bloch equations & relaxation · ˆi+my ˆj t 2 (mz m 0) ˆk t 1 + dr2m~ ucla radiology...

67
UCLA Radiology Bloch Equations & Relaxation

Upload: others

Post on 09-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bloch Equations & Relaxation

Page 2: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

⊗I1

I6

I5

I4

I3

I2

~M

~B1(t)

MRI Systems II – B1

Page 3: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLARadiology

Lecture #3 Learning Objectives• Distinguish spin, precession, and nutation. • Appreciate that any B-field acts on the the

spin system. • Understand the advantage of a circularly

polarized RF B-field. • Differentiate the lab and rotating frames. • Define the equation of motion in the lab and

rotating frames. • Know how to compute the flip angle from the

B1-envelope function. • Understand how to apply the RF hard pulse

matrix operator.

Page 4: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

Mathematics of Hard RF Pulses

Page 5: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Parameters & Rules for RF Pulses• RF pulses have a “flip angle” (α)

- RF fields induce left-hand rotations ‣ All B-fields do this for positive γ

• RF pulses have a “phase” (θ) - Phase of 0° is about the x-axis - Phase of 90° is about the y-axis

�B

~!

RF�⇥

Z

XY

~M

Page 6: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

RF Flip Angle

Page 7: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Flip Angle• “Amount of rotation of the bulk magnetization

vector produced by an RF pulse, with respect to the direction of the static magnetic field.”

– Liang & Lauterbur, p. 374

B-fields induce precession!

Z

XY

~M

!1 = �B1

Page 8: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Rules for RF Pulses

Phase

Flip Angle

Z

X YZ

X Y

Z

X Y

RF↵✓

RF90�

0� RF90�

90�

B-fields induce left-handed nutation!

Page 9: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

How to determine α?

RF�⇥B1,max

Rules: 1) Specify α 2) Use B1,max if we can 3) Shortest duration pulse

↵ = �

Z ⌧p

0Be

1 (t) dt

Page 10: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

How to determine α?

↵ = �

Z ⌧p

0Be

1 (t) dt

⌅ =�

⇥B1,max

=⇤/2

2⇤ · 42.57Hz/µT · 60µT = 0.098ms

RF�⇥B1,max

Page 11: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

RF Phase

Page 12: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bulk Magnetization in the Lab Frame

Z

XY

~M

How do we mathematically account for α and θ?

Page 13: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Change of Basis (θ)

RZ (✓) =

2

4cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

0 0 1

3

5

Rotate into a coordinate system where M falls along the y’-axis.

Z

XY

Y’

X’

~M

Page 14: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Rotation by Alpha

RX (↵) =

2

41 0 0

0 cos ↵ sin ↵0 � sin ↵ cos ↵

3

5

Rotate M by α about x’-axis.

Z

XY

Y’

X’

~M

Page 15: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Change of Basis (-θ)

RZ (�✓) =

2

4cos (�✓) sin (�✓) 0

� sin (�✓) cos (�✓) 0

0 0 1

3

5

Z

XY

Y’

X’

~M

Rotate back to the lab frame’s x-axis and y-axis.

Page 16: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

RF Pulse Operator

R�⇥ = RZ (�✓)RX (↵)RZ (✓)

=

2

4c2✓ + s2✓c↵ c✓s✓ � c✓s✓c↵ �s✓s↵c✓s✓ � c✓s✓c↵ s2✓ + c2✓c↵ c✓s↵

s✓s↵ �c✓s↵ c↵

3

5

Z

XY

Y’

X’

~M

This is the composite matrix operator for a hard RF pulse.

