times.    There are several additional differentiating characteristics of batteries: 

• Chemistry – the specific combinations of reactive constituents • Geometric size and shape – e.g., D, C, AA, AAA, button cell • Voltage – e.g., 9 volt, 1.5 volt 

 The diagram below shows the basic categorization of batteries based on usage and chemistry:  

                                   

                                                             2 Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica, 2011. Web. 25 Jan. 2011. http://www.britannica.com/EBchecked/topic/56126/battery 3 “Household Batteries and the Environment.” National Electrical Manufacturers Association (NEMA), http://nema.org/gov/env_conscious_design/drybat/upload/NEMABatteryBrochure2.pdf 

Household Batteries

Single‐use (Primary)

Alkaline (Alkaline 

Manganese)

Zinc Carbon

Silver Oxide Button Cell

Zinc Air

Lithium

Rechargeable (Secondary)

Nickel Cadmium

(NiCd)

Nickel Metal Hydride (NiMh)

Lithium Ion

Small Sealed Lead Acid

Alkaline Rechargeable

Page 10: Briefing Paper Factbase

                             Page 9 

Total battery industry sales in the U.S. were estimated to be $3.5 billion in 2008.4  In 2010, approximately 5.4 billion units of single‐use batteries were shipped in the U.S.5  Single‐use batteries have approximately 80% of the market, while rechargeables have 20%.6  Over the past decade, the rechargeable portion has grown from single digit percentages to the current value of 20%. 

Consumer Battery Sales by Units   

Chemistry  2010 Sales Alkaline  76% Carbon Zinc  9% Lithium  8% Button  5% Rechargeable  2% 

 Alkaline Battery Sales Broken Down by Size for 20077 

 Size  2007 Sales  Weight of battery (g) AA  60%  23 AAA  24%  11 C  4%  71 D  8%  147 9V  4%  45 

                                                             4 "Primary Batteries, Dry and Wet." Encyclopedia of American Industries. Online Edition. Gale, 2010. Reproduced in Business and Company Resource Center. Farmington Hills, Mich.:Gale Group. 2011. http://galenet.galegroup.com/servlet/BCRC  5 Energizer analysis. 6 MIT Lifecycle Analysis, 2011. 7 MIT Lifecycle Analysis, 2011. 

Page 11: Briefing Paper Factbase

                             Page 10 

 Selected Companies Manufacturing or Branding Single‐use 

and Rechargeable Batteries8  

Company  Single‐use  RechargeableDuracell  X  x Energizer  X  x Rayovac  X  x Panasonic/Sanyo  X  X Sony    X LG Chem    X Samsung    X BYD    x Lishen    x NEC    x Maxell  x  x Varta  x  x 

 In the single‐use battery category, an estimated 80 percent of U.S. sales come from Duracell, Energizer, Spectrum/Rayovac, Panasonic/Sanyo, and Kodak9.  For rechargeables, an estimated 90 percent of North American sales are manufactured by Panasonic/Sanyo, Sony, LG, and Samsung.  Many companies make and/or market both single‐use and rechargeable batteries, but one type of battery usually dominates their total battery sales, with the exception of some companies like Panasonic, Sanyo, and Sony, who sell more rechargeables than primaries into North America.  For example, although Duracell, Energizer, and Rayovac all sell both types of batteries, approximately 80% of their battery sales are derived from single‐use batteries.   In the U.S., the National Electrical Manufacturers Association (NEMA) represents single‐use battery manufacturers. The Portable Rechargeable Battery Association (PRBA) represents the rechargeable battery manufacturers.  Some companies are members of both associations.  The distribution channel for batteries (especially those sold to original equipment manufacturers (OEMS)) is very complex.  Distribution channels include battery pack manufacturers, OEM's, distributors, distribution centers, service centers, and retailers.       

                                                             8 Other larger companies include: Saft, Cegas, Gold Peak Battery, Fujian Nanping Nanfu Battery, Zhongyin (Ningbo) Battery, Guang Zhou Tiger Head Battery, and Zhejiang Mustang Battery 9 Estimate from the National Electrical Manufacturers Association (NEMA). 

Page 12: Briefing Paper Factbase

                             Page 11 

Overview of Batteries and Battery Types10

Battery Name  Type  Primary Uses  Typical Cost 

Recycling Potential11 

Comments12 

Alkaline (a.k.a. alkaline manganese) 

Primary  Used in radios, toys, flashlights, lanterns, games, watches, calculators, cameras, fire and smoke detectors, tape and compact disc players, portable stereos, telephones and other communications devices, and other products. 

AA = $1.3813 AAA = $1.3814 C = $2.0015 9‐volt = $3.1316 

Can be recycled to recover steel and low quality manganese and zinc. 

• Alkaline batteries have high energy density (energy per unit of volume), high rate capability (ability to discharge rapidly), very long shelf life, and good performance over a wide range of temperatures. 

• Those made before 1996 may contain mercury. (Voluntary phase‐out of mercury started in 1993 by manufacturers and became law in 1996) 

Zinc Carbon (or Carbon Zinc) 

Primary  Clocks, radios, door bells, flash lights, etc. 17 

6V = $5.9818 

Can be recycled to recover low quality manganese and zinc. 

• Sometimes bearing words such as “Heavy Duty” or “General Purpose” on their labels, these products were in widespread use before the development of alkaline batteries.  Although still sold and used, zinc carbon batteries have largely been surpassed in the United States by the alkaline products. 

Silver Oxide Button Cell 

Primary  Used in watches, calculators, hearing aids, and cameras. 

Type 317 = $2.4919 

Can be recycled in specialist facilities that capture the mercury, recover the silver and produce a slag containing a mixture of metals.  

• However in order to take advantage of the recycling technology silver oxide button cells have to be collected separately from other button batteries. It is not generally possible to separate them automatically from a mixture of button cells. 

                                                             10 Unless otherwise noted, the source is NEMA, “Household Batteries and the Environment” 11 EPBA, 2007 12 NEMA, “Household Batteries and the Environment”, and information from www.energizer.com   13 Energizer MAX 4‐pack price. 1/25/2011. http://www.bestbuy.com/site/Energizer+‐+MAX+Batteries+C+%284‐Pack%29/2543126.p?id=1051384047454&skuId=2543126  14 Energizer MAX 4‐pack price. 1/25/2011. http://www.bestbuy.com/site/Energizer+‐+MAX+Batteries+AAA+%284‐Pack%29/2730940.p?id=1051384048073&skuId=2730940  15 Energizer 4‐pack price. 1/25/2011. http://www.bestbuy.com/site/Energizer+‐+MAX+Batteries+C+%284‐Pack%29/2543126.p?id=1051384047454&skuId=2543126  16 Duracell 4‐pack price. 1/25/2011. http://www.bestbuy.com/site/Energizer+‐+MAX+Batteries+C+%284‐Pack%29/2543126.p?id=1051384047454&skuId=2543126  17 EPBA, 2007 18 Eveready 1209 6V Super Heavy Duty Lantern Battery.  2/17/2011.  http://www.amazon.com/Eveready‐Super‐Heavy‐Lantern‐Battery/dp/B00002N9ED/ref=sr_1_7?ie=UTF8&s=electronics&qid=1297984494&sr=1‐7  19 Energizer 317 Button Cell Silver Oxide SR516SW Watch Battery.  2/17/2011.  http://www.amazon.com/Energizer‐317‐Button‐SR516SW‐Battery/dp/B001C1BVFO  

Page 13: Briefing Paper Factbase

                             Page 12 

Battery Name  Type  Primary Uses  Typical Cost 

Recycling Potential11 

Comments12 

Zinc Air  Primary  The dominant power source for hearing aids, pagers 

Type 312 = $1.2520 

Can be recycled in specialist facilities that capture the mercury and produce a slag containing a mixture of metals. 

• Oxygen, which reacts with the zinc electrode, is obtained from air that enters the battery through one or more small holes in the battery casing. Because of the need for a continuous supply of air, zinc air batteries cannot be used in watches and other tightly sealed products. 

Lithium  Primary  Lithium coin cells: used in keyless remotes, personal digital assistants, watches, hand‐held games, and other devices Cylindrical lithium: primarily used in photographic, high‐drain, other  Rectangular 9‐volt: used in fire and smoke detectors and in medical devices 

AA: $1.4421 

Lithium can potentially be recovered but not used to make new batteries 

• Lithium primary battery voltages remain essentially constant until all of the metallic lithium has reacted and the battery is fully discharged. In other words, there is no reactive lithium metal remaining in the batteries when they are replaced and disposed. 

• Lithium is potentially flammable.  

Nickel Cadmium (NiCd) 

Rechargeable  Nickel cadmium battery packs are used in portable power tools and appliances, cordless telephones, personal care products, and other devices. 

Varies by use (est. $10‐$20 per battery) 

Can be recycled in pyro‐metallurgical processes to recover the cadmium, nickel and iron. 

• Compared with alkaline batteries, nickel cadmium batteries have only about one‐third the energy density, but can discharge at higher rates. They also have a high internal self‐discharge rate, making them a poor choice in certain applications such as smoke detectors and emergency flashlights. They are used in applications requiring high power and where frequent charging is possible, but not in applications where long periods of unattended storage will occur. 

