bridging the hybrid high-order and hybridizable ...di-pietro/presentations/... · k;d: k 1 d k 1 1...

36
Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods B. Cockburn D. A. Di Pietro A. Ern Institut Montpelli´ erain Alexander Grothendieck MAFELAP 2016 1 / 36

Upload: doantu

Post on 01-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Bridging the Hybrid High-Order and HybridizableDiscontinuous Galerkin Methods

B. Cockburn D. A. Di Pietro A. Ern

Institut Montpellierain Alexander Grothendieck

MAFELAP 2016

1 / 36

Page 2: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Minimal bibliography: High-order polyhedral methods

Discontinuous Galerkin

Unified analysis [Arnold, Brezzi, Cockburn and Marini, 2002]General meshes [DP and Ern, 2012, Cangiani, Georgoulis et al. 2014]Adaptive coarsening [Bassi et al., 2012, Antonietti et al., 2013]

Hybridizable Discontinuous Galerkin

LDG framework [Castillo, Cockburn, Perugia, Schotzau, 2009]HDG for pure diffusion [Cockburn, Gopalakrishnan, Lazarov, 2009]

Weak Galerkin [Wang and Ye, 2013]

Virtual elements

Pure diffusion [Beirao da Veiga, Brezzi, Cangiani, Manzini, Marini,Russo, 2013]Nonconforming VEM [Lipnikov and Manzini, 2014]

Hybrid High-Order (HHO)

Originally introduced for linear elasticity [DP and Ern, 2015]Pure diffusion [DP et al., 2014]Link with HDG [Cockburn, DP, Ern, M2AN, 2016]

2 / 36

Page 3: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Outline

1 The Hybrid High-Order (HHO) method

2 Numerical trace formulation and link with HDG

3 Variations

3 / 36

Page 4: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Outline

1 The Hybrid High-Order (HHO) method

2 Numerical trace formulation and link with HDG

3 Variations

4 / 36

Page 5: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Model problem

Let κ : Ω Ñ Rdˆd be a SPD tensor-valued field s.t.

0 ă κ ď λpκq ď κ

We assume κ piecewise constant on a polyhedral partition PΩ of Ω

We consider the Darcy problem

´divpκ∇uq “ f in Ω

u “ 0 on BΩ

Weak formulation: Find u P U :“ H10 pΩq s.t.

apu, vq :“ pκ∇u,∇vq “ pf, vq @v P U

5 / 36

Page 6: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Mesh I

Definition (Mesh regularity and compliance)

We consider a sequence pThqhPH of polyhedral meshes s.t., for all h P H,Th admits a simplicial submesh Th and pThqhPH is

shape-regular in the usual sense of Ciarlet;

contact-regular, i.e., every simplex S Ă T is s.t. hS « hT .

Additionally, we assume, for all h P H, Th compliant with PΩ, so that

κT :“ κ|T P P0pT qdˆd @T P Th.

Main consequences of mesh regularity:

Lp-trace and inverse inequalities

Optimal W s,p-approximation for the L2-orthogonal projector

See [DP and Ern, 2012] (p “ 2) and [DP and Droniou, 2016a] (p P r1,`8s)

6 / 36

Page 7: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Mesh II

Figure: Examples of meshes in 2d and 3d: [Herbin and Hubert, 2008] and[DP and Lemaire, 2015] (above) and [DP and Specogna, 2016] (below)

7 / 36

Page 8: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Local DOF space

•••

• •

k = 0

••

••

•••• ••

••

k = 1

•••

• • •• • •

• ••

•••

•••

•••

k = 2

••••• •

Figure: UkT for k P t0, 1, 2u

For all k ě 0 and all T P Th, we define the local space

UkT :“ Uk

T ˆ UkBT , Uk

T :“ PkpT q, UkBT :“ PkpFT q

For a generic element of UkT , we use the notation

vT “ pvT , vBT q

Shaded DOFs can be eliminated by static condensation

8 / 36

Page 9: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Potential reconstruction I

Let T P Th. The local potential reconstruction operator

pk`1T : Uk

T Ñ Pk`1pT q

is s.t. ppk`1T vT ´ vT , 1qT “ 0 and, for all w P Pk`1pT q,

pκT∇pk`1T vT ,∇wqT :“ ´pvT ,divpκT∇wqqT ` pvBT ,κT∇w¨nT qBT

To compute pk`1T , we invert a small SPD matrix of size

Nk,d :“

ˆ

k ` 1` d

k ` 1

˙

´ 1

Trivially parallel task, potentially suited to GPUs!

