biomechanics and biomechatronics in sports, exercise, and...

7
excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 16, Pages 451-494 Biomechanics and Biomechatronics in Sports, Exercise, and Entertainment Karen L. Troy*, Kimberly Tetreault , Adam D. Goodworth , Songbai Ji*, Marko B. Popovic* *WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES GAYLORD HOSPITAL, WALLINGFORD, CT, UNITED STATES UNIVERSITY OF HARTFORD, HARTFORD, CT, UNITED STATES Abstract This chapter provides a comprehensive overview of biomechanics experimental procedures, data analysis, modeling, and simulation. This chapter also overviews several examples of advanced biomechatronics systems for sports, exercise, and entertainment. CHAPTER OUTLINE 16.1 Biomechanics Fundamentals .................................................................................................. 451 16.1.1 Development of Modern Age Biomechanics .......................................................................452 16.1.2 Biomechanics Experimental Tools and Data Processing Techniques ...................................455 16.1.3 Running, Jumping, and Landing Biomechanics ....................................................................459 16.2 Modeling and Simulation: Simplified, Intermediate, and Detailed Models ............................... 461 16.2.1 Simplified Models ...............................................................................................................461 16.2.2 Simplified Dynamic Template Models .................................................................................465 16.2.3 Detailed Musculoskeletal Models .......................................................................................471 16.2.4 Review of Exercise (and Games) Systems for Physical Therapy and

Upload: others

Post on 07-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 16, Pages 451-494

Biomechanics and Biomechatronics in Sports, Exercise, and Entertainment Karen L. Troy*, Kimberly Tetreault†, Adam D. Goodworth‡, Songbai Ji*, Marko B. Popovic*

*WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES †GAYLORD

HOSPITAL, WALLINGFORD, CT, UNITED STATES ‡UNIVERSITY OF HARTFORD,

HARTFORD, CT, UNITED STATES

Abstract

This chapter provides a comprehensive overview of biomechanics experimental procedures, data analysis,

modeling, and simulation. This chapter also overviews several examples of advanced biomechatronics

systems for sports, exercise, and entertainment.

CHAPTER OUTLINE

16.1 Biomechanics Fundamentals .................................................................................................. 451

16.1.1 Development of Modern Age Biomechanics .......................................................................452

16.1.2 Biomechanics Experimental Tools and Data Processing Techniques ...................................455

16.1.3 Running, Jumping, and Landing Biomechanics ....................................................................459

16.2 Modeling and Simulation: Simplified, Intermediate, and Detailed Models ............................... 461

16.2.1 Simplified Models ...............................................................................................................461

16.2.2 Simplified Dynamic Template Models .................................................................................465

16.2.3 Detailed Musculoskeletal Models .......................................................................................471

16.2.4 Review of Exercise (and Games) Systems for Physical Therapy and

Page 2: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

Rehabilitation ................................................................................................................................474

16.2.5 General Exercise and Game Systems ...................................................................................477

16.2.6 Future Directions: Virtual Reality and Video Games ............................................................481

16.3 Several Examples of Biomechatronics Systems for Exercise, Rehabilitation,

Games, and Sports ......................................................................................................................... 481

16.4 Head Injury Biomechanical Modeling ..................................................................................... 487

16.5 Exercise Systems in Microgravity Conditions ........................................................................... 488

References .................................................................................................................................... 490

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00016-1

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] Popovic, M.B. “Biomechanics and Robotics”, 351 pages, Copyright © 2014 Pan Stanford Publishing Pte.

Ltd., Singapore, ISBN 978-981-4411-37-0 (Hardcover), 978–981-4411-38-7 (eBook). 2013.

https://doi.org/10.4032/9789814411387.

[2] About Biomechanics, The American Society of Biomechanics.

http://www.asbweb.org/aboutbiomechanics/ (accessed 03.04.18).

