black holes lecture ucsd physics 161

Upload: rujual-bains

Post on 07-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 Black holes lecture UCSD physics 161

    1/76

    Black Holes (Ph 161)

    An introduction to General Relativity- 2015

    ecture !!

  • 8/21/2019 Black holes lecture UCSD physics 161

    2/76

  • 8/21/2019 Black holes lecture UCSD physics 161

    3/76

    “Natural Units” 

    In this system of units there is only one fundamental dimension, energy .

    This is accomplished by setting Planck’s constant, the speed of light,

    and Boltzmann’s constant to unity, i.e.,

    By doing this most any quantity can be expressed as poers of energy,

    because no e easily can arrange for

    To restore ! normal " units e need only insert appropriate poers of 

    of the fundamental constants abo#e

  • 8/21/2019 Black holes lecture UCSD physics 161

    4/76

    It helps to remember the dimensioof these quantities . . .

    for example, picking convenient units

  • 8/21/2019 Black holes lecture UCSD physics 161

    5/76

    !geometrized" or "natural" units for 

      spacetime 

    "e#ne the $lanck %ass

    . . . and no& the 'ravitational constant is ust . . .

  • 8/21/2019 Black holes lecture UCSD physics 161

    6/76

    It turns out that in a weak gravitational field the time-timecomponent of the metric is related to the Newtonian gravitational 

     potential by . . .

    Where the Newtonian gravitational potential is

    dimensionless ! 

  • 8/21/2019 Black holes lecture UCSD physics 161

    7/76

     A convenient coordinate system for A convenient coordinate system forweak & static no time dependence gravitational fieldsweak & static no time dependence gravitational fieldsis given by the following coordinate system"metric is given by the following coordinate system"metric $

    This ould be a decent description of the spacetime

    geometry and gra#itational effects around the earth,

    the sun, and hite darf stars, but not near the surfaces

    of neutron stars.

  • 8/21/2019 Black holes lecture UCSD physics 161

    8/76

    "B#$%&"B#$%&  'A'A(solar asses)

    RA*!+RA*!+  (c)

    ,etonianGravitational

    Potential

      earth   3 x 10-6 6.4 x 108   ~10-9

      sun   1 6.9 x1010   ~10-6

      white

      dwarf 

      ~1 5 x 108   ~10-4

     neutron

      star   ~1 106

      ~0.1

    to 0.2

    %haracteristic &etric 'e#iation

  • 8/21/2019 Black holes lecture UCSD physics 161

    9/76

    )avendish expt.

    U*+N$

  • 8/21/2019 Black holes lecture UCSD physics 161

    10/76

    -and /acts0 1olar 1stem

    radius of earth2s orbit around sun

  • 8/21/2019 Black holes lecture UCSD physics 161

    11/76

    -and /acts0 the Universe

  • 8/21/2019 Black holes lecture UCSD physics 161

    12/76

    3he essence of 'eneral 4elativit0

    There is no gravitation0 in locall  inertial coordinate s&hich the 5quivalence $rinciple guarantees are al&as t the e6ects of gravitation are absent 

    3he 5instein /ield equations have as their solutionsglobal coordinate sstems &hich cover big patches of sp

  • 8/21/2019 Black holes lecture UCSD physics 161

    13/76

    #he $%uivalence rinciple

    • (ot#os experiments

    • meaning for freely falling bodies

    • geometric implications

     

    • geodesics

  • 8/21/2019 Black holes lecture UCSD physics 161

    14/76

    Galileo drops diferent size balls of the eaning 3o&er . . .

     Jinavie.tumblr.com

  • 8/21/2019 Black holes lecture UCSD physics 161

    15/76

    #he $'#(') $*periment 

    torsion balance

    see .npl.ashington.edu)eotash

    &agnitude of torque on fiber$

  • 8/21/2019 Black holes lecture UCSD physics 161

    16/76

    $otWash lab+s results, sensitivity for long range forces  is at about part in  /

    .npl.ashington.edu)eotash) 

  • 8/21/2019 Black holes lecture UCSD physics 161

    17/76

    5$ experiment 

    U*+N$

  • 8/21/2019 Black holes lecture UCSD physics 161

    18/76

    012 what does this mean3 012 what does this mean3 

    $verything falls at the same rate! 

