bottomonium and bottomonium –like states

Download Bottomonium  and  bottomonium –like states

If you can't read please download the document

Upload: ciro

Post on 08-Jan-2016

22 views

Category:

Documents


3 download

DESCRIPTION

Bottomonium and bottomonium –like states. Alex Bondar On behalf of Belle Collaboration. Cracow Epiphany Conference “Present and Future B-physics” (9 - 11, January, 2012, Cracow, Poland ). Observation of Z b. . Outline.  (1S)  +  -  (2S)  +  -  (3S)  +  - - PowerPoint PPT Presentation

TRANSCRIPT

  • *Bottomonium and bottomoniumlike statesAlex BondarOn behalf of Belle CollaborationCracow Epiphany Conference Present and Future B-physics (9 - 11, January, 2012, Cracow, Poland )

  • *Observation of hb(1P) and hb(2P)Outline(5S) Zb(10610)+ -Zb(10650)+ -(1S)+ -(2S)+ -(3S)+ -hb(1P)+ - b(1S) + - hb(2P)+ -arXiv:1103.3419accepted by PRLat BB* and B*B* thresholds molecules

  • *PRL100,112001(2008)(MeV)102PRD82,091106R(2010)Anomalous production of (nS) +-1. Rescattering (5S)BB(nS)?Simonov JETP Lett 87,147(2008)2. Similar effect in charmonium? shapes of Rb and () different (2)to distinguish energy scan (5S)line shape of YbY(4260) with anomalous (J/ +-) assume Yb close to (5S)

  • *hb(1P) & hb(2P)Observation of

  • *TriggerY(4260)Yb search for hb(nP)+- @ (5S)CLEO observed e+e- hc + @ ECM=4170MeVPRL107, 041803 (2011)(hc +) (J/ +)4260Hint of rise in (hc+-) @ Y(4260) ?Y(4260)

  • *Introduction to hb(nP)(bb) : S=0 L=1 JPC=1+-MHF test of hyperfine interactionFor hc MHF = 0.00 0.15 MeV, expect smaller deviation for hb(nP)_Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9 (3S) 0 hb(1P)BaBar3.0arXiv:1102.4565PRD 84, 091101Previous search

  • *Introduction to hb(nP)(bb) : S=0 L=1 JPC=1+-MHF test of hyperfine interactionFor hc MHF = 0.00 0.15 MeV, expect smaller deviation for hb(nP)_Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9 (3S) 0 hb(1P)BaBar3.0arXiv:1102.4565PRD 84, 091101Previous search

  • *(5S) hb +- reconstructionhb ggg, b ( gg) no good exclusive final statesMissing mass(1S)(2S)(3S)hb(2P)hb(1P)

  • *Results121.4 fb-1hb(1P) 5.5hb(2P) 11.2Significance w/ systematics

  • *Hyperfine splittinghb(1P) (1.7 1.5) MeV/c2hb(2P) (0.5 +1.6 ) MeV/c2-1.2Deviations from CoG (Center of Gravity) of bJ massesconsistent with zero, as expectedRatio of production rates Mechanism of (5S) hb(nP) +- decay violates Heavy Quark Spin Symmetry for hb(1P)for hb(2P)no spin-flip=spin-flipProcess with spin-flip of heavy quark is not suppressed

  • *Resonant structure of (5S)hb(nP) +-

  • *Resonant structure of (5S) hb(1P) +-M(hb), GeV/c2phase-space MCM(hb+), GeV/c2

  • *Resonant structure of (5S) hb(1P) +-Resultsnon-res.~0Significance(16 w/ syst)18121.4 fb-1M(hb), GeV/c2phase-space MCM(hb+), GeV/c2fit Mmiss(+) in M(hb) bins M(hb), GeV/c2hb(1P) yield / 10MeV Zb(10610), Zb(10650)

  • **Resonant structure of (5S) hb(2P) +-Significances(5.6 w/ syst)6.7M(hb), GeV/c2phase-space MCM(hb+), GeV/c2fit Mmiss(+) in M(hb) bins 121.4 fb-1M(hb), GeV/c2hb(1P) yield / 10MeVnon-res.~0hb(1P)+-hb(2P)+-non-res. set to zerodegreesMeV/c2MeV/c2MeVc o n s i s t e n tMeV

  • *Resonant structure of (5S)(nS) +-(n=1,2,3)

  • *(5S) (nS) +- +-(n = 1,2,3)(1S)(2S)(3S)reflectionsMmiss (+-), GeV/c2

  • *(1S)(2S)(3S)(5S) (nS) +-(n = 1,2,3)Mmiss (+-), GeV/c2purity 92 94% +-

  • *(5S) (nS) +- Dalitz plots(1S)(2S)(3S)

