bombas de engranajes 3p gear pumps

19
BOMBAS DE ENGRANAJES 3P / 3P GEAR PUMPS SERIE / SERIES

Upload: others

Post on 24-Jul-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

BOMBAS DE ENGRANAJES 3P / 3P GEAR PUMPS

SERIE / SERIES

Page 2: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

Perfil de la compañía

Hema Endüstri A.Ş. fue fundada con el nombre comercial de Hema Hidrolik A.Ş. en 1973, en la Zona Industrial Organizada de Çerkezköy I Tekirdağ, situada en el noroeste de Turquía. Durante los primeros años de producción, se elaboraron bombas de engranajes hidráulicas y cubiertas elevadoras hidráulicas para tractores agrícolas. A medida que transcurrieron los años, la gama de productos de la compañía aumentópara atender a otras industrias y cambió su nombre a Hema Endüstri A.Ş. en 1998.

Hema  Endüstri  A.Ş.  produce  actualmente  sistemas hidráulicos  completos  para  movimiento  de  tierras, construcción,  industria  forestal,  equipo  minero  y  la industria  automotriz.    En  2002  Hema  Endustri  A.S. empezó a producir una  línea de propiedad exclusiva de tractores  agrícolas.  Otros  productos  incluyen componentes de equipo original y otros productos, 

Hema Endüstri A.Ş. fabrica bombas hidráulicas de hierro fundido  y  válvulas,  capaces  de  generar  alta  presión  y flujos para aplicaciones hidráulicas móviles.

Para  tractores  agrícolas,  Hema  Endüstri  A.Ş.  produce bombas  de  engranajes  hidráulicas  de  alta  presión, cubiertas elevadoras hidráulicas controladas mecánica y electrónicamente,  unidades  de  direccion  hidrostáticas, válvulas  de  frenos  y  válvulas  de  control  seccional, distribuidores,  cigüeñales,  cajas  de  engranajes  y engranajes,  transmisiones y unidades balanceadoras de motores.

Para  automóviles  de  pasajeros  y  vehículos  comerciales livianos,  Hema  Endüstri  A.Ş.  produce  sistemas  de dirección  hidráulica,  cigüeñales,  engranajes  y  sistemas de frenos.

Hema  Endüstri  A.Ş.  produce  todos  los  sistemas  y componentes  para  que  se  reciban  directamente  en  las líneas  de  ensamblaje  de  las  principales  industrias mediante una entrega “Justo a tiempo”.

Hema Endüstri A.Ş. fue premiada con los certificados de calidad  ISO  9001,  AQAP  120  e  ISO/TS  16949.  Hema Endüstri A.Ş.  cumple  todos  los  requisitos de  calidad de sus productos  como proveedor de  sistemas  completos. Hema  Endüstri A.Ş.  trabaja  como  co‐diseñador  con  sus clientes en el desarrollo de vehículos.

Hema Endüstri A.Ş. emplea a 2000 personas que trabajan en  10  unidades  de  producción  separadas  e independientes.    El  setenta por  ciento del  volumen  de ventas  de  Hema  Endüstri  A.Ş.  se  exporta  directa  o indirectamente a más de 20 países en  todo el mundo a un precio competitivo y con la más alta calidad.

Company Profile

Hema Endüstri A.Ş. was founded with the trade name of  Hema Hidrolik A.Ş.  in  1973,  in  the  Organized Industrial  Zone  of  Çerkezköy I  Tekirdağ,  located  in Northwest  Turkey.  During  the  first  years  of production,  hydraulic  gear  pumps  and  hydraulic  lift covers were produced for agricultural tractors. As the years  passed,  the  company  product  range  grew  to serve other industries and changed its name to HemaEndüstri A.Ş. in 1998.

Hema Endüstri A.Ş.  currently  produces  complete hydraulic  systems  for  earth  moving,  construction, forestry,  mining  equipment,  and  automotive industries.    In  2002  Hema Endustri A.S.  began production  of  a  proprietary  line  of  agricultural tractors.   Other products  include  original  equipment components and other products, 

Hema Endüstri A.Ş. manufactures cast  iron hydraulic pumps and valves, capable of delivering high pressure and flows for mobile hydraulic applications.