Page 17: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

Types of RF Pulses

Page 18: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Types of RF Pulses

• Excitation Pulses • Inversion Pulses • Refocusing Pulses • Saturation Pulses • Spectrally Selective Pulses • Spectral-spatial Pulses • Adiabatic Pulses

Page 19: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Excitation Pulses• Tip Mz into the transverse plane • Typically 200µs to 5ms • Non-uniform across slice thickness

– Imperfect slice profile

• Non-uniform within slice – Termed B1 inhomogeneity – Non-uniform signal intensity across FOV

90° Excitation Pulse Small Flip Angle Pulse

Page 20: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Inversion Pulses• Typically, 180° RF Pulse

– non-180° that still results in -MZ • Invert MZ to -MZ

– Ideally produces no MXY

• Hard Pulse – Constant RF amplitude – Typically non-selective

• Soft (Amplitude Modulated) Pulse – Frequency/spatially/spectrally selective

• Typically followed by a crusher gradient

180° Inversion Pulse

Page 21: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Refocusing Pulses• Typically, 180° RF Pulse

– Provides optimally refocused MXY – Largest spin echo signal

• Refocus spin dephasing due to – imaging gradients – local magnetic field inhomogeneity – magnetic susceptibility variation – chemical shift

• Typically followed by a crusher gradient

180° Refocusing Pulse

Page 22: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Lecture #3 Summary - RF Pulses

R�⇥ = RZ (�✓)RX (↵)RZ (✓)

=

2

4c2✓ + s2✓c↵ c✓s✓ � c✓s✓c↵ �s✓s↵c✓s✓ � c✓s✓c↵ s2✓ + c2✓c↵ c✓s↵

s✓s↵ �c✓s↵ c↵

3

5 RF Pulse Operator

↵ = �

Z ⌧p

0Be

1 (t) dt Choosing the flip angle.

Circularly Polarized RF Fields~B1(t) =hcos(!RF t)ˆi� sin(!RF t)ˆj

i

Z

XY

~M

Page 23: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Lecture #3 Summary - Rotating Frame

d

~

M

rot

dt

= ~Mrot

⇥ �⇣

~!

rot

+ ~Brot

Equation of Motion for the Bulk Magnetization in the Rotating Frame Without Relaxation

d

~

M

rot

dt

= ~Mrot

⇥ � ~Beff

Equation of Motion for the Bulk Magnetization in the Rotating Frame Without Relaxation

~Beff

⌘ ~!

rot

+ ~Brot

Definition of the “effective” B-field.~Brot

The applied B-field in the Rotating Frame.

~!rot

�“Fictitious field” that demodulates description of the bulk magnetization.

Page 24: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Free Precession in the Rotating Frame without Relaxation

d ~Mrot

dt=

������

i0 j0 k0

Mx

0 My

0 Mz

0

0 0 0

������

~Beff

= ~!

rot

+ ~Brot

= ��B0k0

+B0k0

= 0

d ~Mrot

dt= ~M

rot

⇥ � ~Beff

dMx

0dt = 0

dMy

0

dt = 0

dMz

0dt = 0

Page 25: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Forced Precession in the Rotating Frame without Relaxation

d

~

M

rot

dt

= ~Mrot

⇥ � ~Beff

= ~Mrot

⇥ �Be

1(t)i0

=

������

i0 j0 k0

~Mx

0 ~My

0 ~Mz

0

�Be

1(t) 0 0

������

dMx

0dt = 0

dMy

0

dt = �Be1(t)Mz0

dMz

0dt = ��Be

1(t)My0

Page 26: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

To The Board…

Page 27: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bloch Equations & Relaxation

Page 28: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

1952 Nobel Prize in Physics

Felix Bloch b. 23 Oct 1905 d. 10 Sep 1983

Edward Purcell b. 30 Sep 1912 d. 07 Mar 1997

“for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith“

Page 29: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bloch Equations with Relaxation

• Differential Equation – Ordinary, Coupled, Non-linear

• No analytic solution, in general. – Analytic solutions for simple cases. – Numerical solutions for all cases.

