bogdan lesyng interdyscyplinary centre for mathematical and computational modelling

41
Coupling of SCC-DFTB, Generalized Born and Hydrophobic Models in Description of Hydration Free Energies Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling and Faculty of Physics, University of Warsaw (http://www.icm.edu.pl/~lesyng) and European Centre of Excellence for Multiscale Biomolecular Modelling, Bioinformatics and Applications (http://www.icm.edu.pl/mamba) AMM-IV Leicester, 18- 21/08/2004

Upload: mele

Post on 08-Jan-2016

32 views

Category:

Documents


1 download

DESCRIPTION

Coupling of SCC-DFTB, Generalized Born and Hydrophobic Models in Description of Hydration Free Energies. Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling and Faculty of Physics, University of Warsaw (http://www.icm.edu.pl/~lesyng) and - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Coupling of SCC-DFTB, Generalized Born and Hydrophobic Models in

Description of Hydration Free Energies

Bogdan Lesyng

Interdyscyplinary Centre for Mathematicaland Computational Modelling

and Faculty of Physics, University of Warsaw (http://www.icm.edu.pl/~lesyng)

andEuropean Centre of Excellence forMultiscale Biomolecular Modelling,

Bioinformatics and Applications(http://www.icm.edu.pl/mamba)

AMM-IV

Leicester, 18-21/08/2004

Page 2: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Dynamics, classical and/or quantum one in

the real molecular environment

Sequences at the protein & nucleic acids levels

3D & electronicstructure

Function

Metabolic pathways & signalling

Sub-cellular

structures & processes

Cell(s), structure(s) & functions

1 RPDFCLEPPY 10 11 TGPCKARIIR 20 21 YFYNAKAGLC 30 31 QTFVYGGCRA 40 41 KRNNFKSAED 50

51 CMRTCGGA 58

Page 3: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

In our organismswe have ~ 103

protein kinasesand phosphatases

which phosphorylate/

dephosphorylateother proteinsactivating ordisactivating

them.These arecontrollersof most ofmethabolicpathways.

Page 4: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

A Protein Kinase Molecule with ATP (catalytic domain)

Page 5: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Designing inhibitors Every two years we

organize international

conferences on ”Inhibitors of Protein

Kinases”, and workshops on

„Mechanisms on Phosphorylation

Processes”

The next one:

June 26-30, 2005 Warsaw

http://www.icm.edu.pl/

ipk2005/

Ref. To Piotr Setny’s poster

Page 6: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Classes of Models

Microscopic models

Mesoscopic models

Page 7: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling
Page 8: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

O

O

O

R’

OH

OR''

OH

OHOCH3

ABCD

O

X

CH3

YH

H

H

R” : H, R’ : H, OHX : H, OH, NH2

Y : H, OH, NH2

W.R.Rudnicki et al., Acta Biochim. Polon., 47, 1-9(2000)

Page 9: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

G = 0.191 x E - 0.41

r2=0.947

5

6

7

8

9

10

30 35 40 45 50 55 60

E [kcal/mol]

G [k

cal/m

ol]

Page 10: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

.Motivation for multiscale modelling

• Structure formation mechanisms -> molecular recognition processes,

– M.H.V. van Regenmortel, Molecular Recognition in the Post-reductionist Era, J.Mol.Recogn., 12, 1-2(1999)

– J.Antosiewicz, E. Błachut-Okrasińska, T. Grycuk and B. Lesyng,A Correlation Between Protonation Equilibria in Biomolecular Systems and their Shapes: Studies using a Poisson-Boltzmann model., in GAKUTO International Series, Mathematical Science and Applications. Kenmochi, N., editor, vol. 14, 11-17, Tokyo, GAKKOTOSHO CO, pp.11-17, 2000.

• Quantum forces in complex biomolecular systems.

– P. Bala, P. Grochowski, B. Lesyng, J. McCammon, Quantum Mechanical Simulation Methods for Studying Biological System, in: Quantum-Classical Molecular Dynamics. Models and Applications, Springer-Verlag, 119-156 (1995)

– Grochowski, B. Lesyng, Extended Hellmann-Feynman Forces, Canonical Representations, and Exponential Propagators in the Mixed Quantum-Classical Molecular Dynamics, J.Chem.Phys, 119, 11541-11555(2003)

To understand structure & function of complex biomolecular systems.

Page 11: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

11

Protonation equilibria in proteins

M. Wojciechowski, T. Grycuk, J. Antosiewicz, B.lesyngPrediction of Secondary Ionization of the Phosphate Group in Phosphotyrosine Peptides, Biophys.J, 84, 750-756 (2003)

Page 12: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Active site(quantum subsystem)

Classical molecular scaffold (real molecular environment)

Solvent (real thermal bath)

Interacting quantum and classical subsytsems.

Enzymes, special case of much more general problem.

