biomass fuel chemical analysis

Upload: girishtiwaskar

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Biomass Fuel Chemical Analysis

    1/11

    I[~ U TNEER H

    mE , w N

    0016- 2361( 95) 00142- 5

    uel Vol. 74 No. 12, pp. 1812-1822, 1995

    Copyright 1995 Elsevier Science Ltd

    Printed in Great Britain. All rights reserved

    0016-2361/95/ 9.05 + 0.00

    I n f l u e n c e o f m i n e r a l m a t t e r o n b i o m a s s

    p y r o l y s i s c h a r a c t e r i s t i c s

    K . R a v e e n d r a n , A n u r a d d a G a n e s h a n d K a r t i c C . K h i l a r t

    *Energy Systems Engineering, Dep artment of Mech anical Engineering,

    tDepartment o f Ch emical Engineering, Indian Insti tute of Technology, Bomb ay-400 076,

    India

    Received 14 October 1994)

    Studies on wo od and tw elve oth er types of biomass show ed th at in general, deashing increased the volatile

    yie ld, ini tia l deco mpo sit ion temperatu re and ra te of pyrolys is . H owe ver , coir pi th, gro und nut shell and r ice

    husk showed an increase in ch ar yield on deashing, which is a t t r ibuted to their high l ignin, potass ium an d

    zinc conte nts. These results were supp orte d by studies on salt- impregnated, acid-so aked an d synthetic

    biomass . A cor rela t ion was deve loped to pred ict the influence o f ash on volat i le yie ld. On deashing, l iquid

    yield increased and gas yield decreased for all the biomass studied. The active surface area increased on

    deashing. The heating value of the liquid increased, whereas the increase in char heating value was only

    marginal.

    Keywords: biomass; p yrolysis; mineral m atter)

    B i o m a s s i s n o w w e l l r e c o g n i z e d a s a p o t e n t i a l r e n e w a b l e

    s o u r c e o f e n e r g y . T h e r m o c h e m i c a l c o n v e r s i o n o f b i o -

    m a s s i s o n e o f t h e m o s t c o m m o n a n d c o n v e n i e n t ro u t e s

    f o r c o n v e r s i o n i n t o e n e r g y . T h i s i n c l u d e s c o m b u s t i o n ,

    g a s i f i c a t i o n , l i q u e f a c t i o n a n d c a r b o n i z a t i o n . I n a l l t h e s e

    p r o c e s s e s , p y r o l y s i s p l a y s a k e y r o l e i n t h e r e a c t i o n

    k i n e t i c s a n d h e n c e i n r e a c t o r d e s i g n a n d d e t e r m i n i n g

    p r o d u c t d i s t r i b u t i o n , c o m p o s i t i o n a n d p r o p e r t i e s .

    I n t h e l a s t t w o d e c a d e s , e x t e n s i v e s t u d i e s h a v e b e e n

    c o n d u c t e d t o u n d e r s t a n d t h e c o m p l e x i t y o f p y r o ly s is . T o

    o b t a i n o p t i m a l c o n d i t i o n s f o r t h e d e s ir e d p r o d u c t s , m u c h

    w o r k h a s g o n e i n t o s t u d y i n g t h e e f fe c ts o f p r o c e s s

    v a r i a b le s a n d t h e p r o d u c t d i s t r i b u t i o n . T h e e f fe c t o f

    f e e d s t o c k p r o p e r t i e s h a s r e c e n t l y b e e n i d e n t i fi e d a s o n e o f

    t h e k e y r e s e a r c h a r e a s 1. T h i s p a p e r r e p o r t s t h e r e s u l t s o f

    s t u d ie s o n t h e e f f ec t o f m i n e r a l m a t t e r p r e s e n t i n b i o m a s s

    o n t h e p y r o l y s i s c h a r a c t e r i st i c s , p r o d u c t d i s t r i b u t i o n a n d

    p r o d u c t p r o p e r ti e s .

    D i f f e r e n t b i o m a s s f u e l s c o n t a i n m i n e r a l m a t t e r i n

    v a r i o u s a m o u n t s . F u e l s s u c h a s w o o d a n d c o c o n u t s h e l l

    c o n t a i n < 1 w t w h e r e a s s tr a w a n d h u s k s c o n t a i n u p t o

    2 5 w t . G e n e r a l l y t h e m a i n e l e m e n t al c o n s t it u e n t s o f

    b i o m a s s m i n e r a l s a re S i, C a , K , N a a n d M g , w i t h s m a l l e r

    a m o u n t s o f S, P , F e , M n a n d A 1 . t h e se c o n s t i t u e n t s o c c u r

    a s o x i d e s , s i l i c a t e s , c a r b o n a t e s , s u l f a t e s , c h l o r i d e s a n d

    p h o s p h a t e s . T h e i n f l u e n c e o f c o m p o s i t i o n o n a s h

    d e f o r m a t i o n a n d f u s i o n t e m p e r a t u r e s f o r v a r i o u s b i o -

    2 3

    m a s s h a s b e e n st u d i e d b y O s r n a n . G a n e s h s t u d i e d th e

    i n f l u e n c e o f si l ic a i n ri c e h u s k a n d r i c e s t r a w o n t h e i r

    c o m b u s t i o n a n d g a s i fi c a ti o n c h a r a c t e ri s t ic s a n d r e p o r t e d

    t h a t a b o v e 1 1 4 6 K , s i l i c a i n b i o m a s s t r a p s t h e c a r b o n

    p a r t i c l e s , m a k i n g i t u n a v a i l a b l e f o r c o n v e r s i o n .