• Cadmium is toxic to humans and animals.22 • 99.9 percent pure cadmium is recoverable for reuse in new Ni‐Cd batteries.23 

• Production of pure nickel has significant environmental impacts.24 

                                                             20 Energizer 312 8‐pack price. 1/25/2011. http://www.bestbuy.com/site/Energizer+‐+312+Alkaline+Zinc‐Air+Batteries+for+Most+Hearing+Aids+%288‐Pack%29/1261997.p?id=1218245470923&skuId=1261997  21 Energizer Ultimate L91BP‐4 Lithium AA Battery 4 Pack.  2/17/2011.  http://www.amazon.com/Energizer‐Ultimate‐L91BP‐4‐Lithium‐Battery/dp/B00003IEME/ref=sr_1_2?s=electronics&ie=UTF8&qid=1297984579&sr=1‐2  22 The U.S. Environmental Protection Agency designates cadmium as a probable human carcinogen. For more information, see the agency’s Technology Transfer Network Air Toxics Website at: http://www.epa.gov/ttn/atw/hlthef/cadmium.html (accessed July 7, 2010). 23 Around Europe." European Portable Battery Association: Authoritative Voice of Portable Battery Industry. European Portable Battery Association, available at: http://www.epbaeurope.net/recycling.html, accessed July 8, 2010. 24 Mining and Sustainable Development: Challenges and Perspectives. Rep. Vol. 23. United Nations Environment Programme Division of Technology Industry and Economics, 2000. Print. Industry and Environment. 

Page 14: Briefing Paper Factbase

                             Page 13 

Battery Name  Type  Primary Uses  Typical Cost 

Recycling Potential11 

Comments12 

Nickel‐Metal Hydride (NiMh) 

Rechargeable  Nickel‐metal hydride battery packs are used in cellular phones, laptop computers, video cameras, power tools, and other devices requiring high power and premium performance 

AA: $4.5025 

Can be recycled together with nickel cadmium batteries to recover ferro nickel and cobalt. 

• Nickel‐metal hydride batteries are similar to nickel cadmium batteries, except that metallic rare earth alloys are substituted for cadmium in the negative electrode. 

• Nickel, iron, and other metals can be recovered and resold. 

• Production of pure nickel has significant environmental impacts.26 

Lithium Ion  Rechargeable  Many are designed with dimensions to fit into the battery compartments of specific small portable devices, such as cell phones, laptop computers, video cameras, and other portable equipment. 

Varies by use (est. $15‐$100 per battery) 

Li‐Ion can be recycled in specialized with the primary recovery being the metal content 

• Lithium ion batteries are not interchangeable with batteries of any other chemistry, even where the sizes and shapes would otherwise make them interchangeable. The voltage is different from any other battery and the charging requirements are different from other rechargeable batteries. 

• Teflon is used by some companies in manufacturing and is an ozone‐depleting substance.  

• Cobalt, nickel, iron, and other metals can be recovered and resold. 

Small Sealed Lead Acid 

Rechargeable  In consumer applications, these batteries are used in older video cameras. 

Varies by use (est. $30‐$40 per battery) 

• Small sealed lead acid batteries are manufactured in cylindrical and rectangular shapes. 

Alkaline Rechargeable 

Rechargeable  Rechargeable alkalines may be satisfactorily used as substitutes for primary alkalines in some, but not all, applications due to tradeoffs in battery performance. 

AA = $2.1327 

• The chemistry of rechargeable alkalines is relatively the same as that of primary alkalines. Certain modifications in the interiors of the batteries are necessary to make them rechargeable, and the modifications involve tradeoffs in battery performance. 

                                                             25 Duracell ‐ Precharge Rechargeable AA NiMH Batteries (4‐Pack).  2/17/2011.  http://www.bestbuy.com/site/olstemplatemapper.jsp?_dyncharset=ISO‐8859‐1&_dynSessConf=5556291682560061701&id=pcat17071&type=page&ks=960&st=rechargeable&sc=Global&cp=1&sp=&qp=crootcategoryid%23%23‐1%23%23‐1~~q726563686172676561626c65~~nf349||4475726163656c6c&list=y&usc=All+Categories&nrp=15&iht=n  26 Mining and Sustainable Development: Challenges and Perspectives. Rep. Vol. 23. United Nations Environment Programme Division of Technology Industry and Economics, 2000. Print. Industry and Environment. 27 Juice Rechargeable Alkaline Batteries, Size AA, 4‐Count Package.  2/17/2011.  http://www.amazon.com/Juice‐Rechargeable‐Alkaline‐Batteries‐4‐Count/dp/B002HQACHG  

Page 15: Briefing Paper Factbase

                             Page 14 

B. Synopsis of MIT Life Cycle Assessment of Batteries (2011)  Note: Please also see the Briefing Paper for a discussion of the MIT LCA.  As part of its ongoing sustainability efforts, the NEMA Dry Battery section commissioned a study to examine the life cycle impacts of recycling alkaline batteries versus landfill disposal.  This life cycle analysis was conducted by the Massachusetts Institute of Technology (MIT) Materials Systems Laboratory, part of the Department of Materials Science & Engineering, and was finalized in February 2011.  The purpose of this study was to analyze the environmental impacts of alkaline batteries through their life from production through to end‐of‐life.  In particular, the study identified variations in effects that occur under different recycling scenarios, and the factors that drive these effects, compared with disposing them in landfills.  The methodology included life‐cycle assessment techniques that have been approved by international standards agencies.  The study examined impacts specifically associated with extracting and refining raw materials for use in batteries, the manufacturing process, disposal at end‐of‐life, and transporting spent batteries.  Researchers evaluated each of these steps and measured their impacts in terms of cumulative energy demand, global warming potential, and environmental/human health indicators.  Key findings from the study are:  

• The most critical stage of a battery’s life affecting the environment is raw material extraction prior to battery manufacturing.  The impacts that occur at disposal are less substantial by comparison.  Manganese dioxide and zinc represent the largest impacts within the raw materials production. 

• The environmental impacts of recycling alkaline batteries versus disposing them in landfills are complex and dependent on many variables.  The most important factors are recycling technology used, the quantity and quality of recovered materials, and the reuse of those materials.  

• Environmental impacts (i.e., energy demand, GHG emissions) are driven by different factors.  The effect on energy demand, for example, depends heavily on the type of recycling technology used, while the impact on human health and the environment varies with assumptions made about materials leaking from landfills.  

• The study found several scenarios in which collecting and recycling alkaline batteries produced an overall net environmental loss when compared to landfilling. Some scenarios, however, resulted in an overall environmental benefit from recycling. 

• Scenarios that produced a net environmental benefit for all metrics of environmental performance from recycling cannot be realized in the US at this time due to the current type and location of available recycling facilities, regulatory barriers, and other factors.   

• There are opportunities for the Dry Battery Industry to leverage the findings of this study to reduce the environmental impacts of alkaline batteries at various stages of the life cycle. 

 The production of  raw materials dominates  the  life cycle with  the  transport of  those  raw materials  to manufacturing having a minimal environmental  impact as  shown  in  the  figures below using  the proxy environmental  impact metric, cumulative energy demand (CED). 

Page 16: Briefing Paper Factbase

                             Page 15 

 

Lifecycle impact using cumulative energy demand (CED) for 1kG sales‐weighted average alkaline batteries including 

packaging (~30 batteries) 

Production vs. End‐of‐Life (EOL) 

  

 

 

Production Impact using CED for 1 kG Sales‐weighted average Alkaline Batteries including packaging (~30 batteries) 

 

Page 17: Briefing Paper Factbase

                             Page 16 

A few materials dominate this materials production impact, with manganese dioxide, zinc, and steel having the highest impacts.  

Materials Impact using CED For 1 kG Sales‐weighted average Alkaline Batteries (~30 batteries) 

 There are complex and uncertain potential impacts associated with placing primary alkaline batteries in landfills at end‐of‐life and recycling may reduce those impacts, but may cause additional burdens that outweigh benefits. The primary factors that drive the environmental impact of alkaline battery recycling, compared to the baseline landfill scenario, include the recycling technology used, the amount of materials recovered, and the state of the recovered materials.  Study findings indicate recovering more than zinc for metal value or a single other material (replacing virgin material) is important for reducing environmental impact and technologies involving high temperature are energy intensive.  The principal drivers of end‐of‐life environmental performance of batteries vary depending on the metrics of impact assessment.  Findings indicate metrics around energy and carbon are strongly dependent on recovery technologies, metrics for ecosystem quality depend on landfill scenario assumptions as well as the materials benefits associated with recycling. For the latter, if one assumes little to no landfill leachate resulting from batteries (in other words, batteries remain intact in the landfill or leachate is collected and not of concern over the time horizon considered), the main benefit from recycling stems from the recovery of zinc, manganese and steel. The same is true for metrics around human health.   For the recycling scenario where batteries are dropped off by individual consumers at a retail or municipal facility, the assumed allocation of the trip (dedicated versus non‐dedicated) drives the burden. In addition, the fact that there were just three facilities modeled for North America that take alkaline batteries for recycling drives the large transportation burden associated with taking batteries from an intermediary consolidation facility to the recycling facility.   This study modeled several scenarios for collection and recycling of batteries that resulted in an overall net environmental burden as compared to landfilling as well as several that resulted in an overall environmental benefit.  When considering metrics related to energy or global warming potential, the recycling scenarios appear more environmentally burdensome whereas for metrics of human health and ecosystem quality, the recycling scenarios appear more environmentally beneficial. This study does not intend to explicitly compare the technologies; rather this work investigates the specific sites and contexts under which the technologies operate.  Collection The greatest burden was associated with the scenario wherein individual consumers dropped batteries off at municipal locations, such as transfer stations. The crucial assumptions were around the degree of dedication for this leg of the journey, and literature indicated a higher likelihood of a dedicated trip for municipal drop‐off along with greater distances traveled than the retail drop‐off. Municipal drop‐off was on average 3‐4 MJ and 0.2 kg CO2 eq/kg of batteries 

