boulevard du temple - start - biovis · confocal illumination lasers monochromatic coherent types:...

57
Boulevard du Temple Daguerrotype (Paris,1838) Nyquist sampling for movement a busy street ?

Upload: others

Post on 02-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Boulevard du Temple Daguerrotype (Paris,1838)

Nyquist sampling for movement

a busy

street ?

Page 2: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

CONFOCAL

MICROSCOPY

BioVis

Uppsala, 2017

Jeremy Adler

Matyas Molnar

Dirk Pacholsky

Page 3: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Widefield & Confocal Microscopy

Widefield Confocal Laser Scanning Microscopy (LSM)

Page 4: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

MRC 500 confocal

microscope

Page 5: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Patent application 1957

First Confocal Microscope

Page 6: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Illumination

Confocal

Widefield

AREA SPOT

Page 7: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Build an image by scanning a single illumination spot

Bidrectional undirectional misaligned

Page 8: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Cells moving during image acquisition confocal

Page 9: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Illumination - fluorescence

Lens

Fluorophores inside

the illumination cones are excited

Compare with Multiphoton fluorescence

Focal plane

Page 10: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm
Page 11: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Widefield

Confocal LSM

Page 12: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Confocal Components

Page 13: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Objectives

Numerical aperture (resolution)

Immersion medium: air, water, oil

Corrections: spherical, chromatic

Working distance

Coverslip thickness

Transmission

Magnification – not very important

Page 14: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Miniature objectives

Page 15: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Same magnification - different NA

20x NA 0.8 5x NA 0.16

Page 16: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

2 200

2 400

2 600

2 800

3 000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Numerical Aperture

Sampling Interval nM

Z-Axis

XY- plane

Variation of Resolution with the NA Resolution & NA of objective

Nyquist sampling – according to SVI

NA

Z axis

XY plane

Page 17: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Confocal Illumination Lasers

monochromatic coherent

types: gas, solid, diode

Argon Ion 353-361, 488, 514 nm

Krypton -Argon 488, 568, 647 nm

Helium Neon 543 nm, 633 nm

Helium Cadmium 543 nm, 633 nm

Diode lasers 405, 488, 635 nm etc

White light lasers tunable

Page 18: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Uneven illumination

From Andor

Page 19: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Pinhole

The maximum resolution is app. 0.15 µm lateral 0.40 µm axial

Objective Magnification NA pinhole size (µms) 60x 1.40 .40 1.90 40x 1.30 .60 3.30 25x 0.80 1.40 7.00 4x 0.20 20 100.00

Back Projected Pinhole size in the specimen

Page 20: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Open Pinhole

Fluorescent microspheres NA 1.4 oil, pixels 45nm

Page 21: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10

% Max

Pinhole Airy units

out

badly out

infocus

Pinhole size and intensity

Page 22: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Image Quality Photon Noise /Poisson Noise/Shot Noise

Compare 2 sequential mages

Difference Need More Photons

Page 23: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Poisson Noise – how many photons ?

0

32

64

96

128

160

0 32 64 96 128

sequential values

photons

photons 128 64 32 16

mean 126.31 64.26 31.22 15.72

SD 11.81 7.66 5.57 3.91

sqrt 11.31 8.00 5.66 4.00

Single pixels in a timeseries

Page 24: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Improving Image Quality Doubling the Pixel Integration time: scan speed & averaging image

MORE PHOTONS per pixel

Page 25: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

More Photons – increase laser power ?

Lens

Fluorophore saturation More photons from fluorophores outside the focused spot.

Focal plane

Page 26: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Best PMTs reach 30% quantum efficiency

How good are camera ?

The Photomultiplier tube (PMT) 1930s

Fluorescent photon hits photocathode

emits photoelectron

which cascades along the dynode chain

each step amplifies electron numbers

finally output at the anode

depends on

voltage

Photon counting possible

Page 27: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

PMT Problem

Page 28: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Pinhole Size: nucleus

LSM700 NA 1.4 oil adjusted for equal maximum intensity

Page 29: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Where do pixels come from ?

Camera

Confocal ?

Page 30: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Pixels

0-255

(8bit)

Best sampling rate or pixel size? Ideally : infinite small BUT each pixel generates noise The incoming signal has to be more intense than the noise (Signal:Noise ratio) Small pixels get less photons, but generate same/more noise like large pixels (who get more photons)

Practically: pixel size is twice as small as smallest detail to be resolved LSM allows you to choose the pixel size

Page 31: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Imaging – Nyquist theorem

Nyquist found that in order to reconstruct a pure sine wave, it must be sampled at least twice during each cycle of the wave, 2x the frequency.