For agricultural tractors, Hema Endüstri A.Ş. produces high‐pressure  hydraulic  gear  pumps,  mechanically and  electronically  controlled  hydraulic  lift  covers, hydrostatic steering units, brake valves and sectional control  valves,  distributors,  crankshafts,  gears  and gears boxes, transmissions and engine balancer units.

For passenger cars and commercial‐light commercial vehicles,  Hema Endüstri A.Ş.  produces  hydraulic steering  systems,  crankshafts,  gears  and  brake systems.Hema Endüstri A.Ş.  produces  all  systems  and components  to be delivered directly  to  the assembly lines of the main industries in “Just in Time” delivery..

Hema Endüstri A.Ş.  was  awarded  with  the  quality certificates of ISO 9001, AQAP 120, and ISO/TS 16949. Hema Endüstri A.Ş.  is  fulfilling  all  quality requirements of its products as a full system supplier. Hema Endüstri A.Ş.  is working as a  co‐designer with its customers in developing vehicles.

Hema Endüstri A.Ş. employs 2000 people working  in 10  separate  and  independent  production  units.  Seventy Percent of   Hema Endüstri A.Ş. Sales volume is exported directly or  indirectly  to over 20  countries worldwide at a competitive price and highest quality.

Page 3: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

ÍNDICE INDEX

ÍNDICE / INDEX PÁGINA / PAGE

Introducción / Introduction 3 ‐ 6

Sistema de codificación de bombas de engranajes  / Gear Pump Coding System 7

Datos técnicos / Technical Data 8

Bombas de engranajes / Gear Pumps 9

Bridas de montaje / Mounting Flanges 10 ‐ 14

Ejes de transmisión / Drive Shafts 15

Opciones de lumbreras de bridas / Flange and Porting Options 16

Cálculos de diseño para las bombas  / Design Calculations for Pumps 17

Page 4: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

DESCARGA DE LA BOMBAPUMP APPLICATION DATA

Revise las notas a continuación para obtener un alto rendimiento de la bomba que es uno de los componentes del sistema hidráulico.

Please review the notes below to obtain high performance from the pump that is one of the component of the hydraulic system.

TRANSMISIONES DE BOMBAS PUMP DRIVES

Transmisión directaLa transmisión no debe imponer cargas axiales o radiales fuertes sobre el eje de la bomba, dado que bajo estas condiciones puede haber fallas prematuras debido a la sobrecarga en los cojinetes de la bomba. Las transmisiones directas son preferibles cuando resulte practicable, usando un acople entre el impulsor principal y la bomba que permita la autoalineación de los ejes sin cargas laterales indebidas. Debe elegirse un acople que permita un mínimo de 0.25 mm de desplazamiento radial y axial. Se recomienda usar acoples flexibles de compensación de tres piezas. (Vea la Fig. 1)

Direct DriveThe drive must not impose severe axial or radial loads on the pump shaft, as under these conditions premature failure may result due to the overload on the pump bearings. Direct drives are preferred where practicable, using a coupling between the prime mover and the pump which will allow self alignment of the shafts without undue side loads. A coupling allowing a minimum of 0.25mm radial and axial displacement must be chosen. Flexible compensating three‐piece couplings are recommended. (See Fig. 1)

Fig 1. Un ejemplo del acople flexible de compensación de tres piezasFig 1. An example of the flexible compensating three ‐ piece coupling

Debe encajarse manualmente una chaveta de eje suministrada con la bomba cuando se ensamble el acople. Nunca debe encajarse o quitarse la chaveta o el acople del eje martillando. Esto causará daños internos a la bomba.  Evite aplicar mal las bombas equipadas con ejes ranurados, no inserte el eje de la bomba directamente dentro del eje concordante soportado rígidamente del impulsor principal. Debe evitarse esta práctica porque pueden imponerse cargas radiales muy altas en el eje de la bomba a menos que se alinee perfectamente la concentricidad de los ejes impulsores e impulsados, cuando esté bajo carga.