9 / 36

Page 10: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Potential reconstruction II

Lemma (Approximation properties of pk`1T IkT )

Define the reduction map IkT : H1pT q Ñ UkT such that

IkT v “ pπkT v, π

kBT vq.

We have, for all v P H1pT q and all w P Pk`1pT q,

pκ∇ppk`1T IkT v ´ vq,∇wqT “ 0.

Consequently, for all v P Hk`2pT q, it holds

v ´ pk`1T IkT vT ` hT ∇pv ´ pk`1

T IkT vqT ď Cκhk`2T vk`2,T ,

i.e., pk`1T IkT has optimal approximation properties in Pk`1pT q.

For the dependence of Cκ on κT see [DP et al., 2016]

W s,p-approximation properties proved in [DP and Droniou, 2016b]

10 / 36

Page 11: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Stabilization I

The following local discrete bilinear form is in general not stable

aT puT , vT q “ pκT∇pk`1T uT ,∇pk`1

T vT qT

As a remedy, we add a local stabilization term:

aT puT , vT q :“ pκT∇pk`1T uT ,∇pk`1

T vT qT ` sT puT , vT q

We aim at expressing coercivity w.r.t. to the local (semi-)norm

vT 21,T :“ ∇vT 2T ` h´1

T vBT ´ vT 2BT

We also want to preserve the approximation properties of pk`1T

11 / 36

Page 12: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Stabilization II

A HDG-inspired choice for the stabilization would be

shdgT puT , vT q “ pτBT puT´uBT q, vT´vBT qBT , τBT |F :“ κTnTF ¨nTF

hF

This choice is, however, suboptimal since, for all v P Hk`2pT q,

∇ppk`1T IkT v ´ vqT À hk`1vHk`2pT q,

while we only have

shdgT pIkT v, I

kT vq

12 À hkvHk`1pT q

We need to penalize higher-order differences!

12 / 36

Page 13: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Stabilization III

Define the high-order correction of cell DOFs P k`1T : Uk

T Ñ Pk`1pT q

P k`1T vT :“ vT `

`

pk`1T vT ´ π

kT p

k`1T vT

˘

We consider the stabilization bilinear form sT s.t.

sT puT , vT q :“ pτBTπkBT pP

k`1T uT ´ uBT q, π

kBT pP

k`1T vT ´ vBT qqBT

With this choice we have stability: For all vT P UkT

vT 21,T À aT pvT , vT q À vT

21,T

Additionally, for all v P Hk`2pT q,

sT pIkT v, I

kT vq

12 À hk`1vHk`2pT q

13 / 36

Page 14: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Discrete problem

We define the global space with single-valued interface DOFs

Ukh :“ Uk

Thˆ Uk

Fh, Uk

Th:“ PkpThq, Uk

Fh:“ PkpBThq,

We also need the subspace with strongly enforced BCs

Ukh,0 :“ Uk

Thˆ Uk

Fh,0, Uk

Fh,0:“

!

vh P Ukh | vF ” 0 @F P Fb

h

)

The discrete problem reads: Find uh P Ukh,0 such that

ahpuh, vhq :“ÿ

TPTh

aT puT , vT q “ pf, vThq @vh P U

kh,0

where vTh |T :“ vT for all T P Th

14 / 36

Page 15: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Convergence I

Theorem (Energy-norm error estimate)

Assume u P Hk`2pΩq and define the global reduction map

Ikhu :“`

pπkTuqTPTh

, pπkFuqFPFh

˘

P Ukh,0.

Then, we have the following energy error estimate:

uh ´ Ikhu1,h À hk`1uHk`2pΩq,

where vh21,h :“

ř

TPThvT

21,T .

For the original LDG-H method, we have hk`12

15 / 36

Page 16: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Convergence II

Theorem (L2-norm error estimate)

Further assuming elliptic regularity and f P H1pΩq if k “ 0,

uTh´ πk

hu À hk`2Bpu, kq,

with Bpu, 0q :“ fH1pΩq, Bpu, kq :“ uHk`2pΩq if k ě 1 and

uTh |T “ uT @T P Th.

