boiler tune auto report

28
Recommendation Background We measured combustion gas temperatures and composition at several firing rates in order to establish an accurate model for boiler operation. With the combustion gas analysis, we used the ASME indirect method to calculate combustion efficiency for your boiler(s) at each firing rate. We then used the operating hours that plant personnel provided to calculate annual fuel use for your boiler(s). We verified the information that we measured, obtained from plant personnel, or assumed through boiler records or logs to the extent possible. Finally, we compared the calculated boiler fuel use with your fuel bills to verify the model is consistent with your operation. Ideally, a boiler would use just enough combustion air to burn all of the fuel, with no excess air. Excess air carries heat up the stack and reduces boiler efficiency. However, all burners require some excess air to ensure complete combustion. We assume that you can operate your boiler with 4.0% excess oxygen (O 2 ). Depending on the boiler and control strategy it could be possible to reduce excess oxygen below 4.0% for additional savings, although care must be taken to ensure combustibles (unburned fuel) and carbon monoxide (CO) concentrations do not rise to unacceptable levels. * 1 MMBtu = 1,000,000 Btu, 1 therm = 100,000 Btu (MMBtu)* (therm)* Savings Cost (Years) Efficiency can also be improved by cleaning scale from the waterside heat transfer surfaces. Scale deposits occur when calcium, magnesium, and silica, form a layer of material on the boiler heat exchanger surfaces. By removing the scale, heat transfer will improve, lowering stack temperatures. 235.6 2,356.2 Implement a boiler tuning program to maintain an optimum air-fuel ratio, improving combustion efficiency and lowering fuel use. Tuning your boiler(s) will reduce associated fuel consumption by 3.2%. $2,534 $1,000 AR No. # Boiler Tune 0.4 Assessment Recommendation Summary Implementation Payback Energy Energy Cost

Upload: joshi-dhvanit

Post on 16-Aug-2016

19 views

Category:

Documents


2 download

DESCRIPTION

df

TRANSCRIPT

Page 1: Boiler Tune Auto Report

Recommendation

Background

We measured combustion gas temperatures and composition at several firing rates in order to establish

an accurate model for boiler operation. With the combustion gas analysis, we used the ASME indirect

method to calculate combustion efficiency for your boiler(s) at each firing rate. We then used the

operating hours that plant personnel provided to calculate annual fuel use for your boiler(s). We verified

the information that we measured, obtained from plant personnel, or assumed through boiler records or

logs to the extent possible. Finally, we compared the calculated boiler fuel use with your fuel bills to

verify the model is consistent with your operation.

Ideally, a boiler would use just enough combustion air to burn all of the fuel, with no excess air. Excess

air carries heat up the stack and reduces boiler efficiency. However, all burners require some excess air

to ensure complete combustion. We assume that you can operate your boiler with 4.0% excess oxygen

(O2). Depending on the boiler and control strategy it could be possible to reduce excess oxygen below

4.0% for additional savings, although care must be taken to ensure combustibles (unburned fuel) and

carbon monoxide (CO) concentrations do not rise to unacceptable levels.

* 1 MMBtu = 1,000,000 Btu, 1 therm = 100,000 Btu

(MMBtu)* (therm)* Savings Cost (Years)

Efficiency can also be improved by cleaning scale from the waterside heat transfer surfaces. Scale

deposits occur when calcium, magnesium, and silica, form a layer of material on the boiler heat

exchanger surfaces. By removing the scale, heat transfer will improve, lowering stack temperatures.

235.6 2,356.2

Implement a boiler tuning program to maintain an optimum air-fuel ratio, improving combustion

efficiency and lowering fuel use. Tuning your boiler(s) will reduce associated fuel consumption by

3.2%.

$2,534 $1,000

AR No. #

Boiler Tune

0.4

Assessment Recommendation Summary

Implementation PaybackEnergy Energy Cost

Page 2: Boiler Tune Auto Report

Proposal

Source: http://www.flickr.com/photos/anguskirk/

We recommend you have a boiler specialist tune your boiler to 4.0% exhaust O2 and clean your boiler

water side heat exchanger surfaces to increase combustion efficiency . We suggest this be done

immediately and then once every year after. We estimate a boiler tune will cost $500 per boiler. Annual

savings after deducting the annual cost to tune your boiler will be $2,534, paying for the initial

implementation cost of the first tuning in 0.4 years.