[3] E.J. Marey, Du mouvement dans les fonctions de la vie: Lecons faites au College de France, Bailliere,

Paris, 1868. http://vlp.mpiwg-berlin.mpg.de/library/download2.html?litID=lit4270&pn=1. (retrieved

from Max Planck Institute for the history of science, Berlin, accessed 03.04.18).

[4] E.J. Marey, La methode graphique dans les sciences experimentales, in: Physiologie Experimentale.

Travaux du laboratoire de M. Marey 2; retrieved from Max Planck Institute for the history of science,

Berlin, 1876, pp. 133–219. http://vlp.mpiwg-berlin.mpg.de/library/data/lit29362 (accessed 03.04.18).

[5] Dempster, Space Requirements of the Seated Operator, WADC Technical Report, Wright-Patterson Air

Force Base, Ohio, 1995, pp. 55–159.

[6] J. Wicke, G.A.Dumas, Estimating segment inertial parameters using fan-beam DXA, J. Appl. Biomech.

24 (2) (2008 May) 180–184.

Page 3: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

[7] J.J. Bauer, M.J. Pavol, C.M. Snow, W.C. Hayes, MRI-derived body segment parameters of children differ

from age-based estimates derived using photogrammetry, J. Biomech. 40 (13) (2007) 2904–2910 (Epub

2007 April 25).

[8] A.J. Chambers, A.L. Sukits, J.L. McCrory, R. Cham, The effect of obesity and gender on body segment

parameters in older adults, Clin. Biomech. (Bristol, Avon) 25 (2) (2010) 131–136.

[9] Y. Fang, L.R. Morse, N. Nguyen, N.G. Tsantes, K.L. Troy, Anthropometric and biomechanical

characteristics of body segments in persons with spinal cord injury, J. Biomech. 55 (2017) 11–17.

[10] S. Sasimontonkul, B.K. Bay, M.J. Pavol, Bone contact forces on the distal tibia during the stance phase

of running, J. Biomech. 40 (15) (2007) 3503–3509.

[11] A.L. Gornitzky, A. Lott, J.L. Yellin, P.D. Fabricant, J.T. Lawrence, T.J. Ganley, Sport-specific yearly risk

and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-

analysis, Am. J. Sports Med. 44 (10) (2016) 2716–2723 (Epub 2015 December 11).

[12] R.K. Fukuchi, C.A. Fukuchi, M. Duarte, A public dataset of running biomechanics and the effects of

running speed on lower extremity kinematics and kinetics, PeerJ 5 (2017), e3298,

https://doi.org/10.7717/peerj.3298.eCollection2007.

[13] I.S. Davis, E. Futrell, Gait retraining: altering the fingerprint of gait, Phys. Med. Rehabil. Clin. N. Am.

27 (1) (2016) 339–355.

[14] L.L. Loundagin, T.A. Schmidt,W.B. Edwards, Mechanical fatigue of bovine cortical bone using ground

reaction force waveforms in running, J. Biomech. Eng. 140 (3) (2018).

[15] P. DeVita, J. Helseth, T. Hortobagyin, Muscles do more positive than negative work in human

locomotion, J. Exp. Biol. 210 (Pt 19) (2007) 3361–3373.

[16] M.B. Popovic, A. Hofmann, H. Herr, Angular momentum regulation during human walking:

biomechanics and control, in: Proceedings of the IEEE International Conference on Robotics and

Automation, New Orleans, Louisiana, USA, 2004, pp. 2405–2411.

[17] M.B. Popovic, A. Goswami, H. Herr, Ground reference points in legged locomotion: definitions,

biological trajectories and control implications, Int. J. Robot. Res. 24 (12) (2005) 1013–1032.

[18] H. Herr, M.B. Popovic, Angular momentum in human walking, J. Exp. Biol. 211 (2008) 467–481.

[19] M. Vukobratovic, A.A. Frank, D. Juricic, On the stability of biped locomotion, IEEE Trans. Biomed. Eng.,

BME 17 (1) (1970) 25–36.