For the original LDG-H method, we have hk`1

Corollary (L2-norm estimate for pk`1T uT )

Letting quh P Pk`1pThq be s.t. quh|T “ pk`1T uT for all T P Th, it holds

quh ´ u À hk`2Bpu, kq.

16 / 36

Page 17: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Numerical example I

Figure: Triangular, Kershaw and hexagonal mesh families

We consider Le Potier’s exact solution on Ω “ p0, 1q2

upxq “ sinpπx1q sinpπx2q

The diffusion field has rotating principal axes

κpxq “

ˆ

px2 ´ x2q2` εpx1 ´ x1q

2´p1´ εqpx1 ´ x1qpx2 ´ x2q

´p1´ εqpx1 ´ x1qpx2 ´ x2q px1 ´ x1q2` εpx2 ´ x2q

2

˙

,

with anisotropy ratio ε “ 1 ¨ 10´2 and center px1, x2q “ ´p0.1, 0.1q

17 / 36

Page 18: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Numerical example II

k “ 0 k “ 1 k “ 2 k “ 3

10´3 10´2

10´8

10´6

10´4

10´2

1000.73

2

3.02

3.96

10´2.4 10´2.2 10´2 10´1.8 10´1.610´7

10´6

10´5

10´4

10´3

10´2

10´1

100

2.02

3.3

4.35

5.58

10´2.5 10´2 10´1.5

10´8

10´6

10´4

10´2

100

1.39

2.32

3.34

4.43

10´3 10´2

10´10

10´8

10´6

10´4

10´2

100

1.8

2.76

3.83

4.85

10´2.4 10´2.2 10´2 10´1.8 10´1.6

10´9

10´7

10´5

10´3

10´1

2.17

3.53

4.8

5.61

10´2.5 10´2 10´1.510´10

10´8

10´6

10´4

10´2

1.82

2.89

3.97

4.99

Figure: Energy- (above) and L2-errors (below) for the three mesh families

18 / 36

Page 19: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Teaser: Industrial application I

105 106 107

0.34

0.35

0.36

0.37

k = 0 unk = 0 adk = 1 unk = 1 adk = 2 unk = 2 ad

Figure: Adaptive algorithm for 3d electrostatics [DP and Specogna, 2016]

19 / 36

Page 20: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Teaser: Industrial application II

0.5 1 1.5 2

·107

0.5

1

1.5

·104

pre-processingassemblingsolution

post-processing

(a) k “ 0

1 2 3 4 5 6 7

·106

0.5

1

1.5

·104

pre-processingassemblingsolution

post-processing

(b) k “ 1

1 2 3 4 5 6

·106

0.5

1

1.5

·104

pre-processingassemblingsolution

post-processing

(c) k “ 2

Figure: Computing wall time vs Ndof

20 / 36

Page 21: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Outline

1 The Hybrid High-Order (HHO) method

2 Numerical trace formulation and link with HDG

3 Variations

21 / 36

Page 22: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Numerical trace formulation I

Separating element- and face-based test functions, we have

@T P Th, aT puT , pvT , 0qq “ pf, vT qT @vT P UkT

ahpuh, p0, vFhqq “ 0 @vFh

P UkFh,0

The first set of equations define local equilibria

The second set is a global transmission condition

22 / 36

Page 23: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Numerical trace formulation II

For T P Th, define the boundary residual rkBT : PkpFT qÑPkpFT q s.t.

@λ P PkpFT q, rkBT pλq :“ πkBT

`

λ´ pk`1T p0, λq ` πk

T pk`1T p0, λq

˘

The penalized difference rewrites: For all vT P UkT ,

πkBT pP

k`1T vT ´ vBT q “ rkBT pvT ´ vBT q

23 / 36

Page 24: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Numerical trace formulation III

As a result, for all T P Th we have

sT puT , p0, vBT qq “ ´pτBT rkBT puT ´ uBT q, r

kBT pvBT qqBT

or, introducing the adjoint rk,˚BT of rkBT ,

sT puT , p0, vFhqq “ prk,˚BT pτBT r

kBT puT ´ uBT qq, vBT qBT

Plugging this expression into that of aT , we finally arrive at

aT puT , p0, vBT qq“ ´ pκT∇pk`1T uT ¨nT

looooooooomooooooooon

consistency

´rk,˚BT pτBT rkBT puT ´ uBT qq

loooooooooooooooomoooooooooooooooon

penalty

, vBT qBT

The term in red is the conservative normal flux trace

24 / 36

Page 25: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Numerical trace formulation IV

Lemma (Numerical trace reformulation of HHO)

The discrete problem: Find uh P Ukh,0 s.t.

ahpuh, vhq “ pf, vThq @vh P U

kh,0

can be equivalently reformulated as follows: Find uh P Ukh,0 s.t.