 

Page 18: Briefing Paper Factbase

                             Page 17 

disposed greater than retail drop‐off (1.3x10‐7 DALY, 0.015 pdf*m2yr, and 0.25 MJ surplus /kg surplus for the other metrics).  Curbside pickup (both MSW and Recycle co‐collection) for the recycling scenarios was determined to be lower in impact than both of the drop‐off scenarios.  Processing This analysis focuses on pyrometallurgical techniques for recycling that use high temperature to transform metals. There are several different approaches to pyrometallurgical recycling and these vary in terms of the pretreatment and post‐treatment, other feedstocks required, energy consumed (and fuel used to supply that energy) as well as the materials recovered .  There are three specific facilities in North America that were modeled.  The data from two European facilities are also included.  There are other technologies that may be applicable in the hydrometallurgical domain, but because these are not a reality in the United States, they are not considered here.  

Recycling Scenarios for Battery Recovery (Metal Value Indicates Replacing Virgin Material)  

Scenario  Materials recovered A  Zinc (metal value) 

Steel and Manganese (cement/road construction) B  Steel (metal value) 

Zinc (metal value) Manganese (part metal value part road construction) 

C  Steel (metal value)  Zinc/Manganese oxides (micronutrient fertilizer) 

D  Steel, Zinc and Manganese (metal value) E  Steel, Zinc and Manganese (metal value) 

 The chart below shows a comparison of Scenarios A‐E and MSW1 (landfill) and MSW2 (incineration) across the cumulative energy demand (CED) metric as a proxy for environmental impact.  

Net impact of MSW1: Landfill/Incineration, and Scenarios A – E with retail drop off using CED for 1 kg WAAB 

 

Page 19: Briefing Paper Factbase

                             Page 18 

 

Net impact of MSW1: Landfill/Incineration, and Scenarios A – E with retail drop off using Ecosystem Quality for 1 kg WAAB 

  Recommendations for Actions to Reduce the Environmental Impacts  Life cycle impact 

• Within raw materials production the top few materials (manganese dioxide, steel and zinc) have the highest impact. Therefore, involving upstream suppliers of those materials in follow‐up actions to reduce environmental impact could lead to burden reduction. Another possible action would be reducing the material thickness in the battery can, for example. Increasing the amount of recycled material used may not reduce the environmental burden as increasing demand for these metals does not directly lead to increased amounts of metals recycled. 

• Outside of raw material production, manufacturing plays a significant role in the environmental burden.  Improvements in the manufacturing operations, particularly those focused on reducing electricity use reduce the overall burden.  

End of life impact • The primary recommendation of the end‐of‐life focus of this study would be to explore the use of distributed 

EAF facilities within the US. The distributed location of these facilities reduces the overall transport burden, the non‐dedicated process reduces the environmental burden of recycling and the ability to recover some metal value from steel and perhaps manganese (to be incorporated into steel) provides an environmental benefit. The viability of this hypothetical scenario rests on the relevant legislation enabling transport and handling by these facilities and the batteries need to be tested through pilots to determine if they can be added without contamination to the EAF process and product quality. 

• Within the collection scenarios, the transportation impact was driven by the degree of dedication of consumer trips to drop‐off facilities (both municipal and retail). Therefore, education should accompany collection programs to promote non‐dedicated trips and consolidated trips. While the mechanics of making this possible would need to be investigated, co‐collection with curbside transport was the lowest transport impact.   

Future Research There are several elements that could be considered in more detail to further refine this analysis. A few of these are highlighted in this section: 

Page 20: Briefing Paper Factbase

                             Page 19 

• There is not one obvious scenario for battery recycling across all of North America because of differences in population density, the carbon intensity of the electrical grid, and facility location. Mapping the specific context for the part of the country where recycling will occur will provide the greatest opportunity for the most environmentally beneficial scenario to take place. 

• Deepening the understanding of the impacts and potential of Scenario D, the EAF scenario. Because of its comparatively low transportation burden and apparent beneficial outcome, this scenario should be investigated in more detail. Further work might investigate which types of steel minimills in the US would be most conducive to battery recycling and the permitting issues surrounding that option. As mentioned above, copper is a poison in the production of steel. While it was understood in the course of conversations occurring over the course of this work, that the copper present in batteries could be managed in the addition to EAFs, the recovered steel may have less value because of the copper‐content that would need to be managed. This should be further investigated.  

• The environmental impact of collection sites and collection vessels (due to the extraction and processing of raw materials in collection vessels and electricity burden associated with collection sites) should be added to the analysis to ensure they are not a significant portion of the impact. Previous work has not indicated they should be, but for completeness, this could be added to the analysis. Another scenario to explore would be if batteries are sent to a recycling facility and are not processed therefore the transportation burden would double if they are then sent to landfill. 

• Explore more transportation scenarios, such as using the mail service or associating primary battery collection programs with rechargeable where sorting processes are effective and further explorations into the impact of population density. If more environmentally intensive transport modes are employed, such as air, the burden will be higher. However due to the high cost, it is perhaps unreasonable to assume that air would be used as a dominant method to transport spent batteries. 

• Comparing the infrastructure of alkaline battery collection to other waste materials such as waste paint and other electronics to investigate the possibility of co‐collection would be of interest. Economic implications of the collection scenarios could also be added. 

• Another potential area of interest to experimental researchers would be to develop technologies that enable closed loop recycling of materials for alkaline batteries. In other words, enabling the use of manganese oxide or zinc recovered from spent batteries to be recycled back into primary batteries. 

• The processes to tackle the challenging question of how to develop optimized end of life systems for alkaline batteries may be best identified through a multistakeholder processes drawing in participants from the entire battery recycling value chain. Since the initial publication of this report, such a process has begun involving the battery manufacturers, recyclers, government and nongovernmental organizations, retailers, collection program operators and others. 

Page 21: Briefing Paper Factbase

                             Page 20 

C. Materials Used in Batteries 

1) Single‐use Batteries Cutaway View of a Typical Alkaline Primary Battery28 

 

 

Single‐use Battery Composition29 (Materials over 10% Composition of a Battery Are Highlighted) 

 

Material Alkaline 

Manganese Zinc 

Carbon Mercuric 

Oxide (button)Zinc Air (button) 

Lithium (button)

Alkaline (button) 

Silver Oxide (button) 

Lithium Manganese

Alkali  5.4%  6.0%  4.0%  2.0%  1.0% Carbon  3.7%  9.2%  1.0%  1.0%  2.0%  2.0%  0.5%  2.0% Iron & Steel  24.8%  16.8%  42.0%  60.0%  37.0%  42.0%  50.0% Lead  0.1% Manganese  22.3%  15.0%  1.0%  18.0%  23.0%  2.0%  19.0% Nickel  0.5%  1.0%  1.0%  1.0%  2.0%  1.0% Other metals  1.3%  0.8%  4.0% Other non metals  14.0%  15.2%  3.0%  13.0%  14.0%  4.0%  19.0% Paper  1.0%  0.7% Plastics  2.2%  4.0%  3.0%  4.0%  3.0%  6.0%  2.0%  7.0% Water  10.1%  12.3%  3.0%  10.0%  6.0%  2.0% Zinc  14.9%  19.4%  14.0%  35.0%  11.0%  9.0% Iron steel  37.0% Mercury  31.0%  1.0%  0.6%  0.4% KOH  2.0% Other material  7.0% Lithium  3.0%  2.0% Silver  31.0% 

                                                             28 Energizer Power Systems. 29 UK Department for Environment, Food and Rural Affairs (DEFRA) lifecycle analysis (LCA). 

Page 22: Briefing Paper Factbase

                             Page 21 

Zinc 

The principal uses of zinc metal are as a coating to protect iron and steel from corrosion (galvanized metal), as alloying metal to make bronze and brass, as zinc‐based die casting alloy, and as rolled zinc. United States pennies have 97.6 percent zinc content.  The metal zinc is used as the negative electrode in alkaline batteries and consists of approximately 20 percent of the total weight of the battery.   As the batteries are discharged, the elemental or "free" zinc is chemically converted into zinc oxide.  Zinc oxide is a stable compound.  According to the US Geological Survey, batteries constitute less than 2 percent of total zinc consumption in the US.  The majority of zinc is used as a galvanized zinc protective coating of steel (54 percent), as well as in die‐cast alloys (21 percent) and brass alloys (14 percent).  US pennies are approximately 98 percent zinc.30 

Manganese 

Manganese, in the form of manganese dioxide, is used as the positive electrode material in alkaline and zinc carbon batteries.  As the batteries are discharged, the manganese dioxide is chemically reduced to a lower state of oxidation.  Manganese dioxide is highly insoluble in water across a wide range of pH.31  The principal use of manganese is in steel making. Manganese also is a key component of certain widely used aluminum alloys. As ore, additional quantities of manganese are used for such nonmetallurgical purposes as plant fertilizers, animal feed, and colorants for brick.32 

Steel 

Steel is used to house the cells ingredients to form the cathode of the battery.  This steel is recoverable during most types of recycling/processing. 