Transmisiones indirectasPueden acomodarse las transmisiones laterales por engranaje, cadena, correa dentada y correa en V pero deben contemplarse cargas laterales extra que imponen estas transmisiones en los cojinetes de la bomba, debiéndose calcular estas minuciosamente. El personal técnico de HEMA ENDÜSTRİ estará complacido en asistirle con este asunto. Generalmente para reducir las cargas laterales en los cojinetes de las bombas al usar transmisiones indirectas los diámetros de las ruedas dentadas de los engranajes o poleas deben ser grandes y deben estar cerca de la brida de montaje de la bomba (Vea la Fig. 2 y la 3)

A shaft key supplied with the pump must be hand fitted when the coupling is assembled. The key or coupling should never be fitted or removed from the shaft by hammering. This will cause internal damage to pump.  Avoid misapplication of  pumps equipped with splined shafts, do not insert  the pump shaft directly into the rigidly supported mating shaft of a prime mover. This practice should be avoided since very high radial loads can be imposed on the pump shaft unless the concentricity of the driving and the driven shafts, when under load, is perfectly aligned.

Indirect DrivesSide drives by gear, chain, toothed belt and V‐belt drives can be accommodated but allowance must be made for extra side loads that these drives impose on the pump bearings and must be carefully calculated. HEMA ENDÜSTRİ technical staff will be pleased to assist in this matter. Generally to reduce to side loads on the pump bearings when using indirect drive the diameters of the gear sprocket or pulley should be large and they should be dose to the pump mounting flange (See Fig. 2 and 3)

Fig. 2 Transmisión de correas en VFig. 2 V‐belt drive

Fig. 3 Transmisión de engranajesFig. 3 Gear Drive

Page 5: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

DATOS DE APLICACIÓN DE LA BOMBAPUMP APPLICATION DATA

ROTACIÓN DE LA BOMBA PUMP ROTATION

MONTAJE DE LA BOMBA PUMP MOUNTING

DESCARGA DE LA BOMBA

LINEA DE SUCCIÓN DE LA BOMBA PUMP SUCTION LINE

PUMP DISCHARGE

Una flecha grabada en la estructura de la bomba muestra la dirección en que debe girarse el eje de transmisión para operar la bomba. Esto siempre se indica hacia la derecha o hacia la izquierda, mirando desde el extremo del eje de transmisión (Vea la Fig. 4)

Las bombas son montadas en brida con ubicación piloto y montaje de dos o cuatro pernos para simplificar la instalación. El avellanado para recibir el piloto de la brida de montaje debe tener un biselado de 1 a 45" en el lado de la bomba para asegurar que se asiente correctamente. Para minimizar la vibración, la cual puede transmitirse a la bomba mediante líneas de tubería rígida, es buena práctica usar una manguera flexible inmediatamente adyacente a la bomba tanto en la línea de succión como en la de presión.

Las tuberías y conexiones de entrada de bombas deben ser de proporciones generosas con velocidades de flujo limitado hasta un máximo de 2.0 m/s para evitar un vacío de alta succión. (Vea la Fig. 5) Cuando mida justo afuera del revestimiento de la tubería el vacío máximo que puede tolerarse continuamente en la entrada de la bomba es de 200 mmHg (0.25 bar) bajo la presión atmosférica. Por periodos breves son permisibles los vacíos mayores que ocurren bajo condiciones de arranque en frío. La línea de succión debe ser lo más grande posible y no tener dobleces agudos para que se minimice el vacío en la entrada de la bomba.