     *pollo + astronaut 'a#id -. cott drops a hammer 

    and a feather . . . /uess hat happens0

    .hq.nasa.go#)  . . .)1istory)P234+3)co#er.html 

    http://www.hq.nasa.gov/http://www.hq.nasa.gov/http://www.hq.nasa.gov/

  • 8/21/2019 Black holes lecture UCSD physics 161

    19/76

  • 8/21/2019 Black holes lecture UCSD physics 161

    20/76

    0ne begins to get a creepy feeling that the acceleration produced by 4gravity5 has nothing to do with what the bodies

    in %uestion are made out of2 but rather is a property of spacespacetime itself ! 

  • 8/21/2019 Black holes lecture UCSD physics 161

    21/76cse.ssl.berkeley.edu)bmendez)ay+5)4554)notes)pics

    equi#alence of inertial and gra#itational mass$

  • 8/21/2019 Black holes lecture UCSD physics 161

    22/76

    elevators in free fall . . . & the $. .elevators in free fall . . . & the $. .

    g 6 7.8 m s-9  

    If we make the elevator small enough2 it looks to us as if #:$;$ I) N0 annot tell the difference betweenan elevator in free fall and theabsence of gravitation.

    )omeone cuts your elevator+s cable and you release the two balls

    that you have in your hands . . . What happens3 

  • 8/21/2019 Black holes lecture UCSD physics 161

    23/76

    )tatement of the

    $%uivalence rinciple,

    In a sufficiently small regionof space & time we can find a freely falling locally ?inkowskicoordinate system in which theeffects of gravitation are absent 

    - the laws of physics arethe same as they are in a?inkowski coordinate systemwith no gravitation.

    )tatement of the fundamental theorem

    of differential geometry for 9-@ surfaces,

    In a sufficiently small region on any 9-@surface2 the geometry is locally flat and >artesian.  We can pass a tangent planethrough any point on the surface. In asufficiently small region around wherethis tangent plane touches the surface2the geometry will be flat2 like a>artesian plane.

  • 8/21/2019 Black holes lecture UCSD physics 161

    24/76

    >oordinate #ransformations>oordinate #ransformations6ollos from the chain rule$ #ie coordinates in one system

      as functions of the coordinates  in the other frame.

    e.g., consider these four functions$

    chain rule gives,

    >oordinate transformation is these functions,

  • 8/21/2019 Black holes lecture UCSD physics 161

    25/76

    In locally inertial ?inkowski coordinates the particle is unaccelerated2 andmoving on a straight line

    multiply both sides by and sum,

  • 8/21/2019 Black holes lecture UCSD physics 161

    26/76

  • 8/21/2019 Black holes lecture UCSD physics 161

    27/76

  • 8/21/2019 Black holes lecture UCSD physics 161

    28/76

    so in a sense the basis vectors transform “oppositel” fr 

    the vector components in order that the contraction of t (the vector geometric obect! be frame invariant 

  • 8/21/2019 Black holes lecture UCSD physics 161

    29/76

      7ne+/orms  linear functions of vectors into real numbers

     ust like vectors are linear functions of one+forms into rea

  • 8/21/2019 Black holes lecture UCSD physics 161

    30/76

    National 'eographic – Everest Region

    A 1-orm is a geometric obe

    -!t is li"e a contour map#i.e.# a set o nested $surace

    &onstant value o some 'uaon each $surace%.

     )he undamental# rame invariant# operationbet*een vectors +arro*s,and 1-orms +nested suraces, is the  CONTRACTION

    ay the vector . on the 1-/or P

    and count ho any

    sur/aces are ierced

    &hat is a /rae-invariant real nuer 3

  • 8/21/2019 Black holes lecture UCSD physics 161

    31/76

    3he metric tensor turns vectors into 9+formsand the inverse metric does the opposite

  • 8/21/2019 Black holes lecture UCSD physics 161

    32/76

    >onnection >oefficients>onnection >oefficients  >hristoffel symbols>hristoffel symbols

    These are ob#iously related to ho the locally &inkoski 

    coordinates differ from our lab coordinates x

  • 8/21/2019 Black holes lecture UCSD physics 161

    33/76

    9o, in considering these to coordinate systems, the locally 

    &inkoski coordinates , and the !lab" coordinates ,

    e ill demand that the spacetime inter#al is alays the same$

  • 8/21/2019 Black holes lecture UCSD physics 161

    34/76

    Bength2 Area2 and (olume and the ?etric Bength2 Area2 and (olume and the ?etric 

    Watch out! Actual physical or proper lengths2 areas2 and volumesare not the same as coordinate values of the same %uantity.