2) Rechargeable Batteries Cutaway View of a Typical Nickel‐Cadmium (NiCd) Rechargeable Battery33 

 

                                                             30 NEMA, “Sound Environmental Management of Spent Primary Batteries” 31 Ibid 32 NEMA, “Household Batteries and the Environment” 33 Energizer Power Systems. 

Page 23: Briefing Paper Factbase

                             Page 22 

Rechargeable Battery Composition34 (Materials over 10% Composition of a Battery Are Highlighted) 

 

Material Nickel 

Cadmium Nickel Metal Hydride 

Cobalt Lithium Ion

Lead Acid 

Alkali  2.0% 4.0%Carbon  13.0%Iron & Steel  35.0% 20.0% 22.0%Lead  65.0% Manganese  1.0%Nickel  22.0% 35.0%Other metals  10.0% 11.0% 4.0% Other non metals  11.0% 8.0% 28.0%Plastics  10.0% 9.0% 10.0% Water  5.0% 8.0%Zinc  1.0%Other material  5.0% Lithium  3.0%Cadmium  15.0%Cobalt  4.0% 18.0%Aluminium  5.0%H2SO4  16.0% 

Nickel 

Although it is best known for its use in coinage, nickel (Ni) has become much more important for its many industrial applications, which owe their importance to a unique combination of properties.  Nickel has a relatively high melting point of 1,453 °C (2,647 °F) and a face‐centered cubic crystal structure, which gives the metal good ductility. Nickel alloys exhibit a high resistance to corrosion in a wide variety of media and have the ability to withstand a range of high and low temperatures. In stainless steels, nickel improves the stability of the protective oxide film that provides corrosion resistance. Its major contribution is in conjunction with chromium in austenitic stainless steels, in which nickel enables the austenitic structure to be retained at room temperature. Modern technology is heavily dependent on these materials, which form a vital part of the chemical, petrochemical, power, and related industries.35 

Cadmium 

An important application of cadmium is its use as the anode with either nickel or silver oxide as the cathode and a caustic potash electrolyte in rechargeable electrical storage batteries for uses in which lower weight, longer life, and stability upon storage in discharged condition are desirable as in aircraft.36 

Lithium 

Lithium cells must be manufactured under very dry conditions to prevent the absorption of moisture from the air; sealed inside a lithium cell, moisture combines with the lithium to produce lithium oxides and hydrogen gas, and the gas pressure can lead to cell failure. Lithium must be handled very carefully in the factory and many major manufacturers have had fires in their cell assembly rooms. The need to take measures to prevent fires, the required dry room conditions, and the inclusion of organic compounds in cell formulas combine to make lithium cells somewhat more                                                              34 UK Department for Environment, Food and Rural Affairs (DEFRA) lifecycle analysis (LCA). 35 "nickel processing." Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica, 2011. Web. 17 Feb. 2011. <http://www.britannica.com/EBchecked/topic/414313/nickel‐processing>. 36 "cadmium (Cd)." Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica, 2011. Web. 17 Feb. 2011. <http://www.britannica.com/EBchecked/topic/87955/cadmium>. 

Page 24: Briefing Paper Factbase

                             Page 23 

expensive than other types of common batteries. In addition, there are government safety regulations that limit the weight of lithium in commercial shipments, making it prohibitively expensive to distribute lithium cells larger than the AA or AAA size.37 

3) Implications for Storage/Collection of Batteries Used batteries, even when ‘dead,’ may still contain some residual charge. When battery terminals come into contact with one another, there is the potential for short circuit. Short circuiting leads to heat generation, especially when large quantities of batteries are placed together in a container.  Numerous global transportation agencies require protection against short circuit when transporting certain types of batteries, either new or used. While rules vary by region, in some areas it may be illegal to ship some battery types that are not packaged so as to prevent terminal contact and potential short circuit. The US Department of Transportation (DOT), for example, requires that some batteries be individually protected against short circuiting during transportation. A drum full of loose, non‐insulated batteries, depending on the battery types, may not meet this requirement.  To minimize the potential for short circuit, battery terminals should be insulated prior to storage. This is most commonly achieved by placing tape over at least one terminal, or by placing a single battery inside a small plastic bag and sealing the bag. While the potential for heat generation related to short circuiting is negligible in the most commonly‐used consumer batteries, consumers often do not differentiate among different battery chemistries. It is therefore prudent to require that safeguards be put in place for most collected batteries.  DOT regulations do not apply to single‐use, non‐lithium batteries below 12 volts.  

                                                             37 “battery." Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica, 2011. Web. 17 Feb. 2011. <http://www.britannica.com/EBchecked/topic/56126/battery>. 

Page 25: Briefing Paper Factbase

                             Page 24 

V. BATTERIES AT END‐OF‐LIFE  Spent batteries are composed of residual materials that still have value and can be recovered during the recycling process.  The materials can be sold to commodities markets and/or used to offset the use of virgin resources required for other products; in most cases, the materials recovered from batteries are not used in the manufacture of new batteries.    The exact composition of materials will vary by brand, chemistry, and size.  Generally, the materials recovered from rechargeable batteries (e.g., nickel, cobalt) are of higher value that materials recovered from primary batteries (e.g., zinc, manganese, steel).  The value received from selling the materials from primary batteries does not offset their processing cost.  The ultimate value of the materials recovered is tied to prevailing prices on the commodities markets. 

A. Regulation, Legislation, and Industry Action for Batteries at End‐of‐Life Below are several key regulatory milestones from across the globe:  

• 1990s‐2005 o 1991 ‐ Europe mandates collection of batteries containing mercury, cadmium, and lead  o 1996 ‐ U.S. Mercury‐Containing and Rechargeable Battery Management Act 

Phases out the use of mercury in batteries and provides for the efficient and cost‐effective collection and recycling, or proper disposal, of certain rechargeables 

o 1998 ‐ Europe bans use of mercury in batteries o California batteries deemed hazardous waste, but gives a seven year sunset provision o Several European countries mandate total battery collection 

• 2000‐2005 o Taiwan mandates total battery collection 

• 2005‐2008 o California sunset expires o 2006 ‐ California Rechargeable recycling Act (AB 1125) 

Requires retailers that sell rechargeable batteries to take‐back and recycle them o 2006 ‐ Europe mandates total battery collection o U.S. state mandates for electronics intensify 

• 2009 o Focus on batteries intensifies as other visible categories “fail” (e.g., paint, electronics) o Retail partners align with Extended Producer Responsibility thinking while initiating collection points o EPR thinking takes hold globally (CA, CO, MN, OR, Australia, Canada, Argentina, Columbia, Brazil) 

• 2010 o Product Stewardship Institute(PSI) focus turns to batteries o NY adopts statewide rechargeable battery take back law 

• 2011 o California bill for primary batteries (SB 515) reintroduced after a similar 2010 version did not advance 

 

Page 26: Briefing Paper Factbase

                             Page 25 

The maps below highlight countries that have primary battery legislation in place (or pending).  

  

Countries with active primary battery recycling legislation  

Several States/Provinces have legislation in place – see map below for detail  

Brazil

United States

Canada

Greenland

Mexico

United Kingdom

Ireland

Spain

France

Norway

Iceland

Sweden

Finland

Cuba

Italy

Egypt

Germany Poland

Greece

Switzerland

India

Australia

JapanChina

Russia

VenezuelaGuyana

SurinameFrench Guiana

Columbia

Ecuador

Peru

Bolivia

Chile

Argentina

Paraguay

Uruguay

Falkland Is lands

Haiti

DominicanRepublicJamaica

PanamaCostaRica

NicaraguaEl SalvadorHondurasBelizeGuatemala

Portugal

Estonia

Austria

Turkey

AlgeriaLibya

Morocco

Czech Rep.

Denmark

Lux.Belgium

Netherlands

Tunis ia

Belarus

Ukraine

RomaniaMoldova

Lativ ia

Bulgaria

HungarySlovakia

Serbia

Russia

Chad

WesternSahara

Mauritania Mali

Burik inaFaso

Israel

Lithuania

Albania

Bos. &Her.