[20] M. Vukobratovic, H. Herr, B. Borovac, M. Rakovic, M.B. Popovic, A. Hofmann, V. Potkonjak, Biological

principles of control selection for a humanoid robot’s dynamic balance preservation, Int. J. Human. Robot.

5 (4) (2008) 639–678.

[21] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirokawa, The 3D linear inverted pendulum mode: a

simple modeling for a biped walking pattern generation, in: Proc. IEEE Int. Conf. Intell. Robots Syst, 2001,

pp. 239–246.

Page 4: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

[22] J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in:

6th IEEE-RAS International Conference on Humanoid Robots, 2006, IEEE, 2006, pp. 200–207.

[23] A. Seyfarth, H. Geyer, M. G€unther, R. Blickhan, A movement criterion for running, J. Biomech. 35 (5)

(2002) 649–655.

[24] H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and

running, Proc. R. Soc. Lond. B Biol. Sci. 273 (1603) (2006) 2861–2867.

[25] G.A. Cavagna, F.P. Saibene, R. Margaria, Mechanical work in running, J. Appl. Physiol. 19 (1964).

[26] R. Blickhan, The spring-mass model for running and hopping, J. Biomech. 22 (1989).

[27] T.A. McMahon, G.C. Cheng, The mechanics of running: how does stiffness couple with speed? J.

Biomech. 23 (Suppl. 1) (1990).

[28] C.T. Farley, J. Glasheen, T.A. McMahon, Running springs: speed and animal size, J. Exp. Biol. 185 (1)

(1993) 71–86.

[29] R.M. Alexander, Optimization and gaits in the locomotion of vertebrates, Physiol. Rev. 69 (4) (1989)

1199–1227.

[30] F.C. Anderson, A Dynamic Optimization Solution for a Complete Cycle of Normal Gait, (Ph.D. thesis),

The University of Texas at Austin, Austin, Texas, 1999.

[31] F.C. Anderson, M.G. Pandy, A dynamic optimization solution for vertical jumping in three dimensions,

Comput. Meth. Biomech. Biomed. Eng. 2 (1999).

[32] F.C. Anderson, M.G. Pandy, Dynamic optimization of human walking, J. Biomech. Eng. 123 (2001).

[33] https://simtk-confluence.stanford.edu/display/OpenSim/Gait+2392+and+2354+Models.

[34] MOTEK, MEDICAL Improving Human Performance, http://www.motekmedical.com/ (accessed

03.04.18).

[35] anybodytech.com, Frontpage, https://www.anybodytech.com/ (accessed 03.04.18).

[36] A. Staiano, R. Flynn, Therapeutic uses of active videogames: a systematic review, Games Health J.

(2014) 351–365.

[37] FitMi Rehabilitation System, https://www.flintrehab.com.

[38] Molina, et al., Virtual reality using games for improving physical functioning in older adults: a

systematic review, J. NeuroEng. Rehabil. 11 (2014) 156.

[39] Sviestrup, Motor rehabilitation using virtual reality. J. NeuroEng. Rehabil. 1 (2004) 1–8.

https://doi.org/10.1186/1743-0003-1-10.

[40] Pinata Sessoms Enhancing Warfighter Readiness in a Virtual Environment, Naval Medical Research

and Development, News Releases (accessed 15.08.16).

[41] Hoffman, et al., Using fMRI to study the neural corrleates of virtual reality analgesia, CNS Spectr. 11

(1) (2006) 45–51.

Page 5: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

[42] Hoffman, et al., Virtual reality pain control during physical therapy range of motion exercises for a

patient with multiple blunt force trauma injuries, CyberPsychol. Behav. 12 (1) (2009) 47–49.

[43] Hoffman, et al., Use of virtual reality for adjunctive treatment of adult burn pain during physical

therapy: a controlled study, Clin. J. Pain 16 (2000) 244–250.

[44] W. Li, Development and Evaluation of a Virtual Reality Therapy System for Children with Hemiplegic

Cerebral Palsy (Bachelor’s thesis)University of Toronto, Toronto, 2007.