    It must be kept in mind that the spacetime interval is preserved under coordinate transformations. #hink about the invariant interval 

    corresponding to an infinitesimal coordinate increment,

    &ore (xamples . . .

  • 8/21/2019 Black holes lecture UCSD physics 161

    35/76

    The components of the metric tensor in freely falling,

    locally &inkoski coordinates are

    The components of the metric tensor in the !lab" 

    coordinate system are

  • 8/21/2019 Black holes lecture UCSD physics 161

    36/76

    #he ?etric #ensor and#he ?etric #ensor and 4oordinates4oordinates

    . . . this is how the 4components5 of the metric transformunder a coordinate transformation2 where the transformationmatri* elements are for a so-called 4coordinate basis5

    for the two different coordinate systems and

    The (qui#alence Principle says that at any e#ent in spacetimeThe (qui#alence Principle says that at any e#ent in spacetime

    it is alays possible to find a transformation to locally it is alays possible to find a transformation to locally 

    &inkoski coordinates.&inkoski coordinates. 

    Th l t i t fi ld i

  • 8/21/2019 Black holes lecture UCSD physics 161

    37/76

    The general metric tensor field is

    It is symmetric$

    Therefore, there are +5 independent functionsat any e#ent 7point8 in spacetime.

    :hy0

    The metric tensor defines a coordinate system

    and #ice #ersa through the line element 

    3he 5quivalence $rincipal

  • 8/21/2019 Black holes lecture UCSD physics 161

    38/76

    With this the Christofel symbols canWith this the Christofel symbols can

    written in terms o the inverse metricwritten in terms o the inverse metric

     partial derivatives o the metric as . . partial derivatives o the metric as . .

    &here the inverse metric is so+named because . . .

    e qu a e ce c paguarantees that 

    in general true onl for coordinate bases

  • 8/21/2019 Black holes lecture UCSD physics 161

    39/76

    (xamples in ;2'$ flat %artesian coordinates

      and spherical polar coordinates.

  • 8/21/2019 Black holes lecture UCSD physics 161

    40/76

    4flat space5 means ?inkowski coordinates   t, x, y, z  

    the metric for which is Cust  

    :hat about coordinates 7 t, r, θ, ϕ  8 0

    D0#: >00;@INA#$ )=)#$?) D0#: >00;@INA#$ )=)#$?) 

    @$)>;ID$ #:$ )A?$ ;ID$ #:$ )A?$

  • 8/21/2019 Black holes lecture UCSD physics 161

    41/76

    :ow do we tell the difference between:ow do we tell the difference betweenbetween coordinates that imply between coordinates that imply 

    curvaturecurvature gravitational effects and gravitational effects and  Cust plain old Cust plain old flat spaceflat space mas%uerading mas%uerading itself withitself with 4curvilinear coordinates53 4curvilinear coordinates53 

    #he answer can be found in the $%uivalence rinciple whichsays that physics is invariant under coordinate transformations2

    all  coordinate transformations. We are free to choose a coordinatetransformation any way we want,

  • 8/21/2019 Black holes lecture UCSD physics 161

    42/76

    The (.P. gi#es us enough freedom to choose coordinates at

    any e#ent 7point8 to transform the metric components

    to be those of the &inkoski metric and the first deri#ati#es

    of the metric to be zero, thereby making the %hristoffel symbols zero as ell.

    (xpand our !lab" coordinates in a Taylor series about point in the desired

    coordinates 7hich ill of course be the locally inertial, &inkoski coordinates8 . . .

    imilarly expand the metric functions and use

  • 8/21/2019 Black holes lecture UCSD physics 161

    43/76

    We would like to transform the metric to the flat space2 ?inkowski metric and we would like to get rid of as many derivatives of themetric functions as possible . . . What can we do with our freedom to choose the coordinate transformation3 

    9 second derivatives of the metric which cannot in general be9 second derivatives of the metric which cannot in general beset to Eero with the coordinate freedom given by the $. .set to Eero with the coordinate freedom given by the $. .

    Crvatre ! Riemann Tensor 

  • 8/21/2019 Black holes lecture UCSD physics 161

    44/76

    "e#ne intrinsic curvature as the di6erence bet&een an initial vect and the same vector parallel+transported around an in#nitesimal l

    these terms give the nonlinear i.e., products of #rst derivativemetric components

    It t t th t i k it ti l fi ld th ti ti

  • 8/21/2019 Black holes lecture UCSD physics 161

    45/76

    It turns out that in a weak gravitational field the time-timecomponent of the metric is related to the Newtonian gravitational 

     potential by . . .

