black hole collisions in higher dimensional spacetimesblackholes/nrhep/witek.pdf · black hole...

23
Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C. Herdeiro, A. Nerozzi, U. Sperhake, M. Zilh˜ ao CENTRA / IST, Lisbon, Portugal Phys. Rev. D 81, 084052 (2010), Phys. Rev. D 82, 104014 (2010), Phys. Rev. D 83, 044017 (2011), work in progress Numerical Relativity and High Energy Physics, Madeira, August 31 , 2011 H. Witek (CENTRA / IST) 1 / 23

Upload: others

Post on 24-May-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Black hole collisionsin higher dimensional spacetimes

Helvi Witek,V. Cardoso, L. Gualtieri, C. Herdeiro,A. Nerozzi, U. Sperhake, M. Zilhao

CENTRA / IST,Lisbon, Portugal

Phys. Rev. D 81, 084052 (2010), Phys. Rev. D 82, 104014 (2010),Phys. Rev. D 83, 044017 (2011), work in progress

Numerical Relativity and High Energy Physics, Madeira, August 31 , 2011

H. Witek (CENTRA / IST) 1 / 23

Page 2: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Outline

1 Motivation

2 Numerical Relativity in D Dimensions

3 Numerical Results

4 Conclusions and Outlook

H. Witek (CENTRA / IST) 2 / 23

Page 3: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

High Energy Collision of Particles

above the Planck scale:gravity is dominant interaction⇒ classical description

Consider particle collsions with E = 2γm0c2 > MPl

Hoop - Conjecture (Thorne ’72)⇒ black hole formation, if circumference of particle < 2πrS

Collisions of shock waves (Penrose ’74, Eardley & Giddings ’02)⇒ black hole formation if b ≤ rS

numerical evidence in ultra relativistic collision of boson stars(Choptuik & Pretorius ’10)

⇒ black hole formation if boost γc ≥ 2.9

⇒ black hole formation in high energy collisions of particles

H. Witek (CENTRA / IST) 3 / 23

Page 4: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

TeV gravity

in D = 4:mEW ∼ 103GeV , MPl ∼ 1019GeV⇒ “hierarchy problem”

higher dimensional theories of gravity

large extra dimensions(Arkani-Hamed, Dimopoulos & Dvali ’98,Dvali, Gabadadze & Porrati ’00)warped extra dimensions(Randall & Sundrum ’99)

in D > 4: lowering of Planck scale⇒ MPl ∼ TeV

H. Witek (CENTRA / IST) 4 / 23

Page 5: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

TeV gravity

TeV gravity scenarios

⇒ signatures of black hole production in high energy collision of particles

at the Large Hadron Collider

http://lhc.web.cern.ch/lhc/

in Cosmic Rays interactions

http://www.phy.olemiss.edu/GR/

H. Witek (CENTRA / IST) 5 / 23

Page 6: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Life cycle of Mini Black Holes

1 Formation

lower bound on BH mass from area theorem (Yoshino & Nambu ’02)

2 Balding phase: end state is Myers-Perry black hole

3 Spindown phase: loss of angular momentum and mass

4 Schwarzschild phase: decay via Hawking radiation

5 Planck phase: M ∼ MPl

Goal: more precise understanding of black hole formation⇒ compute mass and spin of final black hole⇒ input to event generators (TRUENOIR, Catfish, BlackMax, Charybdis2)Toy model: black hole collisions in higher dimensions

H. Witek (CENTRA / IST) 6 / 23

Page 7: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Numerical Relativity

in D > 4 Dimensions

Yoshino & Shibata, Phys. Rev. D80, 2009,Shibata & Yoshino, Phys. Rev. D81, 2010

Okawa, Nakao & Shibata, Phys. Rev. 83, 2011

Lehner & Pretorius, Phys. Rev. Lett. 105, 2010

Sorkin & Choptuik, GRG 42, 2010; Sorkin, Phys. Rev. D81, 2010

Zilhao et al., Phys. Rev. D 81, 2010,Witek et al, Phys. Rev. D82, 2010.