[45] Exergaming, https://www.exergamefitness.com/ (accessed 03.04.18).

[46] Resnick, Exergames: ANew Step Toward Fitness?, Harvard Health Publishing, 2012 (accessed

20.11.17).

[47] Sween, et al., The role of exergaming in improving physical activity: a review, J. Phys. Act.Health 11

(4) (2014) 864–870.

[48] Multi Sports Simulators,

http://www.sportsentertainmentspecialists.com/MultiSportSimulators/index.html (accessed 03.04.18).

[49] Nadia Barbu, Technology Developed in Biomechatronics LAB COULD CHANGE COMBAT SPORTS,

https://www.imperial.ac.uk/news/177831/technology-developed-biomechatronics-lab-couldchange/,

2017 (accessed 03.04.18).

[50] Corner The Smart Boxing Tracker, https://thecornerapp.com/#!/ (accessed 03.04.18).

[51] SkyTechSport Alpine-Simulator, http://www.skytechsport.com/alpine-simulator (accessed 03.04.18).

[52] Tim Newcomb, Experience G-force and icy slopes in a SkyTechSport ski training simulator, Sports

Illustrated, 2015. https://www.si.com/edge/2015/02/11/skytechsport-ski-training-simulator-usski-team-

fis-alpine (accessed 03.04.18).

[53] TU Delft Zeil Simulator, http://sportsengineering.tudelft.nl/portfolio_page/zeilsimulator/ (accessed

03.04.18).

[54] TU Delft High Performance Sail Simulator, https://www.tudelft.nl/en/ide/research/research-

labs/applied-labs/high-performance-sail-simulator/ (accessed 03.04.18).

[55] WPI Robotics Balls, http://users.wpi.edu/~mpopovic/pages/balls.html (accessed 03.04.18).

[56] S. Seitinger, E. Sylvan, O. Zuckerman, M. Popovic,O. Zuckerman, A new playground experience: going

digital? in: CHI’06 Extended Abstracts on Human Factors in Computing Systems, ACM, 2006, pp. 303–308.

[57] Elliot Kastner, How a Robot Football Player Will Prevent Concussions, IEEE Spectr. (2016).

https://spectrum.ieee.org/robotics/humanoids/how-a-robot-football-player-will-prevent-concussions

(accessed 03.04.18).

[58] Mobile Virtual Player, http://www.mobilevirtualplayer.com/the-store/ (accessed 03.04.18).

[59] Incidence of concussion during practice and games in youth, high school, and collegiate American

football players, JAMA Pediatr. (2015).

Page 6: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

[60] J. Versace, A review of the severity index, in: 15th Stapp Car Crash Conference. Coronado, CA, USA,

1971. SAE paper 710881.

[61] King AI, Yang KH, Zhang L, et al (2003) Is head injury caused by linear or angular acceleration? In:

IRCOBI Conference, Lisbon, Portugal, pp 1–12.

[62] H. Kimpara, M. Iwamoto, Mild traumatic brain injury predictors based on angular accelerations during

impacts, Ann. Biomed. Eng. 40 (2012) 114–126, https://doi.org/10.1007/s10439-011-0414-2.

[63] E.G.G. Takhounts, M.J.J. Craig, K. Moorhouse, J. McFadden, V. Hasija, Development of brain injury

criteria (BrIC), Stapp Car Crash J. 57 (2013) 243–266.

[64] J.J.P. Mihalik, R.R.C. Lynall, E.E.B. Wasserman, et al., Evaluating the “threshold theory”: can head

impact indicators help? Med. Sci. Sports Exerc. 49 (2017) 247–253, https://doi.org/10.1249/

MSS.0000000000001089.

[65] E.D. Bigler, Systems biology, neuroimaging, neuropsychology, neuroconnectivity and traumatic brain

injury, Front. Syst. Neurosci. 10 (2016) 1–23, https://doi.org/10.3389/FNSYS.2016.00055.