    Where the Newtonian gravitational potential is

    dimensionless ! 

  • 8/21/2019 Black holes lecture UCSD physics 161

    46/76

    "B#$%&"B#$%&  'A'A(solar asses)

    RA*!+RA*!+  (c)

    ,etonianGravitational

    Potential

      earth   3 x 10-6 6.4 x 108   ~10-9

      sun   1 6.9 x1010   ~10-6

      white

      dwarf 

      ~1 5 x 108   ~10-4

     neutron

      star   ~1 106

      ~0.1

    to 0.2

    %haracteristic &etric 'e#iation

    A convenient coordinate system forA convenient coordinate system for

  • 8/21/2019 Black holes lecture UCSD physics 161

    47/76

     A convenient coordinate system for A convenient coordinate system forweak & static no time dependence gravitational fieldsweak & static no time dependence gravitational fieldsis given by the following coordinate system"metric is given by the following coordinate system"metric $

    This ould be a decent description of the spacetimegeometry and gra#itational effects around the earth,

    the sun, and hite darf stars, but not near the surfaces

    of neutron stars.

    :e ill explore this metric ith #ariational principles later.

    #h ) h hild ? i

  • 8/21/2019 Black holes lecture UCSD physics 161

    48/76

    #he )chwarEschild ?etric #he )chwarEschild ?etric spherically symmetric2 static spacetime

    charzschild coordinates

    6unctions of radial coordinate r  to be determined 

    by particular spherically symmetric, static distribution

    of mass2energy$

  • 8/21/2019 Black holes lecture UCSD physics 161

    49/76

    charzschild metric in #acuum outside a spherical, static distribution

    of mass M  is

     M 

    :hat is the physical 7proper8

    distance along this radial line0

  • 8/21/2019 Black holes lecture UCSD physics 161

    50/76

    -emember that the metric functions are dimensionless$

    9etonian Potential$

  • 8/21/2019 Black holes lecture UCSD physics 161

    51/76

    )chwarEschild ;adius

  • 8/21/2019 Black holes lecture UCSD physics 161

    52/76

    charzschild &etric$ conser#ed quantities

    9ote that none of the metric functions depend on the timelike coordinate t

    This means that the timelike co#ariant component of the four2momentum

    of a freely falling particle ill be conser#ed along this particle’s orld line7a geodesic8.

    co#ariant components$

    timelike co#ariant component$

    Photon emitted at r 1 ith energy E em . :hat is its energy hen it gets to r 2 0

  • 8/21/2019 Black holes lecture UCSD physics 161

    53/76

     M 

    In freely falling coordinates$

    But this inner product could be e#aluated in any coordinate system and you ill alays get the same result.

  • 8/21/2019 Black holes lecture UCSD physics 161

    54/76

    This is the gra#itational redshift$

    -edshift is defined as $

  • 8/21/2019 Black holes lecture UCSD physics 161

    55/76

  • 8/21/2019 Black holes lecture UCSD physics 161

    56/76

      &osmolog(

    riedmann-e/aitre-Robertson-0al"er m

  • 8/21/2019 Black holes lecture UCSD physics 161

    57/76

    A 4uick and dirty tour o/ all o/ the hole universe

    - the lare scale structureevolution o/ sacetie7

  • 8/21/2019 Black holes lecture UCSD physics 161

    58/76

    Hule (H&)

    +ltra *ee 8ield

    oe o/ the /irst

    ala9ies to /or

  • 8/21/2019 Black holes lecture UCSD physics 161

    59/76

  • 8/21/2019 Black holes lecture UCSD physics 161

    60/76

    George Gamow

    George LeMaitre

    A. Friedmann

    Albert Einstein

    Homogeneity and isotropy of the universe:

  • 8/21/2019 Black holes lecture UCSD physics 161

    61/76

    Homogeneity and isotropy of the universe:

    implies that total energy inside a co-moving spherical surface is constant with time.

     total energy = (kinetic energy of expansion) + (gravitational potential energy)

    mass-energy density = ρtest mass = m

     

    ≈ −

    ' 43π a3 ρ [ ]ma

     