La salida de la bomba debe protegerse normalmente con una válvula de alivio para limitar la presión operativa. El ajuste de esta válvula debe ser lo más bajo posible para que la bomba se alivie tan pronto se genere exceso de presión. Esto minimiza el efecto de calentamiento en el líquido y reduce la cantidad de trabajo que realiza la bomba, ahorrando energía. Los tamaños de tubería de salida deben elegirse para minimizar la velocidad de flujo a fin de evitar ruido del sistema, caídas excesivas de presión y sobrecalentamiento. Las velocidades bajo 5m/s son normalmente aceptables (Vea la Fig. 5)

An arrow embossed on the pump body shows the direction in which the drive shaft must be turned to operate the pump. This is always stated as clockwise or counter‐clockwise, as viewed from drive shaft end (See Fig. 4)

The pumps are flange mounted with pilot location and two or four bolt mounting for simplicity of installation. The counter bore to receive the mounting flange pilot should have a 1mm chamfer at 45" on the pump side to ensure proper seating. To minimize vibration, which can be transmitted to the pump by rigid pipe lines, it is good practice to use flexible hose immediately adjacent to the pump in both the suction and pressure lines.

The pump inlet piping and fittings should be of generous proportions with flow velocities limited to a maximum of 2.0 m/s to avoid high suction vacuum. (See Fig. 5) When measured just outside the pump casing the maximum vacuum that can be continuously tolerated at the pump inlet is 200 mmHg (0.25 bar) below atmospheric pressure. Greater vacuums, occurring under cold start‐up conditions, are permissible for short periods. The suction Line must be as large as possible and free from sharp bends so that vacuum at the pump inlet is minimized.

The pump outlet should normally be protected by a relief valve to limit the working pressure. The setting of this valve should be as low as possible so that the pump is relieved as soon as excess pressure is produced. This minimizes the heating effect on the fluid and reduces the amount of work done by the pump, saving energy. Outlet pipe sizes should be chosen to minimize flow velocity to avoid system noise, excess pressure drops and overheating. The velocities below 5m/s are normally acceptable (See Fig. 5)

Fig. 4 Rotación de la bombaFig. 4 Pump Rotation

SalidaOutlet

EntradaInlet

Page 6: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

DATOS DE APLICACIÓN DE LA BOMBAPUMP APPLICATION DATA

POMPALARIN MONTAJ VE UYGULAMA YÖNTEMLERİPUMP APPLICATION DATA

CAVITACIÓN CAVITATION

TANQUE DE ACEITE OIL RESERVOIR

ACEITE

FILTRACIÓN FILTRATION

OIL

El aceite hidráulico usado en la mayor parte de los sistemas contiene aproximadamente un 10% de aire ocluido o retenido por volumen. Bajo ciertas condiciones de vacío, se libera del aceite este aire dentro del sistema causando burbujas. Estos bolsones de aire colapsan al someter a presión; la cavitación subsiguiente de este colapso crea erosión del metal adyacente.  Cuanto mayor sea el contenido de aire dentro del aceite, tanto más grave será la erosión resultante creada.  Las principales causas de sobreaeración del aceite son las fugas, particularmente en el lado de entrada de la bomba, y restricciones de la línea de flujo como tamaño inadecuado de la tubería, codos conectores y cambios repentinos en el área de sección transversal de la línea de flujo.

Se recomienda que la capacidad del tanque sea al menos dos veces la salida de la bomba por minuto a la máxima velocidad de la bomba. Un tanque demasiado pequeño no podráadecuarse a los cambios de volumen debido a que el diseño del sistema lleva a la formación de vórtice que introduce aire en el sistema. También permite suficiente tiempo para liberar aire en el aceite y para disipar calor.  La principal oclusión de aire ocurre en los tanques de aceite y deben tomarse precauciones para mantener en un mínimo la agitación del aceite y la interacción del aire. Esto incluye ubicar las líneas de retorno de aceite bastante por debajo de la superficie del aceite. Las lumbreras u orificios de succión de aceite también deben estar bien sumergidas para eliminar la formación de vórtices y, dentro de lo posible, deben situarse bastante lejos de la tubería de retorno de aceite para evitar recircular burbujas de aire.Debe permitirse el volumen de desplazamiento para arietes y actuadores con el fin de brindar espacio de aire y respiración adecuados. Para este fin debe instalarse un llenador de aceite /respirador en el orificio de llenado en la superficie superior del tanque. Esto comprende un colador de malla fina para el orificiode llenado y un filtro de aire para evitar la entrada de partículas de polvo a través del respirador. Revise regularmente el nivel de aceite y use solo aceite limpio y aprobado cuando llene o rellene.