Niger Sudan

Croatia

Cyprus

Jordan

Syria

SenegalThe Gambia

Guinea-Bissau GuineaSierraLeone

LiberiaCoteDivoire

GhanaTogo

BeninNigeria

Cameroon

CentralAfrican Republic

Equatorial Guinea

Gabon

Rep. ofThe

Congo

DemocraticRepublic

Of the Congo

Angola

Namibia

South Africa

Eritrea

Ethiopia

SomaliaUgandaKenya

RwandaBurundiTanzania

Malawi

Mozambique

Madagascar

Zambia

Botswana

Zimbabwe

SaudiArabia

Iraq

KuwaitBahrain

QutarUnited ArabEmirates

OmanYemen

Pakistan

AfghanistanIran

GeorgiaArmenia Azerbaijan

Turkmenistan

Uzbekistan Kyrgyzstan

Tajik istan

KazakhstanMangolia

Nepal Bhutan

Sri Lanka

BangladeshBurma

Thailand

Laos

Cambodia

Vietnam

Taiwan

South Korea

North Korea

Indonesia

Malaysia

SingaporeBrunei

Philippines

PapuaNew Guinea

New Zealand

SolomonIslands

Malta

SwazilandLesotho

East Timor

Macedonia

Bahamas

Bermuda

Puerto Rico

Page 27: Briefing Paper Factbase

                             Page 26 

   

States/Provinces with active primary battery recycling legislation  

1) European Union38 The September 2006 EU Batteries Directive (2006/66/EC) aims to avoid the final disposal of all single use and rechargeable batteries by requiring their collection and recycling: 

• Collection targets for portable batteries o Collection rates of at least 25% and 45% have to be reached by 26 September 2012 and 26 September 

2016 respectively • A ban on the use of cadmium in batteries except for three exempted applications • A prohibition to landfill/incinerate automotive and industrial batteries • Recycling efficiency targets for collected batteries 

o lead acid: 65% minimum by average weight o cadmium containing: 75% minimum by average weight o all other: 50% minimum by average weight 

                                                             38 Unless otherwise noted, material is from “Questions and Answers on the Batteries Directive (2006/66/EC)”, http://ec.europa.eu/environment/waste/batteries/pdf/qa.pdf 

YUKON

ALBERTA

BRITISHCOLUMBIA

NORTHWEST TERRITORY

BAFFINISLAND

VANCOUVERISLAND

MANITOBA(April 2011)

ONTARIO

SASKATCHEWAN

QUEBEC

NEWFOUNDLAND

NEWFOUNDLAND

NOVASCOTIA

NEWBRUNSWICK

Prince EdwardIsland

NUNAVUTCanada

ALASKA

Pacific Ocean

HAWAII

WASHINGTON

OREGON

MAINE

NEWHAMPSHIRE

MASSACHUSETTS

RHODE ISLANDCONNECTICUT

VERMONTNEWY0RK

PENNSYLVANIANEW JERSEY

DELAWAREMARYLANDWEST

VIRGINIAVIRGINIA

OHIO

KENTUCKY

NORTH CAROLINA

MICHIGAN

WISCONSIN

ILLINOISINDIANA

IOWA

MINNESOTA

SOUTH DAKOTA

NORTH DAKOTA

TENNESSEE

GEORGIA

SOUTHCAROLINA

ALABAMA

MISSISSIPPI

LOUISIANATEXAS

OKLAHOMA ARKANSAS

KANSASCOLORADO

NEW MEXICO

NEBRASKA

MONTANA

WYOMINGIDAHO

NEVADA

UTAH

CALIFORNIA

ARIZONA

FLORDIA

Atlantic Ocean

MISSOURI

United States

Page 28: Briefing Paper Factbase

                             Page 27 

The Directive applies to all types of batteries except those used to protect Member States' security, for military purposes, or sent into space.  EU Member States must transpose the Directive into national law enabling end‐users to discard spent batteries at local collection points for no charge.  

“Battery producers” must be registered and bear the costs of collecting, treating, and recycling industrial, automotive, and portable batteries, as well as the costs of campaigns to inform the public of these arrangements.  “Battery producers” are defined as every producer placing a battery on the national market.  This means that if a battery is incorporated in electrical or electronic equipment or a car, the equipment producers/car producers are also regarded as a “battery producer” under this Directive. Small producers may be exempt from this obligation.   

Product markings are required for batteries to inform end users not to dispose of batteries with household garbage.  Member States also must take actions to ensure that manufacturers design appliances so that batteries and accumulators may be removed readily and safely.  

 Collection Rate, Program Age, and Cost/Battery for Several EU Countries, 2007 

 

Country  Collection Rate (%)39 Years in Place40  Cost/Battery41 

Pop. Density (2005 per km)42 

Switzerland43,44  65 14 $0.21 180 Belgium45/Lux  50 12 $0.17 334 Germany  41 9 $0.04 231 Austria  40 18 $0.06 98 Netherlands  39 10 $0.11 393 France  30 8 $0.07 111 Sweden  25 9 20 Greece  21 1 $0.19 84 Ireland  21 0.5 $0.52 60 Spain  20 0.5 $0.10 85 Portugal  19 6 $0.14 115 Poland  17 2 118 Hungary  13 1 108 Czech Rep  9 3 129 Denmark  6 8 $0.24 126 UK  3 0.5 $0.32 248 Italy  1 0.5 195 Norway  1 0.5 12    US  31 Canada  3 

                                                             39 Energizer analysis. 40 Energizer analysis. 41 Energizer analysis. 42 United Nations Population Division. http://esa.un.org/unpp/ 43 Switzerland has instituted a system of recycling taxes which are included in the purchase price of these goods. 44 Highest collection site density in 2008 with 22 sites per 10,000 residents. 45 Over 20,000 collection sites across the country in retail stores, schools, and other public and private institutions (BEBAT. General Information – Collection Network. http://www.bebat.be/pages/en/main.html) 

Page 29: Briefing Paper Factbase

                             Page 28 

2) United States 

1996 Federal Battery Legislation 

The Mercury‐Containing and Rechargeable Battery Management Act (Public Law 104‐142; 42 USC 14301 et seq.) became law on May 13, 1996. The purposes of the law were to formalize, with legal requirements, the phase‐out of the use of mercury in batteries; and provide for the efficient and cost‐effective collection and recycling or proper disposal of used nickel cadmium batteries, small sealed lead acid batteries, and certain other batteries. The 1996 federal legislation followed the principles of battery legislation previously enacted in 18 U.S. states. Title I of the law prohibits the sale of regulated rechargeable batteries or rechargeable consumer products unless specific labeling requirements are met and the rechargeable battery is either easily removable from the product or is sold separately. Title II of the law prohibits the sale of alkaline manganese batteries containing added mercury (except button cells, where the use of mercury is limited to 25 milligrams per button cell); zinc carbon batteries containing added mercury; mercuric oxide button cell batteries; and larger mercuric oxide batteries (unless specified conditions are met). The law may be viewed at www.nema.org/batteryehs.46 

Mercury Removal 

In response to environmental concerns, battery manufacturers developed new technologies that eliminated the need for mercury in cylindrical and rectangular batteries. In general, these new technologies reduced the rate of internal gassing by reducing impurities that cause gassing and using other formulations to suppress gasses. In addition, companies redesigned batteries as appropriate to allow gasses to escape at faster rates. Cylindrical and rectangular alkaline batteries have been produced in the United States, Europe, and Japan without the addition of mercury since 1993, and the addition of mercury to these products was made illegal in the U.S. under 1996 federal battery legislation.  The relatively large size of cylindrical and rectangular alkaline and zinc carbon batteries allows them to be packed less fully such that any small buildup of gasses will not lead to internal gas pressures that cause leaking or rupturing the battery sealing systems. In the case of button cells, however, this is not true. Because of their relatively small external sizes and of the need to provide maximum energy in their small interiors, there is little if any room for any internal gassing buildup before it affects the button cell. Such gas building up in button cells can cause bulging in the button cell and leakage and/or rupture of the button cell in a product. As a result, very small amounts of mercury continue to be used in button cells.  Zinc air button cells require the presence of one or more small holes in their casings so that air can enter and allow oxygen to react with the zinc electrode. These holes prevent the buildup of high internal pressures, but even a small internal gas pressure is sufficient to prevent the inflow of the outside air. Despite the holes in their casings, zinc air button cells are very sensitive to even small internal gas pressures, and therefore they continue to require very small amounts of mercury to suppress the internal gas generation.47 

Increased Performance 

Heading into the mid‐2000s, battery manufacturers continued to improve battery design. One important strategy embraced by the industry involved improved cell designs that increased efficiency and maximized output in high drain applications. Changing consumer needs necessitated better designs for alkaline batteries due to increased power needs of products such as digital assistants, digital cameras, handheld computers, and wireless peripheral devices. 