    ≈1

    2ṁa

    2

     total energy > 0  expand forever k = -1

     total energy = 0 for ρ = ρcrit  k = 0

     total energy < 0 re-collapse k = +1

    = ρ ρcrit

    ≈ 0.3

     

    a

    (k=0)

     

    ȧ2+ k =

    8

    3

    π  G ρ  a2

  • 8/21/2019 Black holes lecture UCSD physics 161

    62/76

    The key point in our aru!ent was sy!!etry"

    spe#ifi#a$$y% a ho!oeneous and isotropi# distri&ution

    of !ass and enery'

    (hat e)iden#e is there that this is true*

    +ook around you. This is !anifest$y ,T true on

    s!a$$ s#a$es. The os!i# /i#rowa)e a#kroundadiation / represents our &est e)iden#e that

    !atter is s!ooth$y and ho!oeneous$y distri&uted

    on the $arest s#a$es.

    The sate$$ite - the !i#rowa)e &a#kround radiation

  • 8/21/2019 Black holes lecture UCSD physics 161

    63/76

    $a#k&ody radiation

    ried!an-+e/aitre-o&ertson-(a$ker +( #oordinates

  • 8/21/2019 Black holes lecture UCSD physics 161

    64/76

    ried!an +e/aitre o&ertson (a$ker +( #oordinates

    defined throuh this !etri# . . .

  • 8/21/2019 Black holes lecture UCSD physics 161

    65/76

    k = -1 k = 0 k = +1

    Ho /ar does a hoton travel in the ae o/ the universe:

  • 8/21/2019 Black holes lecture UCSD physics 161

    66/76

    onsider a radia$$y-dire#ted photon

    photons tra)e$ onnu$$ wor$d $ines so ds20

    #ausa$ hori7on

    %ausal (Particle) Hori;on

  • 8/21/2019 Black holes lecture UCSD physics 161

    67/76

    %ausal (Particle) Hori;on

    radiation do!inated

    !atter do!inated

    )a#uu! enery do!inated

    !n every case the hysical (roer) distance a liht sinal travels oes

    to in/inity as the value o/ the tielike coordinate t does

    ,ote< hoever< that /or the vacuu doinated case there is a /inite

    liitin value /or the 8R= radial coordinate as t oes to in/inity

    ;$@):IF#;$@):IF#

  • 8/21/2019 Black holes lecture UCSD physics 161

    68/76

    ;$@):IF# ;$@):IF# 9ote that ith the 6

  • 8/21/2019 Black holes lecture UCSD physics 161

    69/76

    y

    (theronuclear e9losions)

    serve as >standard candles

  • 8/21/2019 Black holes lecture UCSD physics 161

    70/76

    B suernova cosoloy esite

  • 8/21/2019 Black holes lecture UCSD physics 161

    71/76

    B suernova cosoloy esite

  • 8/21/2019 Black holes lecture UCSD physics 161

    72/76

    ='AP cosic icroave ackround satellite

    $u#tuations in / te!perature i)e

    nsiht into the #o!position% si7e% and ae

    of the uni)erse and the $are s#a$e #hara#ter 

    of spa#eti!e.

    Ae 3 1C Gyr 

    acetie 3 >/lat? (eanin k30)

    %oosition 3 2D unknon nonrelativistic

      atter< CD unknon

      vacuu enery (dark enery)<

      ED ordinary aryons

  • 8/21/2019 Black holes lecture UCSD physics 161

    73/76

    o&ser)ationa$ #onstraints

    on the #ontent of 

    of nonre$ati)isti# !atter and )a#uu! enery

    dark enery in the

    uni)erse

       2   f  r  a  #   t   i  o  n  o   f  #  r   i   t   i  #  a   $   d  e  n

      s   i   t  y  #  o  n   t  r   i   &  u   t  e   d   &  y  )  a  #  u

      u  !   e

      n  e  r    y   3

    fra#tion of #riti#a$ density #ontri&uted &y nonre$ati)isti# !atter

  • 8/21/2019 Black holes lecture UCSD physics 161

    74/76

    (vacuum energy)

    W li i k 0 iti ll l d i

  • 8/21/2019 Black holes lecture UCSD physics 161

    75/76

    We live in a k = 0, critically closed universe.

  • 8/21/2019 Black holes lecture UCSD physics 161

    76/76

    photon decoupling T~ 0. 2 eV

    vacuum+matter dominated

    at current epoch