• Phenomenological – Exponential behavior is an approximation.

d~M

dt= ~M⇥ �~B� M

x

i +My

j

T2� (M

z

�M0) k

T1+Dr2 ~M

Page 30: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bloch Equations - Lab Frame

• Precession – Magnitude of M unchanged – Phase (rotation) of M changes due to B

• Relaxation – T1 changes are slow O(100ms) – T2 changes are fast O(10ms) – Magnitude of M can be ZERO

• Diffusion – Spins are thermodynamically driven to

exchange positions. – Bloch-Torrey Equations

{Precession Transverse

RelaxationLongitudinal Relaxation

Diffusion

{ { {

d~M

dt= ~M⇥ �~B� M

x

i +My

j

T2� (M

z

�M0) k

T1+Dr2 ~M

Page 31: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Excitation and Relaxation

Z

XThe magnetization relaxes after excitation (forced precession).

Page 32: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bloch Equations – Rotating Frame

⇥ ⇤Mrot

⇥t= � ⇤M

rot

⇥ ⇤Beff

� Mx

0⇤i0 +My

0⇤j0

T2� (M

z

0 �M0)⇤k0

T1{“Precession” Transverse

RelaxationLongitudinal Relaxation

{ {

~Beff

⌘ ~!

rot

+ ~Brot

Effective B-field that M experiences in the

rotating frame. Fictitious field that demodulates the apparent effect of B0

Applied B-field in the rotating frame.

Page 33: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

T1 Relaxation

Page 34: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T1 and T2 Values

Tissue T1 [ms] T2 [ms]

gray matter 925 100

white matter 790 92

muscle 875 47

fat 260 85

kidney 650 58

liver 500 43

CSF 2400 180

TI=25ms TE=12ms

TI=200ms TE=12ms

TI=500ms TE=12ms

TI=1000ms TE=12ms

Each tissue as “unique” relaxation properties.

Page 35: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T1 Relaxation

• Longitudinal or spin-lattice relaxation • Typically 100s to 1000s of ms • T1 increases with increasing B0

• T1 decreases with contrast agents • Short T1s are bright on T1-weighted image

Page 36: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T1 Relaxation

0 1000 2000 3000 4000 50000

0.2

0.4

0.6

0.8

1

Time [ms]

Long

itudi

nal M

agne

tizat

ion

[a.u

.]

White MatterGray Matter

Tissue T1 [ms] T2 [ms]gray matter 925 100white matter 790 92

36

Page 37: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T1 Relaxation

Prepared Magnetization Decays (Mz0)

Return to Thermal Equilibrium (M0)

Mz (t) = M0z e

� tT1 +M0

⇣1� e�

tT1

{ {Net

Magnetization

{

Time [ms]

1.00

0.75

0.50

0.25

0.00

Frac

tion

of M

0

0 200 400 600 800 1000

M0z

M0

Free Precession in the Lab or Rotating Frame with Relaxation

Page 38: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

T2 Relaxation

Page 39: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T2 Relaxation

• Transverse or spin-spin relaxation – Molecular interaction causes spin dephasing

• T2 typically 10s to 100s of ms • T2 relatively independent of B0 • T2 always < T1 • T2 decreases with contrast agents • Long T2 is bright on T2 weighted image

Page 40: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T2 Relaxation

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

Time [ms]

Tran

sver

se M

agne

tizat

ion

[a.u

.]

White MatterGray Matter

Tissue T1 [ms] T2 [ms]gray matter 925 100white matter 790 92

40

Page 41: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

T2 Relaxation

0 200 400 600 800

100

75

50

25

00

Liver – 43ms Fat – 85msCSF – 180ms

Decay Time [ms]

Percent Signal [a.u.]