  • *(5S) (nS) +- Dalitz plots(1S)(2S)(3S) Signals of Zb(10610) and Zb(10650)

  • *heavy quark spin-flip amplitude is suppressedFitting the Dalitz plotsSignal amplitude parameterization:S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANRANR = C1 + C2m2()Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008. [2] M.B. Voloshin, Phys. Rev. D74:054022, 2006. A(Zb1) + A(Zb2) + A(f2(1275))A(f0(980)) Breit-Wigner Flatte(5S) Zb, Zb (nS) no spin orientation changeS-waveS-waveSpins of (5S) and (nS) can be ignoredAngular analysis favors JP=1+Non-resonant

  • **Results: (1S)+-M((1 S)+), GeVM((1S)-), GeVsignalsreflections

  • *Results: (2S)+-reflectionssignalsM((2S)+), GeVM((2S)-), GeV

  • *Results: (3S)+-M((3S)+), GeVM((3S)-), GeV

  • * M1 = 10607.22.0 MeV 1 = 18.42.4 MeV M2 = 10652.21.5 MeV 2 = 11.5 2.2 MeVSummary of Zb parametersAverage over 5 channels

  • * M1 = 10607.22.0 MeV 1 = 18.42.4 MeV M2 = 10652.21.5 MeV 2 = 11.5 2.2 MeVZb(10610) yield ~ Zb(10650) yield in every channelRelative phases: 0o for and 180o for hbSummary of Zb parametersAverage over 5 channels = 180o = 0o

  • *Angular analysis

  • *Angular analysisExample : (5S) Zb+(10610) - [(2S)+] -(0 is forbidden by parity conservation)Color coding: JP= 1+ 1- 2+ 2-Best discrimination: cos2 for 1- (3.6) and 2- (2.7);non-resonantcombinatorialcos1cos2, radcos1 for 2+ (4.3)i (i,e+), [plane(1,e+), plane(1, 2)]Definition of angles

  • *Summary of angular analysisAll angular distributions are consistent with JP=1+ for Zb(10610) & Zb(10650).All other JP with J2 are disfavored at typically 3 level.Probabilities at which different JP hypotheses are disfavored compared to 1+procedure to deal with non-resonant contribution is approximate,no mutual cross-feed of Zbs Preliminary:

  • *Heavy quark structure in ZbWave func. at large distance B(*)B*A.B.,A.Garmash,A.Milstein,R.Mizuk,M.Voloshin PRD84 054010 (arXiv:1105.4473)Why hb is unsuppressed relative to Relative phase ~0 for and ~1800 for hbProduction rates of Zb(10610) and Zb(10650) are similarWidths

    Existence of other similar statesExplainsPredictsOther Possible ExplanationsCoupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552)Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492)Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649)

  • *Observation of hb(1P)b(1S)

  • *Introduction to bGodfrey & Rosner, PRD66 014012 (2002)hb(1P) ggg (57%), b(1S) (41%), gg (2%)

    hb(2P) ggg (63%), b(1S) (13%), b(2S) (19%), gg (2%)Expected decays of hbLarge hb(mP) samples give opportunity to study b(nS) states.Experimental status of bM[b(1S)] = 9390.9 2.8 MeV (BaBar + CLEO)M[(1S)] M[b(1S)] = 69.3 2.8 MeV Width of b(1S): no informationpNRQCD: 4114 MeV Lattice: 608 MeVKniehl et al., PRL92,242001(2004)Meinel, PRD82,114502(2010)(3S) b(1S)

  • *Methodreconstruct b(mS) hb (nP) +Decay chainUse missing mass to identify signalsM(hb)true +-fake fake +-true true +-true MC simulation

  • *Methodreconstruct b(mS) hb (nP) +Decay chainUse missing mass to identify signalsM(hb)true +-fake fake +-true true +-true MC simulationMmiss(+- ) Mmiss(+-) Mmiss(+-) + M[hb]

  • *Methodreconstruct b(mS) hb (nP) +Decay chainUse missing mass to identify signalsM(hb)MC simulationMmiss(+- ) Mmiss(+-) Mmiss(+-) + M[hb]Approach:fit Mmiss(+-) spectra in Mmiss(+-) bins hb(1P) yield vs. Mmiss(+-) search for b(1S) signal

  • *Resultsb(1S)13potential models : = 5 20 MeVGodfrey & Rosner : BF = 41%BaBar (3S) b(1S) BaBar (2S)CLEO (3S)BELLE preliminarypNRQCDLatticeN.Brambilla et al., Eur.Phys.J.C71(2011) 1534 (arXiv:1010.5827)MHF [b(1S)] = 59.3 1.9 +2.4 MeV/c21.4