Page 3: Boiler Tune Auto Report

Energy Savings Summary Equations

Total Current Energy Use (CE) 7,269.0 MMBtu (Rf. 1) Eq. 1) Annual Energy Savings (ES )

Total Proposed Energy Use (PE) 7,033.4 MMBtu (Rf. 1)

Energy Savings (ES) 235.6 MMBtu (Eq. 1)

Eq. 2) Cost Savings (CS )

Implementation Cost Summary

Labor Costs

Number of Boilers to Tune (B) 2 Eq. 3) Implementation Costs (IC )

Labor Cost per Boiler (L) $500 (N. 1)

Economic Results

Cost Savings (CS) $2,534 (Eq. 2) References

Implementation Costs (IC) $1,000 (Eq. 3)

Payback (PB) 0.4 years

Notes

Boiler Tune

Rf. 1) Savings were calculated using the

Boiler Worksheet found on the following

pages.

N. 1) The boiler should be tuned immediately, and then once every year to maintain

optimum efficiency.

PECE

LBECES

LB

Page 4: Boiler Tune Auto Report

Percent

High Medium Low Standby High Medium Low Standby Savings

Boiler 1 71.4% 68.0% 60.8% 18.1% 73.3% 70.0% 62.7% 21.5% 2.9%

Boiler 2 78.3% - - - 81.1% - - - 3.4%

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Total 3.2%

Total

High Medium Low Standby High Medium Low Standby Savings

Units (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu) (MMBtu)

Boiler 1 1,000.0 750.0 500.0 19.0 974.7 728.2 484.8 16.0 65.3

Boiler 2 5,000.0 - - - 4,829.7 - - - 170.3

- - - - - - - - 0.0

- - - - - - - - 0.0

- - - - - - - - 0.0

- - - - - - - - 0.0

- - - - - - - - 0.0

- - - - - - - - 0.0

Total 235.6

Total

High Medium Low Standby High Medium Low Standby Savings

Boiler 1 $15,000 $11,250 $7,500 $285 $14,621 $10,923 $7,272 $239 $980

Boiler 2 $75,000 - - - $72,446 - - - $2,554

- - - - - - - - $0

- - - - - - - - $0

- - - - - - - - $0

- - - - - - - - $0

- - - - - - - - $0

- - - - - - - - $0

Total $3,534$109,035 $105,501

Current Proposed

Cost Savings Summary

Current Proposed

7,269.0 7,033.4

Energy Savings Summary

Boiler Tune

Efficiency Summary

Current Proposed

Page 5: Boiler Tune Auto Report

3,100 hours

5.10 minutes 1 MMBtu/hr

30 seconds 20%

80oF 50

oF

75% 14.7 psia

0.01 lbv/lb air 0 feet

10 psi 6 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure 100 psig 338oF

3.89 ft3/lb 309.0 btu/lbm

880.0 btu/lbm 1,189.0 btu/lbm

Proposed Steam Pressure 100 psig 338oF

3.89 ft3/lb 309.0 btu/lbm

880.0 btu/lbm 1,189.0 btu/lbm

$15.00 /MMBtu

81.80% C 0.00% S

18.20% H 0.00% N2

0.00% O2 0.00%

0.00% 21,670 btu/lbm

44.0 g/mol 4.00% O2

5.00% O2

806.9 4.84 minutes

5.10 minutes 0.25 minutes

Steam System Volume

Operating Hours

Inlet Air Temperature Inlet Water Temperature

Air Humidity Ratio

Purge Air Temperature Atmospheric Pressure

Steam Gas Constant

Pressure Range

Manufacturer

Control Type

Standby Cycle Time

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy

Propane Fuel Cost

Percent Carbon Percent Sulfur

Percent Hydrogen Percent Nitrogen

Fuel Type

Boiler Information

Enviromental Data

Steam System

Boiler Cycling

Current Steam Properties

Saturated Vapor Enthalpy

Moisture Content Higher Heating Value

Saturated Vapor Enthalpy

Saturated Vapor Specific Volume

Evaporated Enthalpy

Current Steam Temperature

Proposed Steam Properties

Proposed Steam Temperature

Saturated Liquid Enthalpy

Fuel Properties

Off Cycle

Run Cycle

Total Cycle

Percent Oxygen Percent Ash

Boiler Tune

Low/Standby Fire Proposed O2

Location Boiler 1

On-Off

Maximum Firing Rate

Minimum Firing RatePurge Cycle Time

Elevation

Molecular Weight High/Medium Fire Proposed O2

DPVh

Page 6: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 75% 50% 19% 100% 75% 50% 19%