1.00

0.75

0.50

0.25

0.00

Fraction of Mxy

Mxy

(t) = M0xy

e�t/T2

Free Precession in the Rotating Frame with Relaxation

Page 42: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

Matlab

Page 43: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

Bloch Equation Simulations

Page 44: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Rotating Frame Bloch Equations (Free Precession)

d�M

dt= �M

x

i+My

j

T2

� (Mz

�M0

) k

T1

Page 45: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Rotating Frame Bloch Equations (Free Precession)

d�M

dt= �M

x

i+My

j

T2

� (Mz

�M0

) k

T1➠

2

4dM

x

dt

dM

y

dt

dM

z

dt

3

5 =

2

4� 1

T20 0

0 � 1T2

00 0 � 1

T1

3

5

2

4M

x

My

Mz

3

5+

2

400M0T1

3

5

Page 46: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

d�M

dt= �M

x

i+My

j

T2

� (Mz

�M0

) k

T1➠

2

4dM

x

dt

dM

y

dt

dM

z

dt

3

5 =

2

4� 1

T20 0

0 � 1T2

00 0 � 1

T1

3

5

2

4M

x

My

Mz

3

5+

2

400M0T1

3

5

d⇤M

dt= �⇤M+ ⇥

An affine transformation between two vector spaces consists of a translation followed by a linear transformation.

http://en.wikipedia.org/wiki/Affine_transformation

Rotating Frame Bloch Equations

Page 47: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Why Homogenous Coordinates?

Homogenous coordinates allow us to transform an affine (non-linear) equation in 3D to a linear equation in 4D.

http://en.wikipedia.org/wiki/Linear_transformation

d⇤M

dt= �⇤M+ ⇥

Affine Linear

↔ d�MH

dt= TH

�MH

Now we can use the machinery of linear algebra for writing out the Bloch Equation mechanics.

Page 48: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Homogenous Coordinate Expressions

Cartesian Coordinates Homogeneous Coordinates

�M =

2

4Mx

My

Mz

3

5 �MH =

2

664

Mx

My

Mz

1

3

775

Augment������! �����Reduce

T =

2

4Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

3

5 TH =

2

664

Txx Txy Txz Txt

Tyx Tyy Tyz Tyt

Tzx Tzy Tzz Tzt

0 0 0 1

3

775

Page 49: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

d�M

dt= �M

x

i+My

j

T2

� (Mz

�M0

) k

T1➠

d�MH

dt= TH

�MH

2

664

dM

x

dt

dM

y

dt

dM

z

dt

1

3

775 =

2

664

� 1T2

0 0 00 � 1

T20 0

0 0 � 1T1

0 0 0 1

3

775

2

4M

x

My

Mz

3

5+

2

664

00M0T1

1

3

775

2

664

Mx

My

Mz

1

3

775

Rotating Frame Bloch Equations (Free Precession)

Page 50: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Advantages/Disadvantages+ 1:1 Correlation with pulse diagram + Simple to implement (Matlab!) + Not ad hoc + Provides understanding in complex systems

- Masks understanding in simple systems - Reduction to algebraic expression is cumbersome - Discrete (not continuous) - Perfect simulations are very difficult

- Must consider assumptions

- Image Prep vs. Imaging

Page 51: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

B0 Fields

Page 52: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bulk Magnetization - Precession

2

4M

x

(t)M

y

(t)M

z

(t)

3

5=

2

4cos �B0t sin �B0t 0

� sin �B0t cos �B0t 0

0 0 1

3

5

2

4M0

x

M0y

M0z

3

5

~M(t) = Rz(�B0t) ~M0

Page 53: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Bulk Magnetization - Precession

2

664

Mx

(0�)

My

(0�)

Mz

(0�)

1

3

775 =

2

664

cos �Bt sin �Bt 0 0

� sin �Bt cos �Bt 0 0

0 0 1 0

0 0 0 1

3

775

2

664

Mx

(0+)

My

(0+)

Mz

(0+)

1

3

775

Homogeneous coordinate expression for precession.