                                                             46 NEMA, “Household Batteries and the Environment” 47 NEMA, “Household Batteries and the Environment” 

Page 30: Briefing Paper Factbase

                             Page 29 

Disposal Bans 

California is the only state that prohibits the disposal of all batteries except carbon zinc48 in municipal solid waste, as part of its disposal ban on products it designates “universal waste.”49 Eight other states ban the disposal of both Ni‐Cd and SSLA batteries (FL, IA, ME, MD, MN, NJ, RI, VT). Mercury‐added batteries are banned from disposal in six states under a wider ban on mercury‐added products (MA, ME, MN, NH, RI, VT). More than 30 states have banned the disposal of lead acid car batteries. New York City and Westchester County, NY have banned the disposal of all rechargeable batteries. In addition, most Ni‐Cd and SSLA batteries are subject to Resource Conservation and Recovery Act (RCRA) requirements, which vary depending on the state. In many states, this means these batteries would be banned from disposal (except from households).50  Several states require manufacturers and/or retailers of consumer rechargeable batteries to develop a collection and recycling program.  San Luis Obispo, CA is currently the only local or state jurisdiction that requires retailers to also collect and recycle alkaline single‐use batteries; however, the ordinance does not specify a role for manufacturers.  The table below highlights several state laws/ordinances:  

                                                             48 California's hazardous waste regulatory system goes beyond the federal RCRA program. (States can opt to be more stringent than RCRA, but not less stringent; most state hazardous waste regulatory programs are relatively equivalent to RCRA.) In California, there are several differences that are pertinent to batteries: (1) California’s hazardous waste characteristics are broader. The California law has additional toxicity thresholds for substances that RCRA regulates (e.g., lead) and has thresholds for substances that don't have RCRA thresholds (e.g., copper and zinc). California's corrosivity characteristic also differs from RCRA's in that it applies to solids, not just liquids. Therefore, a battery that exhibits corrosivity in California due to its alkaline electrolyte, and toxicity due to its copper or zinc electrodes, might not exhibit any RCRA hazardous waste characteristic. (2) Under RCRA (and in the majority of states, which are RCRA‐only), 40 CFR 261.4 (b)(1) categorically excludes household wastes from being hazardous wastes. This exclusion was not adopted in California, so a household‐generated alkaline battery that exhibits toxicity for zinc and corrosivity due to its electrolyte would be identified as a hazardous waste and regulated as universal waste in California, but not in a RCRA‐only state. 49 See website of Californians Against Waste for explanation of California’s Universal Waste Law and list of about 15 products considered “universal waste” in California. Go to: http://www.cawrecycles.org/issues/ca_e‐waste/dtsc_background.  50 Various U.S. state legislation. 

Page 31: Briefing Paper Factbase

                             Page 30 

Scope of Products Covered by U.S. Consumer Battery Product Stewardship Laws/Ordinances  

State  Rechargeable Batteries  Single‐use Batteries California 

(2006/2011) Small, nonvehicular, rechargeable Ni‐Cd, Ni‐MH, Li‐Ion, or SSLA, or a battery pack containing these types. 

2011 legislation introduced 

Florida (2008) 

Small, nonvehicular, rechargeable Ni‐Cd or SSLA battery, or battery pack containing such a battery, weighing less than 25 lbs and not used for memory backup. 

Consumer button cell battery  

Iowa (1996) 

Rechargeable dry cell batteries containing Ni‐Cd and SSLA used in nonvehicular rechargeable products weighing less than 25 lbs

Button cell batteries containing mercuric oxide 

Maine (1995) 

Ni‐Cd or SSLA “designed for reuse and is capable of being recharged after repeated use.” 

Consumer mercuric oxide button cell 

Maryland (1994) 

Rechargeable batteries under 25 lbs excluding: a battery used as a power source for starting a motor vehicle. 

Mercuric oxide batteries 

Minnesota (1994/2008) 

Ni‐Cd, SSLA, or any other rechargeable battery   

New Jersey (1991) 

Ni‐Cd or sealed lead rechargeable batteries  Mercuric oxide batteries 

New York (2010) 

Ni‐Cd, sealed lead, Li‐Ion, Ni‐MH, or any other rechargeable dry cell battery weighing less than 25 lbs, or battery packs containing such. Excluding: batteries for vehicles, storage of electricity generated by an alternative power sources, or for memory backup integral to an electronic device. 

 

3) Canada British Columbia and Ontario are currently the only two Canadian provinces that require manufacturers to collect all types of batteries (Manitoba will begin a program on April 1, 2011).  Ontario started collecting single‐use batteries on July 1, 2008, and added rechargeable batteries on July 1, 2010. Call2Recycle estimates that its program recycles approximately 10% of household batteries sold in each province.   Quebec has been actively considering extending product stewardship programs to include all batteries as well, and five other Canadian provinces have product stewardship programs for electronic waste that require the collection of products containing rechargeable batteries. The Canadian Council of Ministers of the Environment has identified electronics and batteries as products to be prioritized for new producer responsibility programs in provinces where such programs do not currently exist.51   The battery stewardship programs in Canada typically require the producers (known as “stewards”) to establish and pay for a collection and recycling system, and submit a plan to the supervising authority.  British Columbia requires stewards to hold public consultations, and Manitoba proposes to require this as well.   

B. The Current State of North American Battery Recovery and Recycling Efforts There are eight main battery processing facilities in the U.S. and Canada that handle consumer batteries, although smaller facilities claim to accept and process lithium ion and other batteries. Each facility recycles a different set of battery chemistries, and no single facility processes all chemistries, not even all rechargeable batteries. Only three 

                                                             51 The five provinces are: Manitoba, Saskatchewan, B.C., Alberta, & Ontario. Electronics waste has been identified as a priority by the Canadian Council of Ministers of the Environment, Canada‐Wide Action Plan for Extended Producer Responsibility. Available at <http://www.ccme.ca/assets/pdf/epr_cap.pdf>  

Page 32: Briefing Paper Factbase

                             Page 31 

facilities process single‐use batteries.52 The feedstock for the facilities ranges from 100 percent batteries (Battery Solutions) to less than 10 percent (Inmetco) and less than 5 percent (Teck Ltd). Note that two facilities share the same location (ToxCo and Teck Ltd. in British Columbia).  

 

                                                             52 Although many existing steel plants can process primary batteries.  

Page 33: Briefing Paper Factbase

                             Page 32 

Companies Processing Single‐use and/or Rechargeable Batteries in North America53  

Map Location  Company  Location 

Main Consumer Batteries Processed 

Other Consumer Batteries Processed 

Batteries as a % of Total Feedstock 

A  Metal Conversion Technologies, LLC (MCT) 

Cartersville, GA  Lead‐Acid Dry Cell, Lithium, Lithium‐Ion, Ni‐Cd, Ni‐MH 

No known  Not known 

B  Kinsbursky Brothers 

Anaheim, California 

Alkaline (pending54) 

Lead‐acid   Not known 

C  Battery Solutions 

New Brighton, Michigan 

Alkaline, Ni‐MH, Lithium‐ion 

Alkaline, Zinc Carbon, Ni‐Cd, Lithium Primary, Silver Oxide & other button cells 

100% 

D  ToxCo  Lancaster, Ohio  Nickel‐Cadmium  

Ni‐MH, SSLA  >70% 

E  Inmetco  Ellwood City, Pennsylvania 

Nickel‐Cadmium Ni‐MH 

Alkaline, Zinc Carbon  <10% 

F  Raw Materials Co. 

Port Colborne, Ontario 

Alkaline and Zinc Carbon 

Lithium‐ion, Zinc air button cell, silver oxide button cell, Ni‐MH, Li‐Poly 

100% 

G  Xstrata  Sudbury, Ontario  Lithium‐ion  Ni‐MH  <25% H  ToxCo  Trail, British 

Columbia Lithium (all)  None  100% 

H  Teck Ltd  Trail, British Columbia 

Alkaline  Zinc Carbon, Zinc air button cell, silver oxide button cell  

<5% 

 Since no one company can process all battery chemistries, single‐use and rechargeable batteries collected in the U.S. must be sorted by battery chemistry and shipped to various facilities for processing. For example, batteries collected through the Call2Recycle program in the U.S. are first shipped to Inmetco’s Pennsylvania facility. However, other battery types that cannot be processed must be reshipped to other facilities. In Canada, batteries collected through the Call2Recycle program are first consolidated at the Newalta facility in Fort Erie, Ontario, or at the Toxco facility in Trail, British Columbia, and then transported to Inmetco or, in the case of small‐sealed lead acid batteries, to NovaPb in Ville Ste‐Catherine, Quebec. Any batteries that Inmetco cannot process (e.g., lithium ion) are transported back to Canada to be processed at the Xstrata facility in Sudbury, Ontario, and then refined elsewhere to recover the metals. 

Transportation adds operational costs for all types of batteries. Although capacity exists at these processing facilities to handle an increase in single‐use and rechargeable battery collection, available technology does not always ensure the highest and best use for the materials recovered. These considerations are critical when battery stewardship is viewed from a lifecycle perspective.    Factors influencing primary battery recycling are complex and include a whole range of elements, like distance, means and intent of travel by the consumer to the drop‐off point, transportation and sorting impacts generated in the course of delivering the batteries to the recycling facility, the recycling technology itself, and efficiency of the recycling process and materials involved.55                                                               53 NEMA document “List of Companies Claiming to Collect or Recycle or Treat Used Batteries  54 This facility is currently only processing Industrial batteries, but has been included because it is in the process of seeking permit modifications that would allow it to process alkaline batteries in the state of California. 55 Source: European Portable Battery Association (EPBA) 

Page 34: Briefing Paper Factbase

                             Page 33 

Several processing facilities have reported recycling rates of 55%‐75%, with zinc, manganese, and iron in the 90%‐100% range.56  Alkaline and Zinc Carbon (Primary) The European and U.S. battery industries have demonstrated the technical feasibility of recycling alkaline and zinc carbon batteries in existing metal smelting furnaces and kilns. Although considerable progress has been made, environmentally beneficial and cost‐effective recycling technologies are not universally available. In addition, the results of a life cycle analysis of various post‐consumer collection systems commissioned by the U.K. government shows that systems for collecting and transporting primary batteries may have a greater detrimental environmental impact than the benefits gained from recycling these batteries, and carry a significant financial burden. Any decision to recycle alkaline and zinc carbon batteries must carefully weigh several factors, including the low toxicity of the battery materials (e.g., steel, zinc, and manganese); the total energy requirements and environmental impacts associated with the collection, transport, and recycling of the batteries; the amount and value of the metals recovered; and the overall cost.57  The processing methods for alkaline batteries include the following:  Processing Technology  Definition  Types  Examples 