La suciedad es el enemigo de todo sistema hidráulico. Debe brindarse una filtración adecuada para asegurar que se atrapen las partículas dañinas de suciedad. Como estándar mínimo absoluto, el sistema debe tener un colador de la línea de succión y un filtro de la línea de retorno.  El colador se coloca en la línea de succión de la bomba dentro del tanque y debe ser de malla 100 (espacio de 0.15 mm). El filtro de la línea de retorno debe ser de 10 micras con calificación nominal absoluta.

Solo debe usarse aceite mineral de buena calidad con una característica de viscosidad que esté conforme con los requisitos indicados a continuación.  La viscosidad en cualquier condición operativa debe no ser inferior a 5.5 centistokes. Para funcionar con temperatura normal, se recomiendan aceites ISO VG 68, pero en climas fríos deben usarse aceites ISO VC 32.

Hydraulic oil used in the majority of systems contains about 10 % entrained air by volume. This air under certain conditions of vacuum within the system is released from the oil causing air bubbles. These air pockets collapse when subjected to pressure the subsequent cavitation of this collapse creates erosion of the adjacent metal.  The greater the air content within the oil then the more severe will be the resultant erosion created.  The main causes of over aeration of the oil are leaks particularly on the inlet side of the pump,and flow line restrictions such as inadequate pipe size, elbow fittings and sudden changes in flow line cross sectional area

It is recommended that the reservoir capacity is at least twice the pump output per minute at maximum pump speed. Too small a reservoir will fail to accommodate volume changes due to system design leading to the formation of vortex which will introduce air into the system. It also leaves insufficient time for the release of air in the oil and for the dissipation of heat.  The main air entrainment occurs in oil reservoirs and precautions should be taken to keep agitation of the oil/air interface to a minimum. These include location of oil return lines well below the oil surface. Oil suction ports also should be well immersed to eliminate vortex formation and as far as possible they should be located well away from the oil‐return pipe to avoid recirculation of air bubbles.Displacement volume for rams and actuators must be allowed for by providing adequate air space and breathing. For this purpose an oil filler /breather must be fitted to the filling orifice in the top surface of the tank. This should comprise a fine mesh strainer for the filling orifice and an airfilter to prevent the entry of dust particles through the breather. Check the oil level regularly and use only clean, approved oil when to topping and filling.

Dirt is the enemy of any hydraulic system. Adequate filtration must be provided to ensure that harmful dirt particles are trapped. As an absolute minimum Standard the system must have a suction line strainer and a return line filter.  The strainer is fitted to the pump suction line inside the reservoirand should be of 100 mesh construction (0.15 mm gap) The return line filter must be 10 micron absolute rated.

Only good quality, mineral based oil must be used with a viscosity characteristic that will conform to the requirements shown below.  Viscosity at any running condition must not be less than 5.5 centistokes. For normal temperature operation ISO VG 68 oils are recommended, but in cold climates ISO VC 32 oils must be used.

Page 7: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

DATOS DE APLICACIÓN DE LA BOMBAPUMP APPLICATION DATA

‐25°C…+80°C‐25°C…+110°C con sellos Viton

Las altas eficiencias volumétricas producidas por las bombas se logran en parte al prestar minuciosa atención al control de fugas en la punta del engranaje. La geometría del cuerpo al engranaje se dispone de tal modo que durante el funcionamiento en el ciclo de prueba, a la cual se somete toda unidad, los engranajes corten surcos perceptibles en el cuerpo. Esto produce prácticamente cero espacio entre las puntas de los engranajes y logra un sello casi perfecto en la punta bajo condiciones operativas.