    T h e c a t a l y t i c ro l e o f m i n e r a l m a t t e r i n c h a r f o r m a t i o n

    h a s a l s o o f t e n b e e n r e p o r t e d . S h a f i z a d e z e t a l . 4 f o u n d

    t h a t i n o r g a n i c s a lt s s u p p r e ss t h e f o r m a t i o n o f t a r a n d

    f a v o u r c h a r - f o r m i n g s e c o n d a r y r e a c t i o n s . F e l d m a n n

    e t a l . s

    f o u n d t h a t m i x i n g o f w o o d a s h o r c a l ci u m o x i d e

    w i t h w o o d i n c r e as e d t h e y i e l d o f li q u i d p r o d u c t s . T h e

    p y r o l y s i s s t u d i e s c o n d u c t e d b y G r a y

    e t a l . 6

    o n d e a s h e d

    w o o d w a s t e s h o w e d 9 2 i n c r e as e i n t a r y i e ld a n d 3 4

    a n d 3 3 r e d u c t i o n i n a q u e o u s a n d g a s e o u s p r o d u c t s

    r e s p e c t i v e l y . M a d o r s k y e t a l . 7 s h o w e d t h a t a d d i t i o n o f

    0 . 1 4 N a O H c o u l d in c r e a se t h e c h a r y i e ld b y u p t o 4 .

    Es s ig

    e t a l . 8

    d e m o n s t r a t e d a 2 3 5 i n c r ea s e i n c h a r y i e ld

    o n a d d i t i o n o f 0 . 1 N a C 1 t o c e ll u lo s e . T h e s e s t u d ie s

    i n d i c a t e t h a t s m a l l a m o u n t s o f i n o r g a n i c m a t e r i a l , a s i s

    p r e s e n t i n t h e b i o m a s s , a r e s u f f i c i e n t t o a l t e r t h e p y r o l y s i s

    b e h a v i o u r t o a l a rg e e x t e n t .

    H o w e v e r , m o s t o f t h e s tu d i e s r e p o r t e d p e r t a i n t o

    w o o d y b i o m a s s , a n d t h e in f l u en c e o n p r o d u c t p r o p e r t i e s

    r e m a i n s u n i n v e s t i g a t e d . T h e i n v e s t i g a ti o n s r e p o r t e d h e r e

    w e r e a i m e d t o w a r d s u n d e r s t a n d i n g t h e i n fl u e n c e o f a s h

    o n p r o d u c t d i s t r i b u t i o n a n d t h e i n d i v i d u a l p r o d u c t

    c h a r a c t e r i z a t i o n .

    E X P E R I M E N T A L

    S a m p l e s e l e c t i o n a n d p r e p a r a t i o n

    F e e d s t o c k p r o p e r t i e s .

    T h i r t e e n c o m m o n l y a v a i l a b l e

    t y p e s o f b i o m a s s i n t h e B o m b a y r e g i o n w e r e s e le c te d .

    T h e i r p r o x i m a t e a n a l y se s , u l t i m a t e a n a l y s es , h e a t i n g

    v a l u e s a n d b u l k d e n s i t i e s a r e p r e s e n t e d i n

    T a b l e 1

    a n d

    t h e i r c o m p o n e n t a n a l y s e s i n

    T a b l e 2 .

    T h e i r a s h c o m -

    p o s i t i o n s , d e t e r m i n e d b y t h e s t a n d a r d g e o l o g i c a l

    r o c k a n a l y s i s p r o c e d u r e 9 ' t u s i n g i n d u c t i v e l y c o u p l e d

    8 2 F u el 9 9 5 V o l u m e 7 4 N u m b e r 2

  • 8/10/2019 Biomass Fuel Chemical Analysis

    2/11

    able 1 Pro p e r t i e s o f b i o ma ss

    I n f l uenc e o f m i ne ra l ma t t e r on b i omas s py ro l y s i s K R av eend ran et a l

    P r o x i m a t e a n a ly s i s ( w t )

    U l t i m a t e a n a l y si s ( w t d b )

    H H V a D e n s i ty

    V M ( d a f ) A s h ( d b ) C H N O ( M J k g - 1 ) ( k g m - ' )

    Bag asse 84.2 2.9 43.8 5.8 0.4 47. l 16.29 111

    Co con ut co i r 82 .8 0 .9 47 .6 5 .7 0 .2 45 .6 14 .67 151

    Co con ut shel l 80 .2 0 .7 50 .2 5 .7 0 .0 43 .4 20 .50 661

    Co ir p i th 73 .3 7 .1 44 .0 4 .7 0 .7 43 .4 18 .07 94

    Co rn cob 85 .4 2 .8 47 .6 5 .0 0 .0 44 .6 15 .65 188

    Co rn s ta lks 80 .1 6 .8 41 .9 5 .3 0 .0 46 .0 16 .54 129

    Co t ton g in was te 88 .0 5 .4 42 .7 6 .0 0 .1 49 .5 17 .48 109

    G ro un dn ut shel l 83 .0 5 .9 48 .3 5 .7 0 .8 39 .4 18 .65 299

    M illet hu sk 80.7 18.1 42.7 6.0 0.1 33.0 17.48 201

    Rice hu sk 81.6 23.5 38.9 5.1 0.6 32.0 15.29 617

    Rice stra w 80.2 19.8 36.9 5,0 0.4 37.9 16.78 259

    Su bab ul wo od 85 .6 0 .9 48 .2 5 .9 0 .0 45 .1 19 .78 259

    W hea t s t raw 83 .9 11 .2 47 .5 5 .4 0 .1 35 .8 17 .99 222

    H i g h e r h e a t i n g v a l u e

    T a b l e 2 C o m p o n e n t a n a l y si s o f b i o m a s s ( w t d b )