Fuel Input (MMBtu/hr) 1.00 0.75 0.50 0.19 0.97 0.73 0.48 0.16

Operating Hours 1,000 1,000 1,000 100 1,000 1,000 1,000 100

Energy Use (MMBtu/yr) 1,000.0 750.0 500.0 19.0 974.7 728.2 484.8 16.0

Stack Conditions

O2 10.0% 9.0% 8.0% 7.0% 4.0% 4.0% 5.0% 5.0%

CO2 8.5% 8.0% 7.5% 6.0% 11.2% 11.2% 10.5% 10.5%

CO 8 ppm 8 ppm 8 ppm 9 ppm 8 ppm 8 ppm 8 ppm 9 ppm

Stack Temperature 350.0 F 325.0 F 300.0 F 300.0 F 350.0 F 325.0 F 300.0 F 300.0 F

Net Stack Temperature 270.0 F 245.0 F 220.0 F 220.0 F 270.0 F 245.0 F 220.0 F 220.0 F

Mass Flow Rates

Fuel Flow Rate (lbm/min) 0.7691 0.5768 0.3846 0.1461 0.7497 0.5600 0.3729 0.1228

Air Flow Rate (lbm/min) 15.9230 11.5515 7.4589 2.7487 12.9457 9.6714 6.6186 2.1796

Efficiencies

Dry Gas Losses 7.13% 6.85% 6.54% 8.09% 5.47% 4.96% 4.72% 4.72%

Moisture Formation 8.77% 8.69% 8.60% 8.60% 8.77% 8.69% 8.60% 8.60%

Moisture in Fuel 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Carbon Monoxide 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

Losses Due to Ash 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Moisture in the Air 1.12% 1.07% 1.03% 0.99% 0.93% 0.92% 0.94% 0.94%

Combustion Efficiency 82.98% 83.39% 83.83% 82.31% 84.83% 85.43% 85.73% 85.73%

Thermal Losses 11.53% 15.38% 23.07% 60.71% 11.53% 15.38% 23.07% 60.71%

Cycling Losses - - - 3.49% - - - 3.48%

Boiler Efficiency 71.4% 68.0% 60.8% 18.1% 73.3% 70.0% 62.7% 21.5%

Notes

Boiler Efficiency

Boiler Tune

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Current Proposed

Page 7: Boiler Tune Auto Report

1,000 hours

0.97 minutes 5 MMBtu/hr

30 seconds 20%

80oF 50

oF

75% 14.7 psia

0.01 lbv/lb air 0 feet

10 psi 30 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure 100 psig 338oF

3.89 ft3/lb 309.0 btu/lbm

880.0 btu/lbm 1,189.0 btu/lbm

Proposed Steam Pressure 100 psig 338oF

3.89 ft3/lb 309.0 btu/lbm

880.0 btu/lbm 1,189.0 btu/lbm

$15.00 /MMBtu

81.80% C 0.00% S

18.20% H 0.00% N2

0.00% O2 0.00%

0.00% 21,670 btu/lbm

44.0 g/mol 4.00% O2

5.00% O2

4,034.6 0.48 minutes

0.97 minutes 0.48 minutes

Boiler Tune

Boiler Information

Manufacturer Location Boiler 2

Air Humidity Ratio Elevation

Control Type Full Modulating Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Propane Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 8: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) 5.00 - - - 4.83 - - -

Operating Hours 1,000 0 0 0 1,000 0 0 0

Energy Use (MMBtu/yr) 5,000.0 - - - 4,829.7 - - -

Stack Conditions

O2 10.0% - - - 4.0% - - -

CO2 7.5% - - - 11.2% - - -

CO 5 ppm - - - 5 ppm - - -

Stack Temperature 350.0 F - - - 350.0 F - - -

Net Stack Temperature 270.0 F - - - 270.0 F - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) 3.8456 - - - 3.7146 - - -

Air Flow Rate (lbm/min) 79.6152 - - - 64.1469 - - -

Efficiencies

Dry Gas Losses 8.04% - - - 5.47% - - -

Moisture Formation 8.77% - - - 8.77% - - -

Moisture in Fuel 0.00% - - - 0.00% - - -

Carbon Monoxide 0.00% - - - 0.00% - - -

Losses Due to Ash 0.00% - - - 0.00% - - -

Moisture in the Air 1.12% - - - 0.93% - - -

Combustion Efficiency 82.07% - - - 84.83% - - -

Thermal Losses 3.73% - - - 3.73% - - -

Cycling Losses - - - - - - - -

Boiler Efficiency 78.3% - - - 81.1% - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 9: Boiler Tune Auto Report