Pyrometalurgical  Use of Heat to Break into Components 

Electric arc furnace (Valdi) 

Blast furnace (DK) 

Waelz Kilns (Revatech, Redux) 

Rotary Furnace (Citron, Inmetco) 

Chemical  Dissolve into Components  Acid digestion 

 

(none currently operating) 

North America (Drinkard) 

Europe (Revatech) 

Mechanical  Use of Force to Break into Components 

 

Hammermill  

Shredder 

North America (Toxco, RMC) 

Europe (Revatech, Redux) 

 Rechargeable Nickel cadmium and small sealed lead acid batteries are expected to be collected and recycled because of their high contents of cadmium and lead, respectively, and the Rechargeable Battery Recycling Corporation (RBRC) has been created for that purpose. The activities of RBRC have been extended to include nickel metal hydride and lithium ion batteries. For more information, contact RBRC at 1‐800‐8‐ BATTERY or visit its website, www.rbrc.org.58  North American Collection Programs Rechargeable Battery Recycling Program: Call2Recycle is the only industry‐funded program in North America for recycling rechargeable batteries, and is funded by over 175 manufacturers and marketers of rechargeable batteries (representing over 90 percent of the rechargeable power industry). Call2Recycle has established over 30,000 active retail, municipal and other drop‐off sites across the United States and Canada. The Call2Recycle program was originally formed to collect Ni‐Cd rechargeable batteries, but expanded in 2001 to include other rechargeable chemistries, and again expanded in 2004 to take cell phones. Over the past 13 years, Call2Recycle has increased collections from 1.9 

                                                             56 “Recycling/Recovery rate comparison between selected Battery Recycling Companies”.  Portable Energy Solutions. 57 NEMA, “Household Batteries and the Environment” 58 NEMA, “Household Batteries and the Environment” 

Page 35: Briefing Paper Factbase

                             Page 34 

million pounds in 1997 to 6.1 million pounds in 2009 (see Figure 3). Call2Recycle estimates that 10‐12 percent of consumer rechargeable batteries are recycled in the U.S. and Canada.59  Single‐use Battery Recycling Program: There is no industry‐funded program for single‐use batteries in the U.S., and only a small number of municipalities collect these batteries for recycling. (In some places, single‐use batteries are collected and landfilled as either hazardous or solid waste.)  Other Service Providers: There are several other service providers that collect and recycle all types of batteries for a fee, including Heritage Environmental Services, Clean Harbors, Battery Solutions, the Big Green Box, Waste Management, Raw Materials Company Inc., and Veolia. These companies typically provide collection services for a range of customers, including large quantity generators, which are required by federal law to recycle batteries they generate, as well as municipalities, retailers, and the general public.  Household Hazardous Waste Collections: Currently a large quantity of consumer batteries are collected through local government household hazardous waste collection programs. Batteries are only one of a variety of items collected through these programs, which are generally funded by the taxpayer and vary greatly by location.   

Summary of Selected U.S. Municipal Collection Programs for Primary Batteries  

 

Santa Clara County,  San Jose, CA 

Onondaga County (OCRRA), Syracuse, 

NY 

Hennepin County, Minneapolis‐St. 

Paul, MN  City of Austin, TX Lee County, Ft. Myers, FL 

Collection Methods Used 

• Curbside: Separate Collection Box 

• Drop‐off: Retail, Business, School 

• Curbside: Bag/box‐integrated  

• Curbside: Hazardous Waste Day Pickups 

• Drop‐off: Retail, Business, School 

• Drop‐off: Municipal  

• Curbside:  Separate Collection Box 

• Drop‐off: Retail, Business, School 

• Drop‐off: Municipal   

• Drop‐off: Retail, Business, School 

• Drop‐off: Municipal   

• Curbside: Bag/box‐integrated  

• Drop‐off: Municipal   

Notes on Collection 

Curbside – single‐family homes only  Retail – 35 locations Municipal ‐ Two facilities (Sunnyvale and San Martin HHW centers – both qualify as Small Quantity Generators) 

Curbside – one month per year collection (July); customers must request bags. Haulers drop off at transfer station. Retail ‐ 10 grocery store locations have collection kiosks paid for and serviced by county for alkaline, button, and rechargeable Municipal ‐ at one of two transfer stations run by OCRRA (across from incinerator) 

Curbside – Minneapolis only (290k residents in 110k units) Retail ‐ Considered private sites ‐ hardware, grocery, senior centers, clubs, etc.; county‐wide Municipal ‐ County HHW facilities, cities, HHW events, county buildings, libraries, schools 

Retail – 29 sites including 13 Radio Shacks and 5 Batteries Plus Municipal – HHW site in SE Austin 

Curbside – customers use their own plastic/Ziploc bags Municipal – 14k households drop off at the facility 

Disposition of Primary Batteries 

Recycled  Landfill  Landfill  Recycled  Recycled 

Volumes (Primary) 

Curbside: 41,918 lbs. (45%) Retail: 48,660 lbs. (53%) Municipal: 1,884 lbs. (2%) 

Curbside: 29,000 lbs. (20%) Retail: 108,000 lbs. (75%) Municipal: 7,200 lbs. (5%) 

Curbside: 46,000 lbs. (20%) Retail: 53,000 lbs. (23%) Municipal: 132,000 lbs. (57%) 

Retail: 41,300 lbs. (85%) Municipal: 7,400 lbs. (15%) 

Curbside: 100 lbs. (2%) Municipal: 5000 lbs. (98%) 

                                                             59 This estimate reflects the rechargeable batteries that Call2Recycle collects divided by an estimate of sales into North America by Call2Recycle’s licensees. They include batteries used by consumers that are also used in business situations (e.g., cell phones, two‐radios, laptops, etc.).  

Page 36: Briefing Paper Factbase

                             Page 35 

 

Santa Clara County,  San Jose, CA 

Onondaga County (OCRRA), Syracuse, 

NY 

Hennepin County, Minneapolis‐St. 

Paul, MN  City of Austin, TX Lee County, Ft. Myers, FL 

Promotion Methods 

Curbside – individual cities responsible for promotion; also use County’s Public Outreach Person Retail ‐ County’s Educational outreach person Business ‐ Haz Mat inspectors when visiting with businesses 

Curbside – OCCRA website Retail ‐ OCCRA website Municipal ‐ OCCRA website 

Curbside – City of Minneapolis and Hennepin County Retail ‐ Hennepin County and collection sites, web listing, fact sheets, flyers, etc. Municipal ‐ Hennepin County, cities, schools 

Retail ‐ Web site only. No real marketing Municipal ‐ Web site only. No real marketing 

Unknown 

Funding Sources 

Curbside ‐ Subsidized by their Solid waste tipping fee Retail ‐ Solid Waste Tipping Fee Business ‐ small businesses pay a fee 

Curbside ‐ OCRRA operating budget Retail ‐ OCRRA operating budget for 10 retailers in program (if other retailers collecting, they are doing on their own and is funded by that organization) Municipal ‐ OCRRA operating budget 

Curbside ‐ Collection by City of Minneapolis and their primary source of funding is the Solid Waste Base Fee and Disposal Fees charged on the Public Works Utility Bill Retail ‐ Hennepin Counties program is financed through the enterprise fund derived from solid waste tip and management fees Municipal ‐ Hennepin Counties program is financed through the enterprise fund derived from solid waste tip and management fees 

Retail ‐ Portion of monthly Anti‐litter fee Municipal ‐ Portion of monthly Anti‐litter fee 

Curbside: covered by $0.71/week/household fee for all recycling Municipal: unknown 

Page 37: Briefing Paper Factbase

                             Page 36 

APPENDIX I: TERMINOLOGY  Term  Definition Absolute collection  The total volume of batteries collected (usually by weight) Battery  One or more cells electrically connected by permanent means, fitted in a case, with 

terminals, markings and protective devices, etc., as necessary for use.60 Button or coin battery  Small round battery, where the overall height is less than the diameter.61  Collection rate  Measures the total volume of batteries collected as a percentage of the amount available 

for collection (which can be defined in many ways depending on hoarding assumptions, etc.) 

Extended Producer Responsibility (EPR) 

Also known as Product Stewardship, EPR uses financial incentives to encourage manufacturers to design environmentally‐friendly products by holding producers liable for the costs of managing their products at end of life 

High drain device  Products with high drain requirements include digital cameras, palmtops, remote control toys, portable televisions, and photo flash units.62 

Household battery  A consumer‐type battery used in today’s popular electronic devices. 63  Low drain device  Low drain applications include radios, clocks, and flashlights.64 Moderate drain device  Moderate drain applications, which include the majority of today’s electronic products, 

include tape recorders, Game Boys, music and CD players, electronic toys, pagers, boom boxes, smoke detectors, remote controls, and flashlights that get lots of use.65 

Primary battery  A cell or battery that is not designed to be electrically recharged.  Sometimes referred to as a single use battery.66 

Product Stewardship  A concept whereby all those involved in the lifecycle of a product share responsibility for reducing its health and environmental impacts, with producers bearing primary financial responsibility. 