    T o t a l T o t a l

    Ash Ho l o c e l l u lo se C e l l u lo se He m i c e l l u lo se L i g n i n Ex t ra c t i v e s (h o l o ) (h e mi )

    Bag asse 2.9 65.0 41.3 22.6 18.3 13.7 99.9 98.8

    Co con ut co i r 0 .8 67 .0 47 .7 25 .9 17 .8 6 .8 111 .7 99 .0

    Co co nu t shell 0.7 67.0 36.3 25.1 28.7 8.3 98.7 100.1

    Co ir pit h 7.1 40.6 28.6 15.3 31.2 15.8 94.8 98.1

    Co rn cob 2.8 68.2 40.3 28.7 16.6 15.4 102.9 101.8

    Co rn stalk s 6.8 63.5 42.7 23.6 17.5 9.8 97.6 100.5

    Co tto n gin wa ste 5.4 90.2 77.8 16.0 0.0 1.1 86.7 100.2

    G ro un dn ut shel l 5 .9 55 .6 35 .7 18 .7 30 .2 10 .3 102 .0 100 .7

    Mi llet hu sk 18.1 50.6 33.3 26.9 14.0 10.8 96.5 104.1

    Ric e hu sk 23.5 49.4 31.3 24.3 14.3 8.4 96.5 101.8

    Rice str aw 19.8 52.3 37.0 22.7 13.6 13.1 98.8 106.2

    Sub abu l wo od 0 .9 65 .9 39 .8 24 .0 24 .7 9 .7 101 .2 99 .0

    W he at s t raw 11 .2 55 .8 30 .5 28 .9 16 .4 13 .4 96 .7 100 .4

    T a b l e 3 A s h c o m p o s i t i o n o f b i o m a s s : m a j o r e l e m e n t s ( p p m w d r y b i o m a s s )

    A 1 C a F e M g N a K P S i

    Ba gas se - 1518 125 6261 93 2682 284 17 340

    Co con ut co i r 148 477 187 532 1758 2438 47 2990

    Co co nu t shell 73 1501 115 389 1243 1965 94 256

    Co ir pit h 1653 3126 837 8095 10 564 26 283 1170 13 050

    Co rn cob - 182 24 1693 141 9366 445 9857

    Co rn s ta lks 1911 4686 518 5924 6463 32 2127 13 400

    Co t ton g in waste 3737 746 4924 1298 7094 736 13 000

    G ro un d nut shel l 3642 12 970 1092 3547 467 17 690 278 10 960

    M illet hu sk - 6255 1020 11 140 1427 3860 1267 150 840

    Rice husk - 1793 533 1612 132 9061 337 2206 90

    Rice s t raw - 4772 205 6283 5106 5402 752 174 510

    Su bab ul wo od - 6025 614 1170 92 614 100 195

    W he at s t raw 2455 7666 132 4329 7861 28 930 214 4444 0

    p l a s m a - a t o m i c e m i s s i o n s p e c t r o s c o p y a r e p r e s e n t e d in

    Tables 3 a n d 4 .

    Sample preparation

    T o u n d e r s t a n d t h e i n f l u e n c e

    o f m i n e r a l m a t t e r , t w o t y p e s o f s a m p l e w e r e s t u d i e d :

    ( 1) d e m i n e r a l i z e d b i o m a s s ; ( 2 ) s y n t h e t i c b i o m a s s . T o

    c o n f i r m t h e re s u l t s , s t u d i e s w e r e a l s o c a r r i e d o u t o n

    s a l t - i m p r e g n a t e d a n d a c i d - s o a k e d s a m p l e s o f s e l e c t e d

    b i o m a s s t y p e s . T h e s a m p l e s w e r e p r e p a r e d a s f o l lo w s .

    D e m i n e r a l i z a t i o n w a s c a r r i e d o u t i n t w o s t a g e s . I n t h e

    f i rs t s t a g e , b i o m a s s s a m p l e s w i t h p a r t i c l e s iz e r a n g i n g

    f r o m 1 00 t o 2 5 0 m m w e r e t r e a t e d w i t h 1 0 H C 1 a t 6 0 C

    f o r 4 8 h w i t h c o n s t a n t s t i r r i n g . I n t h e s e c o n d s t a g e ,

    b i o m a s s o f h i g h e r s i li c a c o n t e n t w a s f u r t h e r t r e a t e d w i t h

    a q u e o u s 5 N a O H f o r 1 h a t 9 0 C . S a m p l e s w e r e t h e n

    w a s h e d w i t h d i s t i l l e d w a t e r , f i l t e r ed , d r i e d a n d s t o r e d .