0 hours

#DIV/0! minutes MMBtu/hr

30 seconds 20%

80oF 50

oF

75% 14.7 psia

0.01 lbv/lb air 0 feet

10 psi 0 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure 100 psig 338oF

3.89 ft3/lb 309.0 btu/lbm

880.0 btu/lbm 1,189.0 btu/lbm

Proposed Steam Pressure 100 psig 338oF

3.89 ft3/lb 309.0 btu/lbm

880.0 btu/lbm 1,189.0 btu/lbm

/MMBtu

#N/A C #N/A S

#N/A H #N/A N2

#N/A O2 #N/A

#N/A #N/A btu/lbm

#N/A g/mol #N/A O2

#N/A O2

0.0 #DIV/0! minutes

#DIV/0! minutes #DIV/0! minutes

Boiler Tune

Boiler Information

Manufacturer Location

Air Humidity Ratio Elevation

Control Type Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 10: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) - - - - - - - -

Operating Hours 0 0 0 0 0 0 0 0

Energy Use (MMBtu/yr) - - - - - - - -

Stack Conditions

O2 - - - - - - - -

CO2 - - - - - - - -

CO - - - - - - - -

Stack Temperature - - - - - - - -

Net Stack Temperature - - - - - - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) - - - - - - - -

Air Flow Rate (lbm/min) - - - - - - - -

Efficiencies

Dry Gas Losses - - - - - - - -

Moisture Formation - - - - - - - -

Moisture in Fuel - - - - - - - -

Carbon Monoxide - - - - - - - -

Losses Due to Ash - - - - - - - -

Moisture in the Air - - - - - - - -

Combustion Efficiency - - - - - - - -

Thermal Losses - - - - - - - -

Cycling Losses - - - - - - - -

Boiler Efficiency - - - - - - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 11: Boiler Tune Auto Report

0 hours

#DIV/0! minutes MMBtu/hr

seconds

oF

oF

14.7 psia

lbv/lb air feet

psi 0 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

Proposed Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

/MMBtu

#N/A C #N/A S

#N/A H #N/A N2

#N/A O2 #N/A

#N/A #N/A btu/lbm

#N/A g/mol #N/A O2

#N/A O2

0.0 #DIV/0! minutes

#DIV/0! minutes #DIV/0! minutes

Boiler Tune

Boiler Information

Manufacturer Location

Air Humidity Ratio Elevation

Control Type Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 12: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) - - - - - - - -

Operating Hours 0 0 0 0 0 0 0 0

Energy Use (MMBtu/yr) - - - - - - - -

Stack Conditions

O2 - - - - - - - -

CO2 - - - - - - - -

CO - - - - - - - -

Stack Temperature - - - - - - - -

Net Stack Temperature - - - - - - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) - - - - - - - -

Air Flow Rate (lbm/min) - - - - - - - -

Efficiencies

Dry Gas Losses - - - - - - - -

Moisture Formation - - - - - - - -

Moisture in Fuel - - - - - - - -

Carbon Monoxide - - - - - - - -

Losses Due to Ash - - - - - - - -

Moisture in the Air - - - - - - - -

Combustion Efficiency - - - - - - - -

Thermal Losses - - - - - - - -

Cycling Losses - - - - - - - -

Boiler Efficiency - - - - - - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 13: Boiler Tune Auto Report

0 hours

#DIV/0! minutes MMBtu/hr

seconds

oF

oF

14.7 psia

lbv/lb air feet

psi 0 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

Proposed Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

/MMBtu

#N/A C #N/A S

#N/A H #N/A N2

#N/A O2 #N/A

#N/A #N/A btu/lbm

#N/A g/mol #N/A O2

#N/A O2

0.0 #DIV/0! minutes

#DIV/0! minutes #DIV/0! minutes

Boiler Tune

Boiler Information

Manufacturer Location

Air Humidity Ratio Elevation

Control Type Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 14: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) - - - - - - - -

Operating Hours 0 0 0 0 0 0 0 0

Energy Use (MMBtu/yr) - - - - - - - -

Stack Conditions

O2 - - - - - - - -

CO2 - - - - - - - -

CO - - - - - - - -

Stack Temperature - - - - - - - -

Net Stack Temperature - - - - - - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) - - - - - - - -