Page 13: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Microscopic generators of the potential energy function

• AVB – (quantum)• AVB/GROMOS - (quantum-classical)

• SCC-DFTB - (quantum)• SCC-DFTB/GROMOS - (quantum-classical)• SCC-DFTB/CHARMM - (quantum -classical)• ....

Dynamics

• MD (classical)• QD (quantum)• QCMD (quantum-classical)• ....

Mesoscopic potential energy functions

•Poisson-Boltzmann (PB)•Generalized Born (GB)•....

Page 14: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

atomic charges

many-electron wave function representingi-th valence structure

Approximate Valence Bond (AVB) MethodSee: Trylska et al., IJQC 82, 86, 2001) and references cited

positions of the nuclei

Hamiltonian matrix in basis of valence structures

electronic ground state energy

Page 15: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

SCC-DFTB Method(Self Consistent Charge Density Functional Based Tight Binding Method, SCC DFTB, Frauenheim et al. Phys Stat. Sol. 217, 41, 2000)

basic DFT concepts:

1-electron orbitals

total electrondensity

1-electronHamiltonian

(Kohn-Sham equation)

Page 16: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Total energy for arbitrary electronic density

has minimumat 0 (0 ) and 0 , resulting from Kohn-Sham eq.(ground state)

el. kinetic. en., el.-nuclei interaction, el.-el. Exchange and twice el.-el. electrostatic interaction

n-n inter., XCnon-local corr.and minus el.-el.electrostatic int.

(R)

(R)

Page 17: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

TB approach:expansion of the energy functional around the ground state

density of the ground state

second and higher orderexpansion terms (SCC version)

Page 18: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

TBDFT approximations

densities at free atoms

atom pair potentials

current atomicnet charges net charges

of free atoms

Page 19: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

+ LCAO approximation

atomic orbitals

Mulliken charges

combination coefficients (c)

Page 20: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Condition for the ground state

Hamiltonian matrix

overlap matrix:

TBDFT equations:

Page 21: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

J.Li, T.Zhu, C.Cramer, D.Truhlar,J. Phys. Chem. A, 102, 1821(1998)

New generation of charges capable reproducing electrostatic properties, in particular molecular dipole moments.

Page 22: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

CM3/SCC-DFTB charges

J.A. Kalinowski, B.Lesyng, J.D. Thompson, Ch.J. Cramer, D.G. Truhlar, Class IV Charge Model for the Self-Consistent Charge Density-Functional Tight-Binding Method, J. Phys. Chem. A 2004, 108, 2545-2549

Page 23: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

CM3 charges are defined with the following mapping:

and the correction function which is taken to be a second order polynomial with coefficients depending on the atom types:

which involves Meyers bond order:

Page 24: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Dipole moments in Debyes

MullikenCM3

Experimental

Cal

cula

ted

Page 25: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Mesoscopic models of the molecular electrostatic

energy

Page 26: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

)( rnqri

iiext

kT

rqnrn

)(exp)( 0

kTIe

rrrrrqrrk

kk

22

2

2

P o i s s o n - B o l t z m a n n ( P B ) m e t h o d

i n t h e r m o d y n a m i c e q u i l i b r i u m

s o l v i n g o n a g r i d , o rw i t h fi n a l e l e m e n t s

e x t e r n a l i o n i c d e n s i t y

r i q i

D e b y e - H u c k e l s c r e e n i n g p a r a m e t e r , I - i o n i c s t r e n g t h

Page 27: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

..int repvdisppolel VVVVV

termcrossnpfieldmean

el GGGG int

PBel

fieldmeanel GG

• Microscopic (quantum) description of intermolecular interactions:

• Mesoscopic description of intermolecular interactions (free energies)

Electrostatic Poisson-Boltzmann energy

Interaction potentials

meanVdWcavnp GGG

0 termcrossG

See eg. E.Gallicchio and R.M.Levy, J.Comput.Chem.,25,479-499(2004)

Page 28: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

PBelG GB

elG ”GB” – Generalized Born

rdconstVGex

kk

repmeanVdW

rr3

6

1

k

kcav AkG Ak - van der Waals surface area of atom k

k - surface tension parameter assigned to

atom k

First papers on Born models:

•M.Born, Z.Phys., 1,45(1920)•R.Constanciel and R.Contreas, Theor.Chim.Acta, 65,111(1984)•W.C.Still, A.Tempczyk,R.C.Hawlely,T.Hendrikson, J.Am.Chem.Soc.,112,6127(1990)•D.Bashford, D.Case, Annu.Rev.Phys.Chem., 51,129(2000)

Page 29: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

G e n e r a l i z e d B o r n ( G B )

G e lG B = G e l

0 + G e ls o l

ji ijin

jioel r

qqG

21

ji ij

ji

ex

f

in

solel f

qqeG

i j

,

121

G e l – T o t a l e l e c t r o s t a t i c e n e r g y

C o u l o m b i c i n t e r a c t i o n e n e r g yb e t w e e n a t o m s

E l e c t r o s t a t i c i n t e r a c t i o n e n e r g y ( s o l v a t i o n e n e r g y ) o f t h e m o l e c u l a r s y s t e mw i t h d i e l e c t r i c e n v i r o n m e n t ( e g . w a t e r ) .

r i j – d i s t a n c e b e t w e e n a t o m s

– D e b y e - H u c k e l p a r a m e t e r

R i – B o r n r a d i u s i – V a n d e r W a a l s r a d i u s

ji

ijjiijij RR

rRRrf

4exp

22

w h e r e :

Page 30: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

The same atoms are characterized by diff erent Bornradii. Their values depend on geometry of themolecular system, and on localization of the atoms inthe system (geometrical property). The Born radii are large inside, and are close to VdW radii on the surface.