B0,H =

2

664

cos �Bt sin �Bt 0 0

� sin �Bt cos �Bt 0 0

0 0 1 0

0 0 0 1

3

775

Page 54: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

RF Pulses

Page 55: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

RF Pulse Operator

R�⇥ = RZ (�✓)RX (↵)RZ (✓)

=

2

4c2✓ + s2✓c↵ c✓s✓ � c✓s✓c↵ �s✓s↵c✓s✓ � c✓s✓c↵ s2✓ + c2✓c↵ c✓s↵

s✓s↵ �c✓s↵ c↵

3

5

~M (0+) = RF↵✓

~M (0�)

Page 56: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

RF Pulse Homogeneous Operator

RF�⇥,H =

2

664

c2✓ + s2✓c↵ c✓s✓ � c✓s✓c↵ �s✓s↵ 0c✓s✓ � c✓s✓c↵ s2✓ + c2✓c↵ c✓s↵ 0

s✓s↵ �c✓s↵ c↵ 00 0 0 1

3

775

Page 57: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

RF Pulse Homogeneous Operator

RF�⇥,H =

2

664

c2✓ + s2✓c↵ c✓s✓ � c✓s✓c↵ �s✓s↵ 0c✓s✓ � c✓s✓c↵ s2✓ + c2✓c↵ c✓s↵ 0

s✓s↵ �c✓s↵ c↵ 00 0 0 1

3

775

~M+H = RF�

⇥,H~M�

H

Page 58: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

RF Pulse Homogeneous Operator

RF�⇥,H =

2

664

c2✓ + s2✓c↵ c✓s✓ � c✓s✓c↵ �s✓s↵ 0c✓s✓ � c✓s✓c↵ s2✓ + c2✓c↵ c✓s↵ 0

s✓s↵ �c✓s↵ c↵ 00 0 0 1

3

775

~M+H = RF�

⇥,H~M�

H

2

664

M+x

M+y

M+z

1

3

775 =

2

664

c2⇥ + s2⇥c� c⇥s⇥ � c⇥s⇥c� �s⇥s� 0c⇥s⇥ � c⇥s⇥c� s2⇥ + c2⇥c� c⇥s� 0

s⇥s� �c⇥s� c� 00 0 0 1

3

775

2

664

M�x

M�y

M�z

1

3

775

Page 59: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

Relaxation

Page 60: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Relaxation Operator

2

4M+

x

M+y

M+z

3

5 =

2

664

e� t

T2

e� t

T2

e� t

T1

3

775

2

4M�

x

M�y

M�z

3

5+

2

664

00

M0

✓1� e

� t

T1

3

775

=

2

666664

e� t

T2

e� t

T2

e� t

T1 M0

✓1� e

� t

T1

1

3

777775

2

664

M�x

M�y

M�z

1

3

775

Page 61: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

E (T1, T2, t,M0) =

⇧⇧⇤

E2 0 0 00 E2 0 00 0 E1 M0 (1� E1)0 0 0 1

⌃⌃⌅

⌅M+ = E(T1, T2, t,M0) ⌅M�

E1 = e�t/T1 E2 = e�t/T2

*In general we drop the sub-scripted H

Relaxation Operator

Page 62: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

B0, RF Pulse, & Relaxation Operators

�M+ = RF�⇥

�M�

⌅M+ = E(T1, T2, t,M0) ⌅M�

~M+ = B0,H~M�

Page 63: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLARadiology

Matlab Example - B0% This function returns the 4x4 homogenous coordinate expression for % precession for a particular gyromagnetic ratio (gamma), external % field (B0), and time step (dt).%% SYNTAX: dB0=PAM_B0_op(gamma,B0,dt)%% INPUTS: gamma - Gyromagnetic ratio [Hz/T]% B0 - Main magnetic field [T]% dt - Time step or vector [s]%% OUTPUTS: dB0 - Precessional operator [4x4]%% DBE@UCLA 01.21.2015 function dB0=PAM_B0_op(gamma,B0,dt) if nargin==0 gamma=42.57e6; % Gyromagnetic ratio for 1H B0=1.5; % Typical B0 field strength dt=ones(1,100)*1e-6; % 100 1µs time steps end dB0=zeros(4,4,numel(dt)); % Initialize the array for n=1:numel(dt) dw=2*pi*gamma*B0*dt(n); % Incremental precession (rotation angle) % Precessional Operator (left handed) dB0(:,:,n)=[ cos(dw) sin(dw) 0 0; -sin(dw) cos(dw) 0 0; 0 0 1 0; 0 0 0 1]; endreturn