    S y n t h e t i c b i o m a s s s a m p l e s w e r e p r e p a r e d b y m i x i n g

    t h e i n d i v i d u a l b i o m a s s c o n s t i t u e n t s ( c e ll u lo s e , l ig n i n ,

    x y l a n , e x t r a c t i v e s a n d a s h ) , in p r o p e r p r o p o r t i o n s .

    E x t r a c t i v e s w e r e i s o l a te d f r o m e a c h b i o m a s s t y p e

    a c c o r d i n g t o T A P P I s t a n d a r d T 1 1 m . T h e a s h w a s

    o b t a i n e d b y b u r n i n g c o r r e s p o n d i n g b i o m a s s i n a m u f f l e

    f u r n a c e , T h e p r o p o r t i o n s o f t h e i n d i v i d u a l c o n s t i t u e n t s

    w e r e ta k e n f r o m t h e c o m p o n e n t a n a l y s e s . T o s i m u l a t e

    F u el 1 9 9 5 V o l u m e 7 4 N u m b e r 12 1 8 1 3

  • 8/10/2019 Biomass Fuel Chemical Analysis

    3/11

    I n f l u e n c e o f m i n e r a l m a t t e r o n b i o m a s s p y ro l y s is . K . R a v e e n d r a n

    e t a l

    T a b l e 4 A s h c o m p o s i t i o n o f b i o m a s s : t r a ce e l e m e n t s p p m w d r y b i o m a s s )

    B i o m a s s

    Co Cr Cu Mn Ni S Zn

    B a g a s s e 1 8 9 1 6 6 0 1 6

    C o c o n u t c o ir 0.6 2.0 68 4 2 64 25

    C o c o n u t s h e l l

    0.5 0.3 5 1 13 35 9

    Coi r pith 3.2 0.2 1239 27 22 476 40

    C o r n c o b T ~ 19 6 15 11

    C o r n s t a l k s

    8.0 11 32 12 13 564 32

    C o t t o n g i n w a s t e T 38 1 0 58 22

    G r o u n d n u t s h e l l

    2.3 6 11 44 l I 299 52

    M i l l e t h u s k T 38 49 317 94

    R i c e h u s k 21 108 32 163 1244

    R i c e s t r a w

    T 463 45 221 47

    S u b a b u l w o o d 1 2 1 66 40

    W h e a t s t r a w 7 25 25 787 18

    a P r e s e n t i n t r a c e a m o u n t

    r

    . .. .. . . . . m - - N [ l : , > q

    , ,, - , ;,

    T b

    ; . .

    :.: Y,;.:

    - : - , i

    T T HER NO COUPLE

    1 ROTAHETER

    2 GAS HEATER

    3 PYROLYSIS REACTOR

    (ELECTRICAL FURNACEI

    4 CERAMIC WOOL

    INSUL TION

    5 HEATING EkE MENT

    6 CERAMIC TUBE

    7 SAMPLE BOAT

    8 CLEANING PORT

    9 PRODUCT VAPOUR

    10 TEMPERATURE CONTROLLER

    11 TEMPERATURE INDICATOR

    12 CONDENSER TUBE

    13 CHILLED WAT ER TANK

    1/, WATER CIRCULATION PUMP

    15 CONDENSING TRAIN

    16 GAS FLOW METER

    F i g u r e 1 S c h e m a t i c o f t h e b i o m a s s p y r o l y s e r

    d e m i n e r a l i z e d b i o m a s s , a s h w a s e x c lu d e d f r o m t h e

    m i x t u r e .

    P o t a s s i u m c h l o r i d e w a s i m p r e g n a t e d i n t o d e m i n e r -

    a l i z e d c o i r p i t h , ri c e h u s k a n d g r o u n d n u t s h e l l a t d i ff e r e n t

    c o n c e n t r a t i o n s . T h e s e b i o m a s s t y p e s w e r e c h o s e n o n t h e

    b a s is o f t h e r e su l t s r e p o r t e d b e l o w . B i o m a s s s a m p l e s

    1 t o o l , ~ 2 5 g ) w e r e s o a k e d f o r 4 8 h i n K C 1 s o l u t i o n s o f

    s t r e n g t h 0 . 0 1 a n d 0 . 3 6 g m l - Z a t r o o m t e m p e r a t u r e . Z i n c

    c h l o r i d e w a s s i m i l a r l y i m p r e g n a t e d i n t o t h e s a m e

    b i o m a s s t y p e s , u s i n g 0 .0 1 a n d 1 .0 g m l - ~ s o l u t i o n s . T h e

    a m o u n t s o f s a lt s i m p r e g n a t e d w e r e d e t e r m i n e d b y a s h

    a n a l y s i s .

    T h e r m a l a n a l y s i s

    D y n a m i c t . g. a , s t u d i e s w e re c a r r ie d o u t w i t h a t h e r m a l

    a n a l y s e r o n u n t r e a t e d , d e m i n e r a l i z e d a n d s y n t h e t i c

    b i o m a s s s a m p l e s a t a h e a t i n g r a te o f 5 0 K m i n - 1 i n a

    n i t r o g e n f lo w .