Born radiiand

Van der Waals radii

Molecular area

Page 31: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

E x p r e s s i o n s f o r B o r n r a d i i

rdrR solventi

34

1

4

11

3

1

36

1

4

31

rd

rR solventi

3

1

314

31

n

solventn

i

rdr

nR

3.0

033

32.4

solv

solute

n

A . O n u f r i e v , D . B a s h f o r d , D . C a s e , J . P h y s . C h e m . B , 1 0 4 , 3 7 1 2 - 3 7 2 0 ( 2 0 0 0 )

T . G r y c u k , J . C h e m . P h y s , 1 1 9 , 4 8 1 7 - 4 8 2 6 ( 2 0 0 3 )

M . W o j c i e c h o w s k i , B . L e s y n g , J . C h e m . P h y s , s u b m i t t e d

1

233

1

714

ex

inex

exo

i

ED

ACAC

R

4

1

3747

141

41

rd

rRA

inVdW

M.Feig, W.Im, C.L.Brooks, J.Chem.Phys.,120,903-911(2004)

(I)

(II)

(III)

(IV)

Coulomb Field appr.

Kirkwood Model

Page 32: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Ratio of the GB solvation enery to the Kirkwood solvation energy

Page 33: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Ratio of the GB solvation enery to the Kirkwood solvation energy(zooming)

case IV

in/ex

Page 34: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

The optimal value of the exponent

3.0

033

32.4

ex

in

n

Page 35: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Conventional Born,D.Bashford & D.Case, Annu.Rev.Phys.Chem.,51,129-152(2000)

Srinivasan et al.,Theor.Chem.Acc.,101,426-434(1999)

M.Wojciechowski & B.Lesyng,Submitted to J.Phys.Chem.

Corrections to the ionic strength

77.053.0 ijij ff ee

Page 36: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Coupling of GB and SCC-DFTB

• computing the CM3/ SCC-DFTB charges• computing precise Born radii• computing Gel

sol

• computint the diff erence Eexp – Gelsol

• fi tting the nonpolar term to this diff erence

Minnesota solvation data base.Reproducing PB.

======================================

Page 37: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

SASA A2

CHARMM

SASA A2 CHARMM

SASA A2 Fit 1

SASA A2

Fit 2

kkk t

k

t

k

tk

sR

sR

sSASA ,0,1

2

2,2

11

Page 38: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

F i t t i n g t h e n o n p o l a r c o n t r i b u t i o n

kkk t

k

t

k

tk

np gR

gR

gG ,0,1

2

2,2

11

w h e r e : g – fi t t e d c o e ffi c i e n t s ,k – a t o m n u m b e r s ,t – a t o m t y p e s .

Page 39: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

k waterkk

kk

VdWcavfit

np

rR

constk

GGG

A 3

Following Gallicchio & LevyJ.Comput.Chem.,25,479-499(2004)

Fitting the nonpolar solvation energy with the cavity and VdW components(preliminary)

expnpG

7.0

*/12.0 2

k

kAmolkcal

Page 40: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Conclusions:• CM3/ SCC-DFTB charges reproduce very

well molecular dipole moments.They depend on conformations, which is an adventage in comparison to other conventional parameterizations.

• Our refi ned version of the GB model seems to be at the moment the best one.I t reproduces very well the PB resultsf or smaller systems and quitewell f or proteins (f or large systemsthere are some technical problems toquickly compute the GB radii).

• The experimental nonpolar contribution to the hydration energy is fi ttedeither with short polynomials depending onreciprocal values of the GB radii, or on the sum of the cavity and mean VdW contributions.

• Eff ective, mesoscopic interaction potentials should noticeably increase our research capabilities of structuresand f unctions of complex biomolecularsystems (hopefully).

Page 41: Bogdan Lesyng Interdyscyplinary Centre for Mathematical and Computational Modelling

Acknowledgements

PhD students:

Jarek KalinowskiMichał WojciechowskiPiot KmiećMagda Gruziel

Collaboration:

Dr. T. Frauenheim SCC-DFTBDr. M. Elstner

Dr. D. Truhlar CM3-chargesDr. J. Thompson Minnesota Solvation Data BaseDr. C. Cramer

Studies supported by ”European CoE for Multiscale Biomolecular Modelling, Bioinformatics and Applications”.