Air Flow Rate (lbm/min) - - - - - - - -

Efficiencies

Dry Gas Losses - - - - - - - -

Moisture Formation - - - - - - - -

Moisture in Fuel - - - - - - - -

Carbon Monoxide - - - - - - - -

Losses Due to Ash - - - - - - - -

Moisture in the Air - - - - - - - -

Combustion Efficiency - - - - - - - -

Thermal Losses - - - - - - - -

Cycling Losses - - - - - - - -

Boiler Efficiency - - - - - - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 15: Boiler Tune Auto Report

0 hours

#DIV/0! minutes MMBtu/hr

seconds

oF

oF

14.7 psia

lbv/lb air feet

psi 0 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

Proposed Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

/MMBtu

#N/A C #N/A S

#N/A H #N/A N2

#N/A O2 #N/A

#N/A #N/A btu/lbm

#N/A g/mol #N/A O2

#N/A O2

0.0 #DIV/0! minutes

#DIV/0! minutes #DIV/0! minutes

Boiler Tune

Boiler Information

Manufacturer Location

Air Humidity Ratio Elevation

Control Type Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 16: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) - - - - - - - -

Operating Hours 0 0 0 0 0 0 0 0

Energy Use (MMBtu/yr) - - - - - - - -

Stack Conditions

O2 - - - - - - - -

CO2 - - - - - - - -

CO - - - - - - - -

Stack Temperature - - - - - - - -

Net Stack Temperature - - - - - - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) - - - - - - - -

Air Flow Rate (lbm/min) - - - - - - - -

Efficiencies

Dry Gas Losses - - - - - - - -

Moisture Formation - - - - - - - -

Moisture in Fuel - - - - - - - -

Carbon Monoxide - - - - - - - -

Losses Due to Ash - - - - - - - -

Moisture in the Air - - - - - - - -

Combustion Efficiency - - - - - - - -

Thermal Losses - - - - - - - -

Cycling Losses - - - - - - - -

Boiler Efficiency - - - - - - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 17: Boiler Tune Auto Report

0 hours

#DIV/0! minutes MMBtu/hr

seconds

oF

oF

14.7 psia

lbv/lb air feet

psi 0 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

Proposed Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

/MMBtu

#N/A C #N/A S

#N/A H #N/A N2

#N/A O2 #N/A

#N/A #N/A btu/lbm

#N/A g/mol #N/A O2

#N/A O2

0.0 #DIV/0! minutes

#DIV/0! minutes #DIV/0! minutes

Boiler Tune

Boiler Information

Manufacturer Location

Air Humidity Ratio Elevation

Control Type Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 18: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) - - - - - - - -

Operating Hours 0 0 0 0 0 0 0 0

Energy Use (MMBtu/yr) - - - - - - - -

Stack Conditions

O2 - - - - - - - -

CO2 - - - - - - - -

CO - - - - - - - -

Stack Temperature - - - - - - - -

Net Stack Temperature - - - - - - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) - - - - - - - -

Air Flow Rate (lbm/min) - - - - - - - -

Efficiencies

Dry Gas Losses - - - - - - - -

Moisture Formation - - - - - - - -

Moisture in Fuel - - - - - - - -

Carbon Monoxide - - - - - - - -

Losses Due to Ash - - - - - - - -

Moisture in the Air - - - - - - - -

Combustion Efficiency - - - - - - - -

Thermal Losses - - - - - - - -

Cycling Losses - - - - - - - -

Boiler Efficiency - - - - - - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 19: Boiler Tune Auto Report

0 hours

#DIV/0! minutes MMBtu/hr

seconds

oF

oF

14.7 psia

lbv/lb air feet

psi 0 ft3

0.1103 btu/(lbm-R)

Current Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

Proposed Steam Pressure psig 212oF

26.8 ft3/lb 180.0 btu/lbm

970.0 btu/lbm 1,150.0 btu/lbm

/MMBtu

#N/A C #N/A S

#N/A H #N/A N2

#N/A O2 #N/A

#N/A #N/A btu/lbm

#N/A g/mol #N/A O2

#N/A O2

0.0 #DIV/0! minutes

#DIV/0! minutes #DIV/0! minutes

Boiler Tune

Boiler Information

Manufacturer Location

Air Humidity Ratio Elevation

Control Type Operating Hours

Standby Cycle Time Maximum Firing Rate

Purge Cycle Time Minimum Firing Rate

Enviromental Data

Inlet Air Temperature Inlet Water Temperature

Purge Air Temperature Atmospheric Pressure

Proposed Steam Properties

Steam System

Pressure Range Steam System Volume

Steam Gas Constant

Current Steam Properties

Current Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Percent Hydrogen Percent Nitrogen