    P y r o l y s i s

    E x p e r i m e n t s w e r e c o n d u c t e d i n a p a c k e d b e d p y r o l y s er

    d e s i g n e d f o r t h e p u r p o s e , w i t h p r o v i s i o n f o r c o l l e c ti n g

    t h e p y r o l y s i s p r o d u c t s .

    igure

    s h o w s a s c h e m a t i c o f t h e

    p y r o l y s i s r e a c t o r .

    B a s e d o n t h e r e s u l t s o f t h e t h e r m a l a n a l y s i s , f i v e

    r e p r e s e n t a t i v e b i o m a s s t y p e s w e r e s e l e c t e d f o r f u r t h e r

    i n v e s t i g a t i o n s u s i n g t h i s r e a c t o r. I s o t h e r m a l e x p e r i m e n t s

    i n a n i t r o g e n f l o w a t 7 7 3 K w e r e c o n d u c t e d o n 1 0 - 2 5 g

    s a m p l e s o f e a c h o f th e s e fi v e b i o m a s s s a m p l e s , b o t h

    u n t r e a t e d a n d d e m i n e r a l i z e d . T h e v o l a t i l e s e v o l v e d w e r e

    c o l l e c te d a n d q u e n c h e d i n a t r a in o f f la s k s i m m e r s e d i n

    a n ic e b a th . T h e r e m a i n i n g n o n - c o n d e n s a b l e g a s e s w e re

    p a s s e d t h r o u g h a f l o w m e t e r . T h e e x p e r i m e n t w a s

    c o n t i n u e d u n t i l t h e e v o l u t i o n o f g a s e s c e a se d . T h e

    f u r n a c e w a s t h e n s w i t c h e d o f f a n d t h e r e m a i n i n g c h a r

    w a s c o o l e d i n t h e n i t r o g e n f l o w t o r o o m t e m p e r a t u r e a n d

    t h e n w e i g h e d . T h e t a r y i e ld w a s o b t a i n e d f r o m t h e

    1 8 1 4 F ue l 1 9 9 5 V o lu m e 7 4 N u m b e r 1 2

  • 8/10/2019 Biomass Fuel Chemical Analysis

    4/11

    I n f l uenc e o f m i ne ra l ma t t e r on b i omas s py ro l y s is K R av eend ran e t a l

    1 . 0 . . , , , , , , , 2 - 0

    . . . . U n t r e a t e d

    0 , 8 - C O R N

    ~ \ . V I O e a s h e d = 1 . 5

    1 . 0 o ,

    o 0.~

    1 5 0 2 0 0 2 ; 0 3 0 0 3 ' 5 0 4 0 0 , 5 0 5 ' 0 0 5 ' 5 0 6 ' 0 0 6 5 0 7 0 0

    T e m p e r a t u r e ( { ; )

    igure

    2 T . g . a . a n d d . t . g, c u r v e s o f u n t re a t e d a n d d e m i n e r a l i z e d c o r n

    c o b

    difference in the weight of the flasks before and after the

    experiment. The yield was obtained by difference.

    Repeatable results were achieved.

    The char and liquid products were tested for proper-

    ties including ultimate analysis, heating value, iodine

    adsorption of char and BET surface area o f char.

    RESULTS AND DISCUSSION

    Tables 3 and 4 in conjunction with Table 1 show that the

    straws and husks are characterized by ash of high silica

    content (90-95 wt ). Wood ash is characterized by high

    Ca (70wt ), Mg (14wt ) and K (7wt ) contents,

    whereas coconut coir ash has high K (36 wt ) and Na

    (13wt ) contents. The ash of bagasse, corn cob and

    corn stalks has high K, Mg and Ca contents. It can also

    be seen that rice husk, groundnut shell, coir pith and

    wheat straw have high K contents, and rice husk in

    particular contains ~100 times as much Zn as the other

    biomass types.

    Therm al ana lys is

    Influence o f demineralization Representative t.g.a.

    and d.t.g, curves for untreated and demineralized bio-

    mass are presented in

    Figure 2

    The changes in volatile

    and char yields on demineralization, as well as the

    changes in maximum rate of pyrolysis and incipient

    devolatilization temperature for all the biomass types

    are shown in

    Table 5

    Table 5 clearly brings out the influence of mineral

    matter. It can be seen that the removal of mineral matter

    increases the yield of volatiles except for coir pith,

    groundnut shell and rice husk. Demineralization

    increases the maximum rate of devolatilization and the

    initial decomposition temperature in all cases. The

    exceptional behaviour of the above three biomass types

    may be explained on the following grounds.

    Rice husk, groundnut shell and coir pith can be seen to

    Tab l e 5 I n f l u e n c e o f d e m i n e r a l i z a t i o n o n p y r o l y s i s : t . g .a , s t u d i e s

    Y i e l d ( w t % ) b

    M a x . d e v o l.