Se usan bujes compuestos flotantes en las bombas que albergan los revestimientos de cojinete y brindan un sello de cara con los engranajes. Este sello eficiente se logra mediante la carga de presión en áreas precisas de la cara posterior del buje con fluido a presión operativa. Se incorporan características especiales en la cara de sellado del buje para compensar variables operativas como presión, velocidad y temperatura. El sistema de balanceo de presión crea un mínimo de carga neta para lograr una alta eficiencia mecánica, balanceando a la vez una distribución variable de presión en la cara del buje, y contribuyendo al alto rendimiento volumétrico de las bombas.

‐25°C…+80°C‐25°C…+110°C with Viton Seals

High volumetric efficiencies produced by the pumps are achieved in part by careful attention to the control of gear tipleakage. The body to gear geometry is arranged such that during the running in test cycle, to which every unit is subjected, the gears cut perceptible tracks in the body. This results in virtually zero clearance between the gear tips and producing a near perfect tip seal under running conditions.

Floating composite bushes are used in the pumps which house the bearing liners and provide a face seal to the gears. This efficient seal is achieved by pressure loading precise areas of the bush rear face with fluid at working pressure. Special features are incorporated in the bushing sealing face to compensate for operating variables such as pressure, speed and temperature. The pressure balancing system creates a minimum net on‐load for high mechanical efficiency yet at the same time balancing a varying pressure distribution across the bushing face, contributing to the high volumetric performance of pumps.

FIG. 5 DIMENSIONAMIENTO DE TUBERÍASFIG. 5 PIPE SIZING

TANQUE DE ACEITE OIL RESERVOIR

ALTA EFICIENCIA (SOLO BOMBAS 1PN) HIGH EFFICIENCY (1PN PUMPS ONLY)

LÍNEA DE PRESIÓNPRESSURE LINE

LÍNEA DE SUCCIÓN Y RETORNOSUCTION AND RETURN LINE

lt/minlt/min

gal/mingal/min

cm pulgadasinches

m/s pies/sFt/s

VELOCIDAD DE FLUJOFLOW VELOCITY

FLUJOFLOW

DIÁMETRO INTERNO DE GIROTURN INSIDE DIAMETER

Page 8: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

SISTEMA DE CODIFICACIÓN DE LA BOMBA DE ENGRANAJESGEAR PUMP CODING SYSTEM

3

PAGE 16

3P1 4210 A B1 T1 2 A 2 A

PUMP SERIES

3P1

TYPE DISPLACEMENT

4150 47,0 cm³/dev (cm³/rev)

4180 56,1 cm³/dev (cm³/rev) INLET‐OUTLET PORTS DIMENSIONS

4210 65,2 cm³/dev (cm³/rev)

4250 77,0 cm³/dev (cm³/rev)

4300 91,9 cm³/dev (cm³/rev) TYPE INLET‐OUTLET PORTS TYPES

4330 101,5 cm³/dev (cm³/rev) 1 RECTANGULAR

4380 116,7 cm³/dev (cm³/rev) 2 UN THREAD WITH ORING BOSS

PIPE THREAD (BSPP)

CODE ROTATION

A ANTI‐CLOCKWISE CODE SHAFT TYPES

C CLOCKWISE P1 SAE C PARALLEL SHAFT ø31,75

S1 SAE C SPLINE 14 TEETH

CODE MOUNTING FLANGE TYPES S2 SAE BB SPLINE 15 TEETH

B1 SQUARE FLANGE T1 TAPERED KEY SHAFT 1:8

D1 SAE B 4 BOLTS

D2 SAE C 4 BOLTS

D3 SAE B 4 BOLTS

D4 SAE C 4 BOLTS

G1 SAE C 2 BOLTS

G2 SAE B 2 BOLTS

G3 SAE C 2 BOLTS

G4 SAE B 2 BOLTS

REPEAT FOR EACH PUMP SECTION

REPEAT FOR EACH PUMP SECTION

INLET

OUTLET

INLET

OUTLET

Page 9: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

DATOS TÉCNICOTECHNICAL DATAS

MODELOMODEL

DESPLAZAMİENTO DISPLACEMENT

cm³/rev (cm³/rev)

FLUJOFLOW

(1500rpm/rpm ‐ rpm)lt/rpm ‐ lt/min

PRESIÓN MÁX. DE SALIDA MAX. OUTLET PRESSURE

bar

VELOCIDAD MÍN. 