H. Witek (CENTRA / IST) 7 / 23

Page 8: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Numerical Relativity in D Dimensions

consider highly symmetric problems

dimensional reduction by isometry on a (D-4)-sphere

general metric element

ds2 = gµνdxµdxν + λ(xµ)dΩD−4

H. Witek (CENTRA / IST) 8 / 23

Page 9: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Numerical Relativity in D Dimensions

D dimensional vacuum Einstein equations GAB = RAB − 12gAB R = 0 imply

(4)Tµν =D − 4

16πλ

[∇µ∂νλ−

1

2λ∂µλ∂νλ− (D − 5)gµν +

D − 5

4λgµν∂αλ∂

αλ

],

∇µ∇µλ = 2(D − 5)− D − 6

2λ∂µλ∂µλ

⇒ 4D Einstein equations coupled to scalar field

⇒ different higher dimensions manifest in scalar field

H. Witek (CENTRA / IST) 9 / 23

Page 10: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Formulation of EEs as Cauchy Problem in D > 4

3+1 split of spacetime (4)M = R +(3) Σ (Arnowitt, Deser, Misner ’62)ds2 = gµνdx

µdxν =(−α2 + βkβ

k)dt2 + 2βidx

idt + γijdxidx j

3+1 split of 4D Einstein equations with source terms=⇒ Formulation as initial value problem with constraints (York 1979)

Evolution Equations

∂tγij = −2αKij + Lβγij∂tKij = −DiDjα + α

((3)Rij − 2KilK

lj + KKij

)+ LβKij

−αD − 4

(DiDjλ− 2KijKλ −

1

2λ∂iλ∂jλ

)∂tλ = −2αKλ + Lβλ

∂tKλ = −1

2∂ lα∂lλ+ α

((D − 5) + KKλ +

D − 6

λK 2λ

−D − 6

4λ∂ lλ∂lλ−

1

2D lDlλ

)+ LβKλ

H. Witek (CENTRA / IST) 10 / 23

Page 11: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Wave Extraction in D > 4

Generalization of Regge-Wheeler-Zerilli formalism by Kodama & Ishibashi ’03

Master function

Φ,t = (D − 2)r (D−4)/2 2rF,t − F rt

k2 − D + 2 + (D−2)(D−1)2

rD−3S

rD−3

, k = l(l + D − 3)

Energy flux & radiated energy

dEl

dt=

(D − 3)k2(k2 − D + 2)

32π(D − 2)(Φl

,t)2 , E =

∞∑l=2

∫ ∞−∞

dtdEl

dt

Momentum flux & recoil velocity

dP i

dt=

∫S∞

dΩd2E

dtdΩni , vrecoil =

∣∣∣∣∫ ∞−∞

dtdP

dt

∣∣∣∣H. Witek (CENTRA / IST) 11 / 23

Page 12: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Numerical Setup

use Sperhake’s extended Lean code (Sperhake ’07, Zilhao et al ’10)

3+1 Einstein equations with scalar fieldBaumgarte-Shapiro-Shibata-Nakamura formulation with moving punctureapproachdynamical variables: χ, γij , K , Aij , Γi , ζ, Kζ

modified puncture gauge

∂tα = βk∂kα− 2α(ηKK + ηKζKζ)

∂tβi = βk∂kβ

i − ηββi + ηΓΓi − ηλ

D − 4

2ζγ ij∂jζ

Brill-Lindquist type initial data

ψ = 1 + rD−3S,1 /4rD−3

1 + rD−3S,2 /4rD−3

2

measure lengths in terms of rS with

rD−3S =

16π

(D − 2)ASD−2 M

H. Witek (CENTRA / IST) 12 / 23

Page 13: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Unequal mass head-on

in D = 5 dimensions

Phys. Rev. D 83, 2011

H. Witek (CENTRA / IST) 13 / 23

Page 14: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Unequal mass head-on in D = 5

Modes of Φ,t

0

0.04

Φ,t

l=2 /

r S

1/2

q = 1q = 1:2q = 1:4

0

0.005

Φ,t

l=3 /

rS

1/2

-10 0 10 20 30∆t / r

S

0

0.0009

Φ,t

l=4 /

rS

1/2

consider mass ratios

q = rD−3S,1 /rD−3

S,2 = 1,1

2,

1

3,

1

4

q E/M(%) El=2(%) El=3(%) El=4(%)1/1 0.089 99.9 0.0 0.11/2 0.073 97.7 2.2 0.11/3 0.054 94.8 4.8 0.41/4 0.040 92.4 7.0 0.6