Proposed Steam Temperature

Saturated Vapor Specific Volume Saturated Liquid Enthalpy

Evaporated Enthalpy Saturated Vapor Enthalpy

Fuel Properties

Fuel Type Fuel Cost

Percent Carbon Percent Sulfur

Percent Oxygen Percent Ash

Moisture Content Higher Heating Value

Molecular Weight High/Medium Fire Proposed O2

Low/Standby Fire Proposed O2

Boiler Cycling

DPVh Run Cycle

Off Cycle Total Cycle

Page 20: Boiler Tune Auto Report

High Medium Low Standby High Medium Low Standby

Energy Use

Percent Capacity 100% 70% 40% 10% 100% 70% 40% 10%

Fuel Input (MMBtu/hr) - - - - - - - -

Operating Hours 0 0 0 0 0 0 0 0

Energy Use (MMBtu/yr) - - - - - - - -

Stack Conditions

O2 - - - - - - - -

CO2 - - - - - - - -

CO - - - - - - - -

Stack Temperature - - - - - - - -

Net Stack Temperature - - - - - - - -

Mass Flow Rates

Fuel Flow Rate (lbm/min) - - - - - - - -

Air Flow Rate (lbm/min) - - - - - - - -

Efficiencies

Dry Gas Losses - - - - - - - -

Moisture Formation - - - - - - - -

Moisture in Fuel - - - - - - - -

Carbon Monoxide - - - - - - - -

Losses Due to Ash - - - - - - - -

Moisture in the Air - - - - - - - -

Combustion Efficiency - - - - - - - -

Thermal Losses - - - - - - - -

Cycling Losses - - - - - - - -

Boiler Efficiency - - - - - - - -

Notes

We calculate combustion efficiencies from the combustion gas conditions we measured using the ASME indirect

method. We then calculate boiler efficiencies including radiation, convection and cycling losses. For more detailed

information regarding how efficiency losses are calculated, refer to the Boiler Appendix.

Boiler Tune

Boiler Efficiency

Current Proposed

Page 21: Boiler Tune Auto Report

Fuel Type

Units (%) (%) (%) (%) (%) (%)

Coal 94.65% 0.03% 5.27% 0.03% 0.06% 0.00%

Natural Gas 71.01% 0.00% 23.66% 3.82% 1.15% 0.00%

Fuel Oil 2 86.03% 2.00% 12.42% 0.10% 0.00% 0.10%

Fuel Oil 6 87.40% 1.40% 9.99% 0.92% 0.28% 0.00%

Propane 81.80% 0.00% 18.20% 0.00% 0.00% 0.00%

Bio-Diesel 86.03% 2.00% 12.42% 0.10% 0.00% 0.10%

Wood 52.30% 0.00% 6.30% 0.10% 40.50% 0.80%

Wood Species

Units (%) (%) (%) (%) (%) (%)