MIN. SPEEDrpm ‐rpm

VELOCIDAD MÁX.

MAX. SPEEDrpm ‐rpm

3P1.4150 47.0 68.2 248 600 22503P1.4180 56.1 81.8 248 600 22503P1.4210 65.2 95.5 248 600 22503P1.4250 77.0 113.7 248 600 22503P1.4300 91.9 136.4 207 600 22503P1.4330 101.5 150.0 193 600 21003P1.4380 116.7 173.0 172 600 2000

Para aceite ISO VG68 a 50°C / For ISO VG68 oil at 50°C

CURVAS DE RENDIMIENTO / PERFORMANCE CURVES

Potencia de entrada (Kw)Input Power (Kw)

Velocidad de la bomba (rpm)Pump Speed (rpm)

Aceite /Oil 35 cSt 50°C

Curvas de flujoFlow Curves

Presión operativaWorking Pressure

Page 10: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

MODELOSMODEL

DESPLAZAMİENTODISPLACEMENT

cm³/rev (cm³/rev)A

mmB

mm

3P1.4150 47.0 167.4 81.33P1.4180 56.1 172.3 83.63P1.4210 65.2 177.1 86.13P1.4250 77.0 183.5 89.23P1.4300 91.9 191.2 93.23P1.4330 101.5 196.6 95.83P1.4380 116.7 204.6 99.9

Chaveta WoodruffWoodruff Key

Ancho del cuerpoBody Width

BOMBAS DE ENGRANAJESGEAR PUMPS

Page 11: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

B1 BRİDA CUADRADASQUARE FLANGE

D1 PERNOS SAE B 4SAE B 4 BOLTS

BRIDAS DE MONTAJEMOUNTING FLANGES

Agujerosde montaje

Holes

Agujeros de montajeMounting Holes

Page 12: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

BRIDAS DE MONTAJE MOUNTING FLANGES

D2 PERNOS SAE C 4SAE C 4 BOLTS

4 AgujerosHolesHoles

D3 PERNOS SAE B 4SAE B 4 BOLTS

Agujerosde montaje

Holes

Page 13: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

BRIDAS DE MONTAJE MOUNTING FLANGES

G1 PERNOS SAE C 2SAE C 2 BOLTS

2 Agujeros de montajeMounting Holes

D4 PERNOS SAE C 4SAE C 4 BOLTS

4 AgujerosHolesHoles

Page 14: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

BRIDAS DE MONTAJEMOUNTING FLANGES

G2 PERNOS SAE B 2SAE B 2 BOLTS

G3 PERNOS SAE C 2SAE C 2 BOLTS

2 Agujeros de montajeMounting Holes

2 Agujeros de montajeMounting Holes

Page 15: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

BRIDAS DE MONTAJEMOUNTING FLANGES

G4 PERNOS SAE B 2SAE B 2 BOLTS

2 Agujeros de montajeMounting Holes

Page 16: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

TIPOS DE EJESHAFT TYPES

S1 SAE C ESTRIADO 14 DIENTESSAE C SPLINE 14 TEETH

S2 SAE BB ESTRIADO 15 DIENTESSAE BB SPLINE 15 TEETH

P1 SAE C EJE PARALELO ø31,75SAE C PARALLEL SHAFT ø31,75

T1 EJE CHAVETA AGUZADA 1:8TAPERED KEY SHAFT 1:8

MÁX. TORSIÓN: 673 NmMAX. TORQUE

CHAVETA CUADRADASQUARE KEY

ESTRIADO EN ESPIRALSAE C14 DIENTES, 12/24 DPDIÁMETRO MAYOR: ø31.17INVOLUTE SPLINESAE C14 TEETH, 12/24 DPMAJOR DIAMETER: ø31.17