    S t a t e a V o l a t i l e s C h a r r a t e ( w t % K - ] )

    R e l a t iv e c h a n g e ( % ) T e m p e r a t u r e ( K )

    V o l a ti l es C h a r M a x . r a t e I D T I P T T M R

    B a g a s s e U 7 9 . 7 2 0 . 3 0 . 9 2

    D 8 1 .4 1 8 .6 1 .2 7 2 .2

    C o c o n u t c o i r U 6 9 . 8 3 0 . 2 0 . 8 0

    D 70 .8 29 .2 1 .28 1 .3

    C o c o n u t s h e l l U 7 0 . 7 2 9 . 3 0 . 7 5

    D 72 .7 27 .3 1 .01 2 .80

    C o i r p i t h U 5 6 . 8 4 3 . 2 0 . 5 6

    D 5 2 . 2 4 7 . 8 0 . 5 0 - 8 . 2

    C o r n c o b U 7 3 . 5 2 6 . 5 1 .0 8

    D 88 .8 11 .2 1 .64 20 .8

    C o rn s t a l k s U 7 0 .9 2 9 .1 1 .1 4

    D 7 7 .0 2 8 .0 1 .9 5 8 .6

    C o t t o n g i n w as t e U 8 0 .6 1 9 .4 1 .3 1

    D 89 .4 10 .6 1 .86 10 .8

    G r o u n d n u t s h e l l U 6 8 . 7 3 1 . 3 0 .6 7

    D 6 6 . 7 3 3 . 3 0 . 7 5 - 2 . 9

    M i l l e t h u s k U 7 0 .1 2 9 .9 0 .8 8

    D 80 .6 19 .4 1 .48 15 .0

    R i c e h u s k U 7 0 . 0 3 0 . 0 0 . 8 4

    D 6 6 .2 3 3 .8 1 .0 7 -5 .1

    R i ce s t r aw U 7 4 .7 2 5 .3 1 .0 3

    D 82 .1 17 .9 1 .31 9 .9

    D D a 8 1 .6 1 8 .4 1 .2 7 9 .3

    S u b a b u l w o o d U 7 5 . 4 2 4 . 6 0 . 9 7

    D 77 .3 22 .7 1 .27 2 .4

    W h e a t s t r a w U 7 2 . 8 2 7 . 2 0 . 9 0

    D 75 .1 24 .9 1 .21 3 .2

    4 8 3 6 8 8 6 7 7

    - 8 . 5 3 9 . 4 5 2 8 7 0 8 6 7 3

    5 1 3 6 7 3 6 7 2

    - 3 . 0 5 8 . 9 5 4 8 7 1 3 6 7 8

    5 1 8 6 7 8 6 1 5

    - 6 . 6 3 5 . 2 5 3 3 7 1 8 6 2 0

    4 8 3 6 6 3 6 2 2

    1 0 .8 -1 1 . 0 5 1 3 9 4 8 6 3 3

    5 3 3 6 5 3 6 0 3

    - 5 7 . 7 5 1 . 5 5 5 8 6 9 8 6 6 0

    4 9 8 6 5 3 6 3 4

    - 0 . 2 5 8 . 9 5 3 3 6 8 3 6 3 9

    5 2 3 6 8 8 6 7 9

    -4 5 .1 3 6 .1 5 5 3 6 9 3 6 8 4

    4 9 3 6 8 3 6 6 2

    6.3 12 .1 513 673 668

    5 2 3 6 6 3 6 5 3

    - 1 6 . 2 6 8 . 4 5 0 3 6 8 3 6 5 8

    5 1 8 6 6 3 6 6 6

    1 2 .6 2 6 .9 5 4 3 6 9 3 6 6 8

    518 673 651

    - 2 9 . 3 2 7 . 0 5 4 8 7 0 3 6 5 3

    - 2 7 . 4 2 3 . 3 5 2 3 6 9 3 6 5 5

    4 9 8 6 0 3 6 7 2

    - 7 . 3 3 0 . 8 5 2 8 7 2 8 6 8 8

    4 9 3 6 6 3 6 0 4

    - 8 . 5 3 4 . 3 5 1 8 6 6 8 6 1 7

    a U , u n t r e a t e d ; D , d e m i n e r a l i z e d

    b D a f b i o m a s s b a s i s

    ( I D T , i n it ia l d e c o m p o s i t i o n ; I P T , i n v o l u t i o n p o i n t ; T M R , m a x . r a t e

    a A l k a l i - t r e a t e d a f t e r a c i d t r e a t m e n t

    F u el 1 9 9 5 V o l u m e 7 4 N u m b e r 1 2 1 8 1 5

  • 8/10/2019 Biomass Fuel Chemical Analysis

    5/11

    I n f l u e n ce o f m in e r a l ma t te r o n b i o ma ss p y r o l ys i s K. Ra ve e n d r a n et al

    F i g u r e

    3

    1 5 . 0

    1 0 . 0 ~

    ~ -

    m

    o 5 . 0

    o

    c

    c

    ~ 0 . 0 .

    u

    5.0.

    I 0 . 0

    -1.1

    I I I

    B G - B A G A S S E

    CN-CASHEW NUT S H E L L

    A C B C R - C O C O N U T C O I R

    C S - C O C O N U T

    S H E L L

    M H C P - C O I R P I T H

    A C B - C O R N C O B _

    C W C S - C O R N S T A L K S

    A CW -COTTONGI N

    W A S T E

    R S

    GS-GROUNDNUT

    S H E L L

    A ~ . ~ ~ M H - M I L L E T H U S K

    R H - R I C E H U S K

    C T R S - R I C E S T R A W - -

    W D - W O 0 0

    W S - W H E A T S T R A W

    .A

    W S

    A A C S ~

    S E = 2 2 9

    Y - - 0 . 9 6 4 x X . , 7 .1 9 2

    R H ' , , . A

    I

    I c g

    I

    I

    I

    I

    I i I I I I I I I [ I I I I i i l I l i i i I I I i I I I I i

    &.0 7.5 9.0 14.0

    L ign in l 095 2X K 1 3727 Xz0 0996

    C h a n g e i n v o l a ti l es v e r s u s p r o d u c t o f l i g ni n p o t a s s i u m a n d z i n c c o n t e n t s

    I

    1 5 . 0

    u

    O

    u.