Douglas Fir Wood 52.30% 0.00% 6.30% 0.10% 40.50% 0.80%

Douglas Fir Bark 56.20% 0.00% 6.20% 0.10% 37.30% 0.20%

Western Hemlock Wood 50.40% 0.00% 5.80% 0.10% 41.40% 2.20%

Western Hemlock Bark 53.00% 0.00% 6.20% 0.10% 39.30% 1.50%

Lodgepole Pine 52.90% 0.00% 6.30% 0.10% 39.70% 1.00%

Lodgepole Pine Bark 55.00% 0.00% 5.80% 0.10% 38.60% 0.80%

Ponderosa Pine 52.90% 0.00% 6.30% 0.10% 39.70% 1.00%

Ponderosa Pine Bark 53.10% 0.00% 5.90% 0.20% 37.90% 2.90%

Redwood 53.50% 0.00% 5.90% 0.10% 40.30% 0.20%

Redwood Bark 51.90% 0.00% 5.10% 0.10% 42.40% 0.50%

Western Red Cedar 52.90% 0.00% 6.30% 0.10% 39.70% 1.00%

Western Red Cedar Bark 53.10% 0.00% 5.90% 0.20% 37.90% 2.90%

Port Orford Cedar 52.90% 0.00% 6.30% 0.10% 39.70% 1.00%

Port Orford Cedar Bark 53.10% 0.00% 5.90% 0.20% 37.90% 2.90%

Red Alder 50.80% 0.00% 6.40% 0.40% 41.80% 0.60%

Red Alder Bark 51.20% 0.00% 6.00% 0.40% 37.90% 4.50%

Oregon Ash 50.80% 0.00% 6.40% 0.40% 41.80% 0.60%

Oregon Ash Bark 51.20% 0.00% 6.00% 0.40% 37.90% 4.50%

Bigleaf Maple 50.80% 0.00% 6.40% 0.40% 41.80% 0.60%

Bigleaf Maple Bark 51.20% 0.00% 6.00% 0.40% 37.90% 4.50%

Oregon White Oak 50.80% 0.00% 6.40% 0.40% 41.80% 0.60%

Oregon White Oak Bark 51.20% 0.00% 6.00% 0.40% 37.90% 4.50%

Generic Softwood 52.90% 0.00% 6.30% 0.10% 39.70% 1.00%

Generic Softwood Bark 53.10% 0.00% 5.90% 0.20% 37.90% 2.90%

Generic Hardwood 50.80% 0.00% 6.40% 0.40% 41.80% 0.60%

Generic Hardwood Bark 51.20% 0.00% 6.00% 0.40% 37.90% 4.50%

Generic Wood 37.50% 0.00% 7.18% 0.01% 53.20% 0.00%

Actual Wood Moisture Content (Wet Basis)Douglas Fir Wood

Wood Properties Summary

C S H N2 O2 Ash

Ash

Wood

Fuel Properties Summary

C S H N2 O2

Page 22: Boiler Tune Auto Report

Taken from: Research Bulletin 60, OSU Forest Research Lab, 9/87.

Page 23: Boiler Tune Auto Report

Molecular

Weight High Low

(%) (Btu/lb) (%) (%)

0.00% 14,203 483.4 4.5% 5.5%

0.00% 21,869 16.7 4.0% 5.0%

0.50% 18,800 208.0 4.0% 5.0%

0.00% 18,300 338.0 4.0% 5.0%

0.00% 21,670 44.0 4.0% 5.0%

0.50% 18,800 208.0 4.0% 5.0%

33.00% 8,600 26.0 8.0% 8.5%

50.0%

Percent

Combustible

(%) (Btu/lb) (%)

33.00% 8,600

33.00% 10,000

44.00% 8,500

41.00% 9,400 1.40%

36.00% 8,600 0.18%

50.00% 10,000

52.00% 9,100

23.00% 9,500 3.75%

55.00% 9,000

12.00% 8,350

33.00% 9,000

32.00% 8,850

30.00% 9,000

25.00% 9,000

50.00% 8,000 2.01%

45.00% 8,600 0.51%

32.00% 8,200

32.00% 8,200

38.00% 8,250

38.00% 8,300

41.00% 8,110

41.00% 8,110

50.00% 9,000

40.00% 9,100

50.00% 9,000 1.08%

40.00% 9,100

50.00% 9,450

Actual Wood Moisture Content (Wet Basis)

MC HHV

Wood Properties Summary

MC

Fuel Properties Summary

Proposed O2HHV

Page 24: Boiler Tune Auto Report

Taken from: Research Bulletin 60, OSU Forest Research Lab, 9/87.

Page 25: Boiler Tune Auto Report

Saturated Liquid Evaporated Saturated Vapor

(psig) (oF) (ft

3/lb) (Btu/lb) (Btu/lb) (Btu/lb) (psig)