MÁX. TORSIÓN: 414 NmMAX. TORQUE

1:5  CONICIDAD BÁSICABASIC TAPER

17.0DIÁMETRO REF.REF.DIAMETER

CHAVETAKEY

MÍN. ROSCADO COMPLETOMIN. FULL THREAD

MÍN. ROSCADO COMPLETOMIN. FULL THREAD

SOBRE ARO DE RETENCIÓNOVER RETAINING RING

ESTRIADO EN ESPIRALSAE 25‐4 (BB)15 DIENTES, 16/32 DPDIÁMETRO MAYOR: ø24.92INVOLUTE SPLINESAE 25‐4 (BB)15 TEETH, 16/32 DPMAJOR DIAMETER: ø24.92

MÁX. TORSIÓN: 376 NmMAX. TORQUE

MÁX. TORSIÓN: 764 NmMAX. TORQUE

Page 17: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

TIPOS DE AGUJEROSHOLE TYPES

TIPO 1TYPE 1

BRIDA RECTANGULARRECTANGULAR FLANGE

TIPO 2TYPE 2

ROSCADO UNF CON COLLARÍN DE JUNTA TÓRICAUN THREAD WITH ORING BOSS

TIPO 3TYPE 3

ROSCADO DE TUBERÍAPIPE THREAD (BSPP)

SAE  J514

CÓDIGOA C ØB TCODE

A 52.32 26.21 25.4 M10x1.5x30B 58.92 29.97 31.7 M12x1.75x30C 69.85 35.71 33.3 M10x1.5x30D 69.85 35.71 33.3 M12x1.75x30

1 5/8”‐12 UNx19E1 1/2”‐12 UNx19D1 5/16”‐12 UNx19C1 1/16”‐12 UNx19B

CÓDIGO CODE T

A 7/8”‐14 UNFx16.7

F 1 7/8”‐12 UNx19

CÓDIGO CODE T

A G 1 1/2”x25

B G 1 1/4”x25

Page 18: BOMBAS DE ENGRANAJES 3P GEAR PUMPS

Los cálculos de diseño para bombas se basan en los parámetros siguientes.

V (cm³/rev) : Desplazamiento

Q (l/min) : Flujo

P (bar) : Presión

M (Nm) : Torsión de transmisión

n (dev/dk) : Velocidad de transmisión

N (Kw) : Potencia de transmisión

µv  (%)  : Eficiencia volumétrica

µm  (%)  :Eficiencia hidráulica‐mecánica

µt   (%)  : Eficiencia general

The design calculations for pumps are based on the following parameters.

V (cm³/rev) : Displacement

Q (l/min) : Flow

P (bar) : Pressure

M (Nm) : Drive torque

n (dev/dk) : Drive speed

N (Kw) : Drive power

µv  (%)  : Volumetric efficiency

µm  (%)  :Hydraulic‐mechanical efficiency

µt   (%)  : Overall efficiency

Las siguientes fórmulas describen diversas relaciones. Incluyen factores de corrección para adaptar los parámetros a las unidades usuales que se encuentran en la práctica.

The following formulas describe the various relationships. They include correction factors for  adapting  the  parameters to  the usual units encountered in practice.

CÁLCULOS DE DISEÑO PARA BOMBASDESIGN CALCULATIONS FOR PUMPS

FlujoFlow

DesplazamientoDisplacement

Velocidad de transmisiónDrive speed

PresiónPressure

DesplazamientoDisplacement

Torsión de transmisiónDrive torque

Potencia de transmisiónDrive power

FlujoFlow

PresiónPressure

Eficiencia recomendadaRecommended efficiency

Page 19: BOMBAS DE ENGRANAJES 3P GEAR PUMPS