@T P Th, aT puT , pvT , 0qq “ pf, vT qT @vT P UkT ,

ÿ

TPTh

ppqn,T puT q, vFhqBT “ 0 @vFh

P UkFh,0

,

with conservative normal flux trace s.t., for all T P Th,

pqn,T puT q :“ κT∇pk`1T uT ¨nT ´ r

k,˚BT pτBT r

kBT puT ´ uBT qq.

25 / 36

Page 26: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Link with HDG methods I

Let us interpret HHO as a HDG method

HDG methods hinge on three set of spaces:

tV pT quTPTh , for the approximation of the flux

tW pT quTPTh , for the approximation of the potential

tMpF quFPFh , for the approximation of the potential traces

The definition is completed with a recipe for the normal flux trace

26 / 36

Page 27: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Link with HDG methods II

We define the following global spaces:

Vh :“ą

TPTh

VpT q, Wh ˆMh :“

˜

ą

TPTh

W pT q

¸

ˆ

˜

ą

FPFh

MpF q

¸

We also need the subspace with strongly enforced BCs,

Mh,0 :“ t pw PMh : pw “ 0 on BΩu

The HDG method reads: Find pqh, uh, puhq P Vh ˆWh ˆMh,0 s.t.

pκ´1T qh,vqT ´ puh,div vqT ` ppuh,v¨nT qBT “ 0 @v P VpT q

´pqh,∇wqT ` ppqn,T , wqBT “ pf, wqT @w PW pT qÿ

TPTh

ppqn,T , pwqBT “ 0 @ pw PMh,0

27 / 36

Page 28: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Link with HDG methods III

HHO corresponds to new choices for the spaces

V pT q “ κT∇Pk`1pT q, W pT q “ PkpT q, MpF q “ PkpF q

Notice that the flux is now reconstructed in a smaller space

dimpκT∇Pk`1pT qq ď dimpPkpT qdq

Another crucial novelty is the high-order normal flux trace

pqn,T “ κT∇pk`1T uT ¨nT ´ r

k,˚BT pτBT r

kBT puT ´ uBT qq

HHO can be easily adapted into existing HDG codes!

28 / 36

Page 29: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Outline

1 The Hybrid High-Order (HHO) method

2 Numerical trace formulation and link with HDG

3 Variations

29 / 36

Page 30: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Variations: The HHO(l) family I

Variations are possible changing the degree of element-based DOFs

Let l P tk ´ 1, k, k ` 1u and consider the local space

Uk,lT :“ PlpT q ˆ PkpFT q

The first potential reconstruction pk`1T remains formally unchanged

The second potential reconstruction used for stabilization becomes

P k`1T vT :“ vT `

`

pk`1T vT ´ π

lT p

k`1T vT

˘

30 / 36

Page 31: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

Variations: The HHO(l) family II

Convergence rates as for the original HHO method

For l “ k ´ 1 we recover a High-Order Mimetic scheme1

For l “ k we find the original HHO method

For l “ k ` 1 we have a new Lehrenfeld–Schoberl-type HDG method

k “ 0 and l “ k´ 1 on simplices yields the Crouzeix–Raviart element

The globally-coupled unknowns coincide in all the cases!