2

4M

x

(t)M

y

(t)M

z

(t)

3

5=

2

4cos �B0t sin �B0t 0

� sin �B0t cos �B0t 0

0 0 1

3

5

2

4M0

x

M0y

M0z

3

5

Page 64: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLARadiology

Matlab Example - Free Precession%% Filename: PAM_Lec02_B0_Free_Precession.m%% Demonstrate the precession of the bulk magnetization vector.%% DBE@UCLA 2015.01.06 %% Define some constantsgamma=42.57e6; % Gyromagnetic ratio for 1H [MHz/T]B0=1.5; % B0 magnetic field strength [T]dt=0.01e-8; % Time step [s]nt=500; % Number of time points to simulatet=(0:nt-1)*0.01e-8; % Time vector [s] M0=[sqrt(2)/2 0 sqrt(2)/2 1]'; % Initial condition (I.C.) M=zeros(4,nt); % Initialize the magnetization arrayM(:,1)=M0; % Define the first time point as the I.C. %% Simulate precession of the bulk magnetization vectordB0=PAM_B0_op(gamma,B0,dt); % Calculate the homogenous coordinate transform for n=2:nt M(:,n)=dB0*M(:,n-1);end

%% Plot the resultsfigure; hold on; p(1)=plot(t,M(1,:)); % Plot the Mx component p(2)=plot(t,M(2,:)); % Plot the My component p(3)=plot(t,M(3,:)); % Plot the Mz component set(p,'LineWidth',3); % Increase plot thickness ylabel('Magnetization [AU]'); xlabel('Time [s]'); legend('M_x','M_y','M_z'); title('Bulk Magnetization Components as f(t)'); Time [s] ×10-8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Mag

netiz

atio

n [A

U]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8Bulk Magnetization Components as f(t)

MxMyMz

~M(t) = Rz(�B0t) ~M0

Page 65: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Hard RF Pulses

R90�

0�

R90�

0� =

2

41 0 00 0 10 �1 0

3

5

function dB1=PAM_B1_op(gamma,B1,dt,theta) % Define the incremental flip angle in time dtalpha=2*pi*gamma*B1*dt; % Change of basisR_theta=[ cos(theta) sin(theta) 0 0; -sin(theta) cos(theta) 0 0; 0 0 1 0; 0 0 0 1]; % Flip angle rotationR_alpha=[1 0 0 0; 0 cos(alpha) sin(alpha) 0; 0 -sin(alpha) cos(alpha) 0; 0 0 0 1]; % Homogeneous expression for RF MATRIXdB1=R_theta.'*R_alpha*R_theta; return

Z

X Y

Page 66: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Hard RF Pulses

R90�

90�

R90�

90� =

2

40 0 �10 1 01 0 0

3

5

function dB1=PAM_B1_op(gamma,B1,dt,theta) % Define the incremental flip angle in time dtalpha=2*pi*gamma*B1*dt; % Change of basisR_theta=[ cos(theta) sin(theta) 0 0; -sin(theta) cos(theta) 0 0; 0 0 1 0; 0 0 0 1]; % Flip angle rotationR_alpha=[1 0 0 0; 0 cos(alpha) sin(alpha) 0; 0 -sin(alpha) cos(alpha) 0; 0 0 0 1]; % Homogeneous expression for RF MATRIXdB1=R_theta.'*R_alpha*R_theta; return

Z

X Y

Page 67: Bloch Equations & Relaxation · ˆi+My ˆj T 2 (Mz M 0) ˆk T 1 + Dr2M~ UCLA Radiology Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession)

UCLA Radiology

Thanks

Daniel B. Ennis, Ph.D. [email protected] 310.206.0713 (Office) http://ennis.bol.ucla.edu

Peter V. Ueberroth Bldg. Suite 1417, Room C 10945 Le Conte Avenue