    O

    t-

    O1

    F i g u r e 4

    1 .00 ~ 1

    0 . 7 5

    0 . 5 0 /

    ~ll

    0 .25

    0.00 :a.~.

    150 250 350

    I ~ i

    1.00

    O R I G I N A L ]

    - - ~ ~ S Y N T H E T IC 0 .7 5

    I

    450

    0 . 5 0

    025

    0.~

    7

    Temperature( C

    O

    e

    O

    >

    O

    T . g . a . c u r v e s o f n a t u r a l a n d s y n t h e ti c b i o m a s s p y r o l y s is

    1.00 I ~ ~ I I i I 1.00

    ~ O E S H E D

    7 5 . 0 - - ~ J ~ll~ - - ~ - ~ - - S Y N T H E T I C - 0 . 7 5

    ;.= o ~ W r T . 0 U T A s . i

    0.50

    0.0-

    .~ 25.0 - o,25

    0.00 I-n.-. ~ - - ,--'a--D--n- .~~ t~ I

    I I I I I v . v v

    1 5 0

    250 350 450 550 650 7 0 0

    T e m p e r a t u r e ( C )

    h a v e h i g h l i g n i n c o n t e n t s

    Table 2) .

    I t i s k n o w n f r o m

    t h e l i t e r a t u r e T a n d t h e a u t h o r s s t ud i e s t h a t o n

    p y r o l y s i s , li g n i n g i v e s a h i g h e r c h a r y i e l d t h a n c e l lu l o s e

    o r h e m i c e l l u l o s e . F u r t h e r , p o t a s s i u m , w h i c h i s e x c e p -

    t i o n a l l y h i g h i n th e s e t h r e e k i n d s o f b i o m a s s , i s k n o w n t o

    be a s t ro ng ca ta lys t fo r cha r gas i f i ca t ion 12 15, p ro m ot i ng

    t h e g a s i f ic a t io n o f c h a r b y C O 2 a n d H 2 0 . I t c a n b e

    u n d e r s t o o d t h a t s in c e C O 2 a n d H 2 0 a r e p r i m a r y

    p r o d u c t s o f p y r o l y s is , i n t h e p r e se n c e o f p o t a s s i u m t h e y

    reac t w i th the cha r (p resen t in h igh y ie ld in i t i a l ly in these

    c a s e s b e c a u s e o f t h e h i g h l i g n i n c o n t e n t ) t o f o r m C O a n d

    H 2 , t h e r e b y d e c r e a s i n g t h e c h a r y i e l d . I n o t h e r b i o m a s s

    types , no t on ly i s t he re l e s s po t as s iu m bu t a l so l es s l i gn in .

    I n w h e a t s t r a w , e v e n t h o u g h t h e p o t a s s i u m c o n t e n t i s

    h i g h , b e c a u s e o f t h e l o w e r l i g n i n c o n t e n t t h e c h a r y i e l d

    d o e s n o t i n c r e a s e o n d e m i n e r a l i z a t i o n .

    1 8 1 6 F u e l 1 9 9 5 V o l um e 7 4 N u m b e r 1 2

  • 8/10/2019 Biomass Fuel Chemical Analysis

    6/11

    In f lue nce o f min era l mat te r on b ioma ss py ro lys is . K . Rave endran

    et al

    Table 6 Influence of salt impregnation on pyrolysis: t.g.a, studies

    Yield (wt f

    Relative change ( )b

    Max. devol.

    Volatiles Char rate (wt K- l ) Vola ti les Char Max. rate

    Temperature (K)c

    IDT IPT TMR

    Coir pith

    KCI (H)a 86.5 13.5 0.80 65.7 -71.7 59.9

    (L)~ 62.6 37.4 0.99 19.9 -21.8 98.5

    ZnCI2 (H) 99.0 1.0 0.69 89.7 -97.9 38.0

    (L) 63.4 36.6 0.43 21.5 -23.4 13.1

    Untreated 56.8 43.2 0.56 8.9 -9.7 12.4

    Demineralized 52.2 47.8 0.50 -

    Groundnut shell

    KC1 (H) 79.3 20.7 1.04 18.9 -37.9 38.4

    (L) 74.6 25.4 1.12 11.8 -23.6 48.8

    ZnC12 (H) 98.6 1.4 0.68 47.8 -95.6 -8 .8

    (L) 70.8 29.2 0.57 6.1 -12.2 -23.5

    Untreated 68.7 31.3 0.67 3.0 -6.0 -10.8

    Demineralized 66.7 33.3 0.75

    Rice husk

    KC1 (H) 80.7 19.3 1.06 21.9 -42.9 - 1.4

    (L) 76.6 23.4 1.15 15.6 -30.7 7.5

    ZnCI2 (H) 97.9 2.1 0.66 47.8 -93.8 -38.3

    (L) 77.7 22.3 0.45 17.4 -34.1 -58.2

    Untreated 70.0 30.0 0.84 5.7 -11.2 -21.2

    Demineralized 66.2 33.8 1.07 - -

    483 683 370

    463 693 365

    698 953 883

    503 778 693

    483 663 622

    513 948 633

    493 683 653

    493 683 643

    693 943 883

    493 773 583

    493 683 662

    513 673 668

    533 603 658

    533 603 653

    723 953 883

    603 883 773

    518 703 666

    543 673 668

    a H, high, L, low, concentration of solution (0.36 and 0.01 gml J for KC1, 1.0 and 0.1 gml -j for ZnCI2)

