brain connectivity inference for fmri data

23
Will Penny, Wellcome Trust Centre for Neuroimaging, University College London Brain Connectivity Inference for fMRI data fNIRS Conference, UCL, 26-28 October 2012

Upload: lucy-price

Post on 02-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Brain Connectivity Inference for fMRI data. Will Penny, Wellcome Trust Centre for Neuroimaging , University College London. fNIRS Conference, UCL, 26-28 October 2012. Wellcome Trust Centre for Neuroimaging at UCL. Attention. Emotion. Language. MEG. Vision. Theoretical - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Brain Connectivity Inference  for  fMRI  data

Will Penny,Wellcome Trust Centre for Neuroimaging,University College London

Brain Connectivity Inference for fMRI data

fNIRS Conference, UCL, 26-28 October 2012

Page 2: Brain Connectivity Inference  for  fMRI  data

Wellcome Trust Centre for Neuroimaging at UCL

Methods Physics

Attention

Language Memory

Emotion

Vision fMRI MEG

TheoreticalNeurobiology

Page 3: Brain Connectivity Inference  for  fMRI  data

Statistical Parametric Mapping (SPM)

Realignment Smoothing

Normalisation

General linear model

Statistical parametric mapImage time-series

Parameter estimates

Design matrix

Template

Kernel

Random Field Theory

p <0.05

Statisticalinference

Page 4: Brain Connectivity Inference  for  fMRI  data

SPM for NIRS Sungho Tak

Chul Ye et al. Neuroimage (2009)

Page 5: Brain Connectivity Inference  for  fMRI  data

),,( uxFx Neural state equation:

inputs

Dynamic Causal Modelling (DCM)

Page 6: Brain Connectivity Inference  for  fMRI  data

),,( uxFx Neural state equation:

Neural model:8 state variables per region

nonlinear state equationpropagation delays

MEGMEG

inputs

Dynamic Causal Modelling (DCM)

Page 7: Brain Connectivity Inference  for  fMRI  data

Neuronal Model for EEG/MEG

Jansen & Ritt, Biol Cyb, 1995 David & Friston Neuroimage, 2006

Page 8: Brain Connectivity Inference  for  fMRI  data

Shipp, Current Biology, 2010

Page 9: Brain Connectivity Inference  for  fMRI  data

Predictive Coding

Page 10: Brain Connectivity Inference  for  fMRI  data

),,( uxFx Neural state equation:

Electric/magneticforward model:

neural activityEEGMEGLFP

(linear)

Neural model:8 state variables per region

nonlinear state equationpropagation delays

MEGMEG

inputs

Dynamic Causal Modelling (DCM)

Page 11: Brain Connectivity Inference  for  fMRI  data

),,( uxFx Neural state equation:

Electric/magneticforward model:

neural activityEEGMEGLFP

(linear)

Neural model:1 state variable per regionbilinear state equationno propagation delays

Neural model:8 state variables per region

nonlinear state equationpropagation delays

fMRIfMRI MEGMEG

inputs

Dynamic Causal Modelling (DCM)

Page 12: Brain Connectivity Inference  for  fMRI  data

Single region 1 11 1 1z a z cu

u2

u1

z1

z2

z1

u1

a11c

Neuronal Model for fMRI

Page 13: Brain Connectivity Inference  for  fMRI  data

Multiple regions

1 11 1 1

2 21 22 2 2

0

0

z a z uc

z a a z u

u2

u1

z1

z2

z1

z2

u1

a11

a22

c

a21

Page 14: Brain Connectivity Inference  for  fMRI  data

Modulatory inputs

1 11 1 1 12

2 21 22 2 21 2 2

0 0 0

0 0

z a z z ucu

z a a z b z u

u2

u1

z1

z2

u2

z1

z2

u1

a11

a22

c

a21

b21

Page 15: Brain Connectivity Inference  for  fMRI  data

u1 u2

z1

z2

a11

a22

c

a12

a21

b21

Reciprocal connections

1 11 12 1 1 12

2 21 22 2 21 2 2

0 0

0 0

z a a z z ucu

z a a z b z u

u2

u1

z1

z2

Page 16: Brain Connectivity Inference  for  fMRI  data

),,( uxFx Neural state equation:

Electric/magneticforward model:

neural activityEEGMEGLFP

(linear)

Neural model:1 state variable per regionbilinear state equationno propagation delays

Neural model:8 state variables per region

nonlinear state equationpropagation delays

fMRIfMRI MEGMEG

inputs

Hemodynamicforward model:neural activityBOLD(nonlinear)

Dynamic Causal Modelling (DCM)

Page 17: Brain Connectivity Inference  for  fMRI  data

Hemodynamics

( , , )

( )

g z

y b

x x h

x

Hemodynamic variables

For each region:

[ , , , ]s f v qx

Hemodynamic parameters

Seconds

Dynamics

Page 18: Brain Connectivity Inference  for  fMRI  data

Bayesian InferenceIntegrate Neuronaland Hemodynamicequations

Approximate posteriorfrom Variational Bayes

Same inferencealgorithms forfMRI/MEG

Page 19: Brain Connectivity Inference  for  fMRI  data

V1

V5

SPC

Motion

Photic

Att

Model 1V1

V5

Bayesian Inference

SPC

Time (seconds)

Page 20: Brain Connectivity Inference  for  fMRI  data

Posterior Inference

B321

P(B

3 21|y

)g

How muchattention (input 3) changes connection fromV1 (region 1) to V5 (region 2)

Page 21: Brain Connectivity Inference  for  fMRI  data

V1

V5

SPC

Motion

Photic

Att

Model 1

V1

V5

SPC

Motion

Photic

Att

Model 3

Bayes Factor B13=3.6

Positive

Page 22: Brain Connectivity Inference  for  fMRI  data

),,( uxFx Neural state equation:

Hemodynamic and Optical

Forward Model ?

Neural model:1 state variable per regionbilinear state equationno propagation delays

fMRIfMRI NIRSNIRS

inputs

Dynamic Models of Brain Interactions

Multiple state variables per region ?

Page 23: Brain Connectivity Inference  for  fMRI  data

• Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273-1302.

• O David et al. Dynamic Causal Modelling of Evoked Responses in EEG and MEG. NeuroImage, 30:1255-1272, 2006.

• Friston K, Penny W (2011) Post hoc Bayesian model selection. Neuroimage 56: 2089-2099.

• Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models. NeuroImage 22:1157-1172.

• Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology 6: e1000709.

• Penny WD (2012) Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage, 59: 319-330.

• Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.

• Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49: 3099-3109.

Papers