H. Witek (CENTRA / IST) 14 / 23

Page 15: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Unequal mass head-on in D = 5 - radiated energy

E/M ∼ η2

(M.Lemos ’10, MSc thesis,http://blackholes.ist.utl.pt/ )

fitting function

E

Mη2= 0.0164− 0.0336η2 ,

within < 1% agreement withpoint particle calculation(Berti et al, 2010)

H. Witek (CENTRA / IST) 15 / 23

Page 16: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Equal mass head-on

in D = 4, 5, 6 dimensions

Phys. Rev. D 82, 104014 (2010)work in progress

H. Witek (CENTRA / IST) 16 / 23

Page 17: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Equal mass head-on in D = 6 (preliminary results)

The good news is: We can do it !!!

Key (technical) issues:

modification of gaugeconditionsmodification of formulation

increase in E/M with D⇒ qualitative agreement withPP calculations(Berti et al, 2010)

D rS ω(l = 2) E/M(%)4 0.7473− i 0.1779 0.0555 0.9477− i 0.2561 0.0896 1.140− i 0.304 0.097 1

1preliminaryH. Witek (CENTRA / IST) 17 / 23

Page 18: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Head-on collisions

of boosted black holes

Zilhao et al (work in progress)

H. Witek (CENTRA / IST) 18 / 23

Page 19: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Initial data for boosted BHs in D > 4 (Zilhao et al)

construct initial data by solving the constraints

D-dimensional metric element

ds2 = −α2dt2 + γab(dxa + βadt

)(dxb + βbdt

)assumption: γab = ψ

4D−3 δab , K = 0 , Kab = ψ−2Aab

constraint equations

∂aAab = 0 , 4ψ +

D − 3

4(D − 2)ψ−

3D−5D−3 AabAab = 0 , with 4 ≡ ∂a∂a

analytic ansatz for Aab → generalization of Bowen-York type initial data

elliptic equation for ψ → puncture method (Brandt & Brugmann ’97)

ψ =1 +N∑i=1

µ(i)

4rD−3(i)

+ u

⇒ Hamiltonian constraint becomes

4u +D − 3

4(D − 2)AabAabψ

− 3D−5D−3 = 0

H. Witek (CENTRA / IST) 19 / 23

Page 20: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Initial data for boosted BHs in D > 4 - Results

extension of the TwoPunctures pseudo-spectral solver(M. Ansorg et al, ’04)

initial data for punctures at z/rS = ±30.185 with P/rD−3S = 0.8

Hamiltonian constraint

101 102

z/rS

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

|H|

P/rD3S =0.8, b/rS =30.185, n=300

D=4

D=5

D=6

D=7

Convergence analysis

0 50 100 150 200 250 300n

10-10

10-8

10-6

10-4

10-2

100

102

104

n,300(u)

D=4D=5D=6D=7

H. Witek (CENTRA / IST) 20 / 23

Page 21: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Head-on of boosted BHs in D = 5(preliminary results)

evolution of puncture with z/rS = ±30.185 with P/rD−3S = 0.4

l = 2 mode of Φ,t

0 100 200 300 t / r_S

-0.04

-0.02

0

0.02

0.04

Φ,t

l=2 /

r S

1/2

H. Witek (CENTRA / IST) 21 / 23

Page 22: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Conclusions and Outlook

consider highly symmetric (black hole) spacetimes

dimensional reduction by isometry⇒ formulation of D dimensional vacuum Einstein’s equations as ascalar-tensor field theory in D = 4

evolution of unequal mass head-on collisions in D = 5 with q = 1, 12 ,

13 ,

14

⇒ extrapolation to PP limit shows good agreement with PP calculations

evolution of equal mass head-ons in D = 4, 5, 6

evolution of boosted BHs in D = 5

ToDo:

numerical simulations of black hole collisions in D ≥ 7high energy collisions of BHs in D ≥ 5...

H. Witek (CENTRA / IST) 22 / 23

Page 23: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C

Thank you!

http://blackholes.ist.utl.pt

H. Witek (CENTRA / IST) 23 / 23