Recovery Rate/Recycling Efficiency 

Measures the amount of material recycled as a percentage of the amount of material collected 

Recycling Rate  The amount of material recycled as a percentage of the amount of material available for collection.  This is equal to the collection rate multiplied by the recovery rate. 

Secondary battery  A cell or battery that is designed to be electrically recharged. 67  

                                                             60 International Standard, IEC 60086‐1. 61 International Standard, IEC 60086‐1. 62 “Household Batteries and the Environment.” National Electrical Manufacturers Association (NEMA), http://nema.org/gov/env_conscious_design/drybat/upload/NEMABatteryBrochure2.pdf 63 International Standard, IEC 60086‐1. 64 “Household Batteries and the Environment.” National Electrical Manufacturers Association (NEMA), http://nema.org/gov/env_conscious_design/drybat/upload/NEMABatteryBrochure2.pdf 65 “Household Batteries and the Environment.” National Electrical Manufacturers Association (NEMA), http://nema.org/gov/env_conscious_design/drybat/upload/NEMABatteryBrochure2.pdf 66 International Standard, IEC 60086‐1. 67 International Standard, IEC 60086‐1. 

Page 38: Briefing Paper Factbase

                             Page 37 

APPENDIX II: STEWARDSHIP EFFORTS IN OTHER INDUSTRIES For comparison purposes, the table below indicates the U.S. recycling percentage of various products.  Note that several products/materials have had programs in place for an extended period of time and/or incentive programs in place: 

 Generation and Recovery of Products in Municipal Solid Waste (MSW)*, 200968 

(In millions of tons and percent of generation of each material) Products  Weight Generated  Recovery as Percent of Generation Durable goods     

Steel  13.34  27.9% Aluminum  1.35  Negligible Other non‐ferrous metals**  1.89  68.8% Glass  2.12  Negligible Plastics  10.65  3.8% Rubber and leather  6.43  16.6% Wood  5.76  Negligible Textiles  3.49  12.6% Other materials  1.61  76.4% Total durable goods  46.64  17.5% 

Nondurable goods     Paper and paperboard  33.48  52.1% Plastics  6.65  Negligible Rubber and leather  1.06  Negligible Textiles  9.00  16.2% Other materials  3.25  Negligible Total nondurable goods  53.44  35.3% 

Containers and packaging     Steel  2.28  66.2% Aluminum  1.84  37.5% Glass  9.66  31.1% Paper and paperboard  34.94  71.8% Plastics  12.53  13.7% Wood  10.08  22.1% Other materials  0.24  Negligible Total containers and packaging  71.57  47.8% 

Other wastes     Food, other***  34.29  2.5% Yard trimmings  33.20  59.9% Miscellaneous inorganic wastes  3.82  Negligible Total other wastes  71.31  29.1% 

Total municipal solid waste  242.96  33.8%  Notes: Details might not add to totals due to rounding; “Negligible” = Less than 5,000 tons or 0.05 percent. * Includes waste from residential, commercial, and institutional sources. ** Includes lead from lead‐acid batteries. *** Includes recovery of other MSW organics for composting 

                                                             68 “2009 Facts and Figures – Fact Sheet”.  U.S. Environmental Protection Agency, 2009 MSW Characterization Report.  http://www.epa.gov/epawaste/nonhaz/municipal/pubs/msw2009‐fs.pdf  

Page 39: Briefing Paper Factbase

                             Page 38 

A. Example: Paint in California69 In California, Assembly Bill (AB) 1343 was signed into law on September 28, 2010.  AB 1343 establishes a producer financed, designed and managed postconsumer paint recovery program. The law was based on legislation implemented in Oregon on July 1, 2010, who established the first paint stewardship in the nation.  It requires architectural paint manufacturers to develop and implement a stewardship plan to reduce the generation of postconsumer paint, promote the reuse, and manage the end‐of‐life postconsumer paint in an environmentally sound manner.  Paint is the single largest waste stream managed by California local government household hazardous waste (HHW) programs, costing California taxpayers and garbage ratepayers approximately $27 million annually to manage.  “A state‐wide program will alleviate the need for these counties to implement more costly and often conflicting programs and instead allow ACA's PaintCare organization to institute the industry's program in much the same way as we are doing in the state of Oregon…PaintCare will draft and submit a paint stewardship plan to the state for review and approval (including a budget), which will enable PaintCare to run and operate the program providing an even‐level playing field among manufacturers and retailers and granting antitrust exemption for the systems consumer‐based financing.”70  Impacts on Producers Paint producers, through a designated stewardship organization (SO) or individually, will be required to submit a stewardship plan to the Department of Resources, Recycling and Recovery (CalRecycle).  The plan is required to contain specified elements of an architectural paint stewardship program, including a paint stewardship fee, approved by CalRecycle, on each container of paint sold in this state.  The law prohibits paint producers from selling paint in California unless they are participating in the paint stewardship program as listed on CalRecycle’s website.  Producers must also submit an annual report to CalRecycle describing its paint recovery efforts.  Impacts on Retailers Retailers cannot sell or offer for sale in California paint unless the producer is in compliance with this law. A retailer may also voluntarily participate as a paint collection point and post the educational materials provided.  Impacts on Consumers California consumers will now have more locations to discard of their unwanted paint for recycling at no cost upon return. Program fees are paid at point of sale.  State Oversight (CalRecycle) CalRecycle must review and approve submitted stewardship plans from producers within 90 days of receipt. CalRecycle must also list participating producers on their website and review the annual report required to be submitted by producers and adopt findings of compliance or noncompliance with their plan within 90 days of receipt.  Key Dates 

• January 2011 – Effective date • April 1, 2012 ‐ Program plan submitted to CalRecycle by producers/SO • July 1, 2012 – Paint program starts • April 1, 2013 ‐ CalRecycle posts a notice on web site listing producers in compliance. • July 1, 2013 (and each year thereafter) – Producers submit a report to CalRecycle describing paint recovery 

efforts 

                                                             69“AB 1343 Fact Sheet.” December 30, 2010. California Product Stewardship Council. 70 “California Paint Stewardship Legislation Signed into Law”, October 5, 2010.  American Coatings Association. 

Page 40: Briefing Paper Factbase

                             Page 39 

 Cost/Funding The stewardship organization will pay CalRecycle annual administrative fees sufficient to cover the full costs of administering and enforcing the program 

B. Example: Carpet in California71 In California, Assembly Bill (AB) 2398 was signed into law on September 30, 2010.  AB 2398 establishes a producer financed, designed and managed carpet recovery program.    Carpet makes up 3.2% of all waste disposed in California. It’s bulky and difficult to manage and has the fourth largest greenhouse gas footprint of any product waste in California.  Impacts on Manufacturers Carpet producers, individually or through a designated stewardship organization, will be required to submit a stewardship plan containing specific elements to the Department of Resources, Recycling and Recovery (CalRecycle).  The Carpet America Recovery Effort (CARE), a 3rd‐party nonprofit carpet stewardship organization, will serve as the carpet stewardship organization until April 1, 2015. The law prohibits carpet producers from selling carpet in California unless they are participating in the carpet stewardship program. Producers must submit an annual report to CalRecycle describing carpet recovery efforts.  Impacts on Retailers/Wholesalers Retailers must make sure that carpet producers are in compliance before selling their carpet.  Retailers and wholesalers will also add the $0.05 per square yard assessment to the purchase price of all carpet sold in the state.  Impacts on Consumers California consumers will now have more locations to discard of their unwanted carpet for recycling with no costs upon return. Consumers will pay fees at point of sale to cover the program costs.  State Oversight (CalRecycle) CalRecycle will review and approve submitted stewardship plans from carpet producers within 60 days of receipt. They must list participating producers on their website, review the annual report submitted from producers and adopt findings or compliance or noncompliance with their plan.  CalRecycle and the Department of General Services (DGS) must also complete a study examining the specifications for carpet purchases by the state and submit it to the Governor and the Legislature.  Key Dates 

• January 2011 – Effective date • September 30, 2011‐ Carpet manufacturers submit a stewardship plan to CalRecycle • July 1, 2011 to January 1, 2013 ‐ Assessment of $0.05 per square yard upon the purchase price of all carpet sold 

in CA • July 1, 2013 (annually) – Producers submit an annual report to CalRecycle • January 1, 2014 ‐ CalRecycle/DGS complete a study on the carpet purchases by the state. • Until April 1, 2015 ‐ CARE serves as the carpet stewardship organization • After April 1, 2015 – Other carpet stewardship organizations, besides CARE, may operate and submit plans to 

CalRecycle.  

                                                             71 “AB 2398 Fact Sheet.” December 30, 2010. California Product Stewardship Council. 

Page 41: Briefing Paper Factbase

                             Page 40 

Cost/Funding • The stewardship organization will pay CalRecycle annual administrative fees sufficient to cover the full costs of 

administering and enforcing the program. • The $0.05 per square yard assessment on carpet will be spent by CARE or an individual producer, prior to 

approval of its carpet stewardship plan. 

Page 42: Briefing Paper Factbase

                             Page 41 

APPENDIX III: Blu Skye Background and Involvement in the Summit 

 

Page 43: Briefing Paper Factbase

                             Page 42