25 (vacuum) 134 142 102 1,017 1,119 0

20 (vacuum) 162 73.9 129 1,001 1,130

15 (vacuum) 179 51.3 147 990 1,137

10 (vacuum) 192 39.4 160 982 1,142

5 (vacuum) 203 31.8 171 976 1,147

0 212 26.8 180 970 1,150

1 215 25.2 183 968 1,151

2 219 23.5 187 966 1,153

3 222 22.3 190 964 1,154

4 224 21.4 192 962 1,154

5 227 20.1 195 960 1,155

6 230 19.4 198 959 1,157

7 232 18.7 200 957 1,157

8 233 18.4 201 956 1,157

9 237 17.1 205 954 1,159

10 239 16.5 207 953 1,160

12 244 15.3 212 949 1,161

14 248 14.3 216 947 1,163

16 252 13.4 220 944 1,164

18 256 12.6 224 941 1,165

20 259 11.9 227 939 1,166

22 262 11.3 230 937 1,167

24 265 10.8 233 934 1,167

26 268 10.3 236 933 1,169

28 271 9.85 239 930 1,169

30 274 9.46 243 929 1,172

32 277 9.1 246 927 1,173

34 279 8.75 248 925 1,173

36 282 8.42 251 923 1,174

38 284 8.08 253 922 1,175

40 286 7.82 256 920 1,176

42 289 7.57 258 918 1,176

44 291 7.31 260 917 1,177

46 293 7.14 262 915 1,177

48 295 6.94 264 914 1,178

50 298 6.68 267 912 1,179

55 300 6.27 271 909 1,180

60 307 5.84 277 906 1,183

65 312 5.49 282 901 1,183

70 316 5.18 286 898 1,184

75 320 4.91 290 895 1,185

80 324 4.67 294 891 1,185

85 328 4.44 298 889 1,187

Properties of Steam

EnthalpySpecific Volume

Saturated VaporTemperature

Gauge

Pressure

Linear Interpolation Formulas

Gauge

Pressure

Page 26: Boiler Tune Auto Report

90 331 4.24 302 886 1,188

95 335 4.05 305 883 1,188

100 338 3.89 309 880 1,189

105 341 3.74 312 878 1,190

110 344 3.59 316 875 1,191

115 347 3.46 319 873 1,192

120 350 3.34 322 871 1,193

125 353 3.23 325 868 1,193

130 356 3.12 328 866 1,194

135 358 3.02 330 864 1,194

140 361 2.92 333 861 1,194

145 363 2.84 336 859 1,195

150 366 2.74 339 857 1,196

155 368 2.68 341 855 1,196

160 371 2.6 344 853 1,197

165 373 2.54 346 851 1,197

170 375 2.47 348 849 1,197

175 377 2.41 351 847 1,198

180 380 2.31 353 845 1,198

185 382 2.29 355 843 1,198

190 384 2.24 358 841 1,199

195 386 2.19 360 839 1,199

200 388 2.14 362 837 1,199

205 390 2.09 364 836 1,200

210 392 2.05 366 834 1,200

215 394 2 368 832 1,200

220 396 1.96 370 830 1,200

225 397 1.92 372 828 1,200

230 399 1.89 374 827 1,201

235 401 1.85 376 825 1,201

240 403 1.81 378 823 1,201

245 404 1.78 380 822 1,202

250 406 1.75 382 820 1,202

255 408 1.72 383 819 1,202

260 409 1.69 385 817 1,202

265 411 1.66 387 815 1,202

270 413 1.63 389 814 1,203

275 414 1.6 391 812 1,203

280 416 1.57 392 811 1,203

285 417 1.55 394 809 1,203

290 418 1.53 395 808 1,203

295 420 1.49 397 806 1,203

300 421 1.47 398 805 1,203

305 423 1.45 400 803 1,203

310 425 1.43 402 802 1,204

315 426 1.41 404 800 1,204

320 427 1.38 405 799 1,204

Page 27: Boiler Tune Auto Report

325 429 1.36 407 797 1,204

330 430 1.34 408 796 1,204

335 432 1.33 410 794 1,204

340 433 1.31 411 793 1,204

345 434 1.29 413 791 1,204

350 435 1.28 414 790 1,204

355 437 1.26 416 789 1,205

360 438 1.24 417 788 1,205

365 440 1.22 419 786 1,205

370 441 1.2 420 785 1,205

375 442 1.19 421 784 1,205

380 443 1.18 422 783 1,205

385 445 1.16 424 781 1,205

390 446 1.14 425 780 1,205

395 447 1.13 427 778 1,205

400 448 1.12 428 777 1,205

450 460 1 439 766 1,205

500 470 0.89 453 751 1,204

550 479 0.82 464 740 1,204

600 489 0.74 475 728 1,203

650 497 0.69 483 719 1,202

700 505 0.64 491 710 1,201

750 513 0.6 504 696 1,200

800 520 0.56 512 686 1,198

900 534 0.49 529 666 1,195

1000 546 0.44 544 647 1,191

1250 574 0.34 580 600 1,180

1500 597 0.23 610 557 1,167

1750 618 0.22 642 509 1,151

2000 636 0.19 672 462 1,134

2250 654 0.16 701 413 1,114

2500 669 0.13 733 358 1,091

2750 683 0.11 764 295 1,059

3000 696 0.08 804 213 1,017

3206.2 705.4 - - - -

Page 28: Boiler Tune Auto Report

Saturated Liquid Evaporated Saturated Vapor

(oF) (ft

3/lb) (Btu/lb) (Btu/lb) (Btu/lb)

212.0 26.8 180.0 970.0 1,150.0

Linear Interpolation Formulas

TemperatureSpecific Volume

Saturated Vapor

Enthalpy