Page 32: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Pixels – how large ?

Page 33: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

How many pixels ? Nyquist flatbed scanner

Page 34: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Nyquist Pixel size: fluorophore and NA

CLSMs have an OPTIMAL button which calculates the pixel size for Nyquist

Drawbacks of small pixels :

Slow Bleaching

Find a compromise between

Image quality required versus

Sample robustness/Time

Page 35: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

IMAGING WITH LSM

Page 36: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Fluorescence (excite 555nm) Transmission (555nm)

Page 37: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Fluorescence (488nm) & Reflection (405nm)

Single cell –GFP in a nanowire matrix

Page 38: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Acquisition information: metadata

recorded with the image

Reuse same setup measurements

Pixel size:

Objective’s magnification

Area scanned – ZOOM

Number of pixels

Page 39: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Optical sectioning: Z series Optical slice from certain depth in sample

Many slices from adjacent depths

reconstruction from slices

Page 40: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

3D information from LSM images Orthogonal view 3D surface reconstruction

Observe that light could not´penetrate´ material on certain areas*

*

*

3 dimensional reconstruction of image

3D information , dashed lines in blue, red, green indicate position in ZXY and are movable

Page 41: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

3D rendered Images

Page 42: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Spectral (lambda) scan with LSM (Zeiss)

480 490 500 510 520 530 540

550 560 570 580 590 600 610

620 630 640 650 660 670 680

QUASAR detector of LSM710 with 32 detectors or

adjust the detection range of individual PMTs

Emission spectra for fluorophore or autofluorescence

Page 43: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Lambda Scan– linear unmixing – separate overlapping fluorophores

Linear Unmixing determines the relative contribution from each fluorophore

for every pixel of the image.

Page 44: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Live imaging (time lapse)

Frame size in pixel: frames/sec 2048 x 2048 0.03 1024 x 1024 0.13 512 x 512 0.53 256 x 256 2.00 128 x 128 5.00 Smaller images – faster Use oblong images Line scan – 1 pixel wide

Page 45: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Fluorescent microspheres in a matrix confocal images

Page 46: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Faster Confocal Imaging many points

Camera not a PMT

Difficult to change pinhole

Line scanning confocals

Zeiss 5 Live

Multi spot confocals

Page 47: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Airyscan – replaces pinhole 32 detectors

Page 48: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

POINT SPREAD FUNCTION A sub resolution object becomes a blob in the image

1. the NA of the objective

2. the confocal pinhole

3. wavelength of emission

4. Refractive index matching

x

z

Page 49: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Improving resolution

)2sin(2

nd

• λ : shorter wavelengths better (blue light)

• n : high refractive index – objective and specimen medium (oil: 1.5)

• ѳ : NA of the objective: use high as possible (1.4)

• Small confocal pinhole

Page 50: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Matching objective to sample

Z directio

n ”d

epth

A) B) C)

A) Actual situation in the sample

B) Good match of embedding and preparation of sample

C) mis match/ ´bad´sample preparation

x

z

Airy disk in XZ

Page 51: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Techniques for the LSM and Live Cell Imaging

http://www.cellmigration.org/resource/imaging/imaging_approaches_photomanipulation.shtml

FRAP

Photoactivation /uncaging

CALI Chromophore Assisted Light inactivation

Page 52: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Photoactivatable Fluorophores

• GFP activated by 413nm – observe with 488nm excitation

• Pulse chase experiments

Science (2002), 297, 1873-1877

Page 53: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Long Image acquisition times - problems

Page 54: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Temperature Control

Page 55: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Solution

protect the microscope

from temperature changes

Page 56: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Confocal v Widefield • Point scanning

• Optical sectioning – pinhole, Z series Z series

• Variable magnification – zooming

• Higher resolution (NA of objective)

• Timeseries – live imaging faster

• Motorized XY stage – tiling also

• Spectral scanning

Problems

• Slow faster

• Pinhole throws away photons all photons

• Poor detectors better

• Photobleaching reduced

Page 57: Boulevard du Temple - Start - BioVis · Confocal Illumination Lasers monochromatic coherent types: gas, solid, diode Argon Ion 353-361, 488, 514 nm Krypton -Argon 488, 568, 647 nm

Worth Looking At

The 39 steps: a cautionary tale of quantitative 3-D microscopy

Pawley Biotechniques, 2000, 884-

Seeing is believing – beginners guide to practical pitfalls in image acquisition

Pawley J Cell Biol, 2006, 172, 9-18

Websites

Microscopy: Zeiss, Leica, Nikon, Olympus, BioRad

Fluorophores: Thermo Fisher Scientific

Filters: Chroma, Omega, Semrock