[66] W. Zhao, S. Ji, White matter anisotropy for impact simulation and response sampling in traumatic

brain injury. J. Neurotrauma (2018). https://doi.org/10.1089/neu.2018.5634.

[67] W. Zhao, J.C. Ford, L.A. Flashman, et al., White matter injury susceptibility via Fiber strain evaluation

using whole-brain tractography, J. Neurotrauma 33 (2016) 1834–1847,

https://doi.org/10.1089/neu.2015.4239.

[68] S. Ji,W. Zhao, J.C. Ford, et al., Group-wise evaluation and comparison of white matter fiber strain and

maximum principal strain in sports-related concussion, J. Neurotrauma 32 (2015) 441–454,

https://doi.org/10.1089/neu.2013.3268.

[69] C. Giordano, S. Kleiven, Connecting fractional anisotropy from medical images with mechanical

anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue, J. R. Soc. Interface

11 (2014) 1–14, https://doi.org/10.1098/rsif.2013.0914.

[70] W. Zhao, Y. Cai, Z. Li, S. Ji, Injury prediction and vulnerability assessment using strain and susceptibility

measures of the deep white matter, Biomech. Model. Mechanobiol. 16 (2017) 1709–1727,

https://doi.org/10.1007/s10237-017-0915-5.

[71] S. Ganpule, N.P. Daphalapurkar, K.T. Ramesh, et al., A three-dimensional computational human

headmodel that captures live human brain dynamics, J. Neurotrauma 34 (2017) 2154–2166,

https://doi.org/10.1089/neu.2016.4744.

[72] R.W. Carlsen, N.P. Daphalapurkar, The importance of structural anisotropy in computational models

of traumatic brain injury, Front. Neurol. 6 (2015) 1–6, https://doi.org/10.3389/fneur.2015.00028.

[73] S. Ji, W. Zhao, A pre-computed brain response atlas for instantaneous strain estimation in contact

sports, Ann. Biomed. Eng. 43 (2015) 1877–1895, https://doi.org/10.1007/s10439-014-1193-3.

[74] S. Rowson, G. Brolinson, M. Goforth, et al., Linear and angular head acceleration measurements in

collegiate football, J. Biomech. Eng. 131 (2009):061016, https://doi.org/10.1115/1.3130454.

Page 7: Biomechanics and Biomechatronics in Sports, Exercise, and ...users.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_16.pdfand incidence of anterior cruciate ligament tears in high school

[75] S.P. Broglio, B. Schnebel, J.J. Sosnoff, et al., Biomechanical properties of concussions in high school

football, Med. Sci. Sports Exerc. 42 (2010) 2064–2071, https://doi.org/10.1249/MSS.0b013e3181dd9156.

[76] Ridell InSite Smart Football Helmet, http://www.riddell.com/InSite#howitworks (accessed 03.04.18).

[77] J.M.Waldie, D.J. Newman, A gravity loading countermeasure skinsuit, Acta Astronaut. 68 (7–8) (2011)

722–730.

[78] NASA, Exercising in Space, https://www.nasa.gov/audience/foreducators/stem-on-station/ditl_

exercising (accessed 03.04.18).

[79] NASA Tumblr, Exercising in Space, https://nasa.tumblr.com/post/136706596374/exercising-inspace

(accessed 03.04.18).

[80] J.K. De Witt, L.L. Ploutz-Snyder, Ground reaction forces during treadmill running in microgravity, J.

Biomech. 47 (10) (2014) 2339–2347.

[81] J.A. Loehr, S.M.C. Lee, K.L. English, J. Sibonga, S.M. Smith, B.A. Spiering, R.D. Hagan,Musculoskeletal

adaptations to training with the advanced resistive exercise device, Med. Sci. Sports Exerc. 43 (1) (2011)

146–156.

[82] N. Petersen, G. Lambrecht, J. Scott, N. Hirsch, M. Stokes, J.Mester, Postflight reconditioning for

European astronauts—a case report of recovery after six months in space,Musculosk. Sci. Pract. 27 (2017)

S23–S31.