    b Compared with the demineralized biomass

    a b l e

    7 Influence of ash on pyrolysis in reactor

    Yield (wt daf) Relative change ( )

    State Vol. Char Liquid Gas Vol. Char Liquid Gas

    Coir pith U 70.5 29.5 29.4 41.0

    D 68.7 31.3 36.2 32.5 -2 .4

    Corn cob U 79.9 20.1 37.4 42.5

    D 87.1 12.9 43.4 43.6 8.9

    Groundnut shell U 72.9 27.1 40.5 32.5

    D 72.5 27.5 45.9 26.6 -0 .5

    Rice husk U 82.7 17.3 41.2 41.5

    D 75.6 24.4 57.4 18.2 -8 .6

    Wood U 80.7 19.3 22.6 58.0

    D 86.4 13.6 40.1 46.4 7.1

    5.5 23.1 -20.8

    -35.6 16.0 -3.2

    1.5 13.4 -9.1

    41.3 39.3 -56.2

    -29.8 76.9 -20.1

    In a similar manner, the presence of zinc (known to be

    a good activating agent) in rice husk as well as the high

    lignin content explain the increase in char yield on

    demineral izat ion. The co mbined influence of potassium,

    zinc and high l ignin conten t is represented in Figure 3.

    The fol lowing corre lation was developed for this

    behaviour:

    A V = -0. 964 (L

    l ' 0 9 5 v . - x l ' 3 7 2 7 V 0 . 0 9 9 6 ~ . / x

    ) + 7.192

    where A V = change in p ercentage yield of volatiles due

    to demineral izat ion, L = l ignin content (wt ) of bio-

    mass, X~: = fraction of pota ssi um in silica-free ash, an d

    Xz -- fraction of zinc in silica-free ash. This correlation

    was obtaine d by non -l inear optimizat ion for these

    biomass types with a standard error of 2.29. To validate

    this correlation, a further biomass type, namely cashew

    nut shell, was studied. The change in percentage yield of

    volati les obtain ed experimental ly was -7 .37 and the

    model predict ion was -7. 22. This correlat ion can there-

    fore be used to predict the in fluence of mineral matte r

    satisfactorily.

    As can be seen in

    Figure 3

    zero on the y-axis,

    representing no change in volat i le matter, corr esponds to

    a value of 7.5 on the x-axis. When the value of the

    product in brackets in the above correlation exceeds 7.5,

    therefore, the chan ge in yield of volatiles is negative.

    Synth et ic bioma ss s tudies . Figure 4 compares the t.g.a.

    and d.t.g, curves of synthetic and u ntrea ted representative

    biomass (coir pith). The pyrolysis characteristics of the

    synthetic biomass match those of the natural one well.

    This is true for all the biomas s types tested. These results

    confirm the definite role played by mineral matter,

    irrespective of its structure and other properties, in the

    pyrolysis of the biomass.

    In f luence o f sa l t impregnat ion .

    The specific pyrolysis

    behaviour of groundnut shel l , rice husk and coir pi th

    F ue l 1 9 9 5 V o l u m e 7 4 N u m b e r 1 2 1 8 1 7

  • 8/10/2019 Biomass Fuel Chemical Analysis

    7/11

    In f lue nce o f mine ra l ma t te r on b iomass py ro lys is . K . Ravee ndran e t a l

    Table 8 Inf luence of chlor ide sa l t imp regnatio n on pyrolysis in reac tor

    Sa l t Y ie ld (w t% da f )

    im pre gna te d

    (wt%) Vola t i le s Cha r L iquid Ga s

    Re la t ive cha nge (% )

    Vola t i le s Cha r L iquid Ga s

    Coir pith

    KC1 (H)a 52.9 80.5 19.5 24.2 56.2

    (L) a 9.7 75.6 24.4 28.4 47.2

    ZnC12 (H) 18.8 90.1 9.9 25.9 64.2

    (L) 2.8 83.6 16.4 29.4 54.2

    Un trea ted - 70.5 29.5 29.4 41.0

    Dem inera l ized - 68.7 31.3 36.2 32.5

    Groundnut shell

    KC I (H) 54.0 76.7 23.3 34.3 42.5

    (L) 3.3 73.8 26.2 39.3 34.5

    ZnC12 (H) 13.9 90.8 9.2 18.9 71.9

    (L) 2.6 76.4 23.6 26.8 50.4

    Un trea ted - 72.9 27.1 40.5 32.4

    Dem inera l ized - 72.5 27.5 45.9 26.6

    Rice husk

    KC I (H) 27.