  • *Observation of two charged bottomonium-like resonances in 5 final statesM = 10607.2 2.0 MeV = 18.4 2.4 MeVM = 10652.2 1.5 MeV = 11.5 2.2 MeVFirst observation of hb(1P) and hb(2P)Hyperfine splitting consistent with zero, as expected Anomalous production ratesarXiv:1103.3419accepted by PRLarXiv:1105.4583,

    arXiv:1110.2251,accepted by PRLSummary(1S)+, (2S) +, (3S)+, hb(1P)+, hb(2P)+Angular analyses favour JP = 1+ , decay pattern IG = 1+Masses are close to BB* and B*B* thresholds molecule?Observation of hb(1P)b(1S)The most precise single meas., significantly different from WA, decreases tension w/ theoryWill Zbs become a key to understanding of all other quarkonium-like states?arXiv:1110.3934Zb(10610)Zb(10610)

  • *Back up

  • *U(5S)U(6S)U(?S)IG(JP)B*B*BB*BB0-(1+)1+(1+)0+(0+)1-(0+)0+(1+)1-(1+)0+(2+)1-(2+)prwhrrww12GeV11.5GeVgZbWb0Wb1Wb2gggUp hbphbrUh hbwUw hbhUr hbpUw Ur UwUr arXiv:1105.5829Xb0-(1-)

  • *

  • *Coupled channel resonance?I.V.Danilkin, V.D.Orlovsky, Yu.Simonov arXiv:1106.1552No interaction between B(*)B* or is needed to form resonanceNo other resonances predictedB(*)B* interaction switched on individual mass in every channel?

  • *Cusp?D.Bugg Europhys.Lett.96 (2011) (arXiv:1105.5492)AmplitudeLine-shapeNot a resonance

  • *Tetraquark?M ~ 10.5 10.8 GeVTao Guo, Lu Cao, Ming-Zhen Zhou, Hong Chen, (1106.2284)M ~ 10.2 10.3 GeVYing Cui, Xiao-lin Chen, Wei-Zhen Deng, Shi-Lin Zhu, High Energy Phys.Nucl.Phys.31:7-13, 2007(hep-ph/0607226)M ~ 9.4, 11 GeVM.Karliner, H.Lipkin, (0802.0649)

  • *SelectionRequire intermediate Zb : 10.59 < MM() < 10.67 GeVZbHadronic event selection; continuum suppression using event shape; 0 veto.R2
  • *Mmiss(+-) spectrumrequirement of intermediate ZbUpdate of M [hb(1P)] :Previous Belle meas.:hb(1P)3S1S(2S)MHF [hb(1P)] = (+0.8 1.1)MeV/c2MHF [hb(1P)] = (+1.6 1.5)MeV/c2arXiv:1103.3411

  • *Results of fits to Mmiss(+-) spectrano significant structuresb(1S)hb(1P) yieldReflection yield(2S) yieldPeaking background?MC simulation none.

  • *Calibrationhb(1P) b(1S) cosHel > 0.2MC simulationc1 J/ Photon energy spectrum

  • *Calibration (2)data Correction of MCE s.b. subtractedfudge-factorfor resolutionM(J/), GeV/c21.15 0.06 0.06Resolution:double-sided CrystalBall function with asymmetric core

  • *BsIntegrated Luminosity at B-factories > 1 ab-1On resonance:(5S): 121 fb-1(4S): 711 fb-1(3S): 3 fb-1(2S): 24 fb-1(1S): 6 fb-1Off reson./scan : ~100 fb-1 530 fb-1On resonance:(4S): 433 fb-1(3S): 30 fb-1(2S): 14 fb-1Off reson./scan : ~54 fb-1(fb-1)asymmetric e+e- collisions

  • *(5S)Belle took data atE=10867 1 M 2M(Bs)BaBar PRL 102, 012001 (2009)(6S)(4S)e+e- hadronic cross-sectionmain motivationfor taking data at (5S)(1S)(2S)(3S)(4S)2M(B)e+ e- ->(4S) -> BB, where B is B+ or B0e+ e- -> bb ((5S)) -> B(*)B(*), B(*)B(*)p, BBpp, Bs(*)Bs(*), (1S) pp , X ______

  • *Residuals(1S)Example of fitDescription of fit to MM(+-)Three fit regions123Ks generic(3S)kinematic boundaryMM(+-)M(+-)MM(+-)BG: Chebyshev polynomial, 6th or 7th order Signal: shape is fixed from +-+- dataResiduals subtract polynomial from data pointsKS contribution: subtract bin-by-bin

  • Results: Y(5S)Y(2S)+-*

  • Results: Y(5S)Y(2S)+-*

    *************************************************************AAAAA.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004*e^+e^-\to\Upsilon(4S)\to B\bar BB\bar B\ {\rm threshold}b\bar b*