1Up to equivalent stabilization31 / 36

Page 32: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

A nonconforming finite element interpretation I

We interpret the HHO(l) methods as nonconforming FE methods

The construction extends the ideas of [Ayuso de Dios et al., 2016]

For a fixed element T P Th, we define the local space

V k,lT :“

ϕ P H1pT q | ∇ϕ|BT ¨nT P PkpFT q and 4ϕ P Pl

pT q(

We next study the relation between V k,lT and Uk,l

T

32 / 36

Page 33: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

A nonconforming finite element interpretation II

Let ΦT : Uk,lT Ñ V k,l

T be s.t. ΦT pvT q solves the Neumann problem

4ΦT pvT q “ vT ´ |T |´1d rpvT , 1qT ´ pvBT , 1qBT s

and∇ΦT pvT q|BT ¨nT “ vBT , pΦT pvT q, 1qT “ 0

Both ΦT and Ik,lT : V k,lT Ñ Uk,l

T can be proved to be injective

Therefore, Ik,lT : V k,lT Ñ Uk,l

T is an isomorphism and we can identify

V k,lT „ Uk,l

T ,

which means that UkT contains the DOFs for V k,l

T as defined by IkT

33 / 36

Page 34: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

References I

Antonietti, P. F., Giani, S., and Houston, P. (2013).

hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains.SIAM J. Sci. Comput, 35(3):A1417–A1439.

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2002).

Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal., 39(5):1749–1779.

Ayuso de Dios, B., Lipnikov, K., and Manzini, G. (2016).

The nonconforming virtual element method.ESAIM: Math. Model Numer. Anal. (M2AN), 50(3):879–904.

Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012).

On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations.J. Comput. Phys., 231(1):45–65.

Beirao da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., and Russo, A. (2013).

Basic principles of virtual element methods.M3AS Math. Models Methods Appl. Sci., 199(23):199–214.

Cangiani, A., Georgoulis, E. H., and Houston, P. (2014).

hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes.Math. Models Methods Appl. Sci., 24(10):2009–2041.

Castillo, P., Cockburn, B., Perugia, I., and Schotzau, D. (2000).

An a priori error analysis of the local discontinuous Galerkin method for elliptic problems.SIAM J. Numer. Anal., 38:1676–1706.

Cockburn, B., Di Pietro, D. A., and Ern, A. (2016).

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods.ESAIM: Math. Model Numer. Anal. (M2AN), 50(3):635–650.

34 / 36

Page 35: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

References II

Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009).

Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.SIAM J. Numer. Anal., 47(2):1319–1365.

Di Pietro, D. A. and Droniou, J. (2016a).

A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes.Math. Comp.Accepted for publication. Preprint arXiv 1508.01918.

Di Pietro, D. A. and Droniou, J. (2016b).

Ws,p-approximation properties of elliptic projectors on polynomial spaces with application to the error analysis of a HybridHigh-Order discretisation of Leray–Lions elliptic problems.Submitted.

Di Pietro, D. A. and Ern, A. (2012).

Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathematiques & Applications.Springer-Verlag, Berlin.

Di Pietro, D. A. and Ern, A. (2015).

A hybrid high-order locking-free method for linear elasticity on general meshes.Comput. Meth. Appl. Mech. Engrg., 283:1–21.

Di Pietro, D. A., Ern, A., and Lemaire, S. (2014).

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators.Comput. Meth. Appl. Math., 14(4):461–472.

Di Pietro, D. A., Ern, A., and Lemaire, S. (2016).

Building bridges: Connections and challenges in modern approaches to numerical partial differential equations, chapter A reviewof Hybrid High-Order methods: formulations, computational aspects, comparison with other methods.Springer.To appear. Preprint hal-01163569.

35 / 36

Page 36: Bridging the Hybrid High-Order and Hybridizable ...di-pietro/Presentations/... · k;d: k 1 d k 1 1 Trivially parallel ... rppk 1 TI k v vq} TÀh k 1}v} Hk 2p q; while we only have

References III

Di Pietro, D. A. and Lemaire, S. (2015).

An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokesflow.Math. Comp., 84(291):1–31.

Di Pietro, D. A. and Specogna, R. (2016).

An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics.Submitted. Preprint hal-01310313.

Herbin, R. and Hubert, F. (2008).

Benchmark on discretization schemes for anisotropic diffusion problems on general grids.In Eymard, R. and Herard, J.-M., editors, Finite Volumes for Complex Applications V, pages 659–692. John Wiley & Sons.

Lipnikov, K. and Manzini, G. (2014).

A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation.J. Comput. Phys., 272:360–385.

Wang, J. and Ye, X. (2013).

A weak Galerkin element method for second-order elliptic problems.J. Comput. Appl. Math., 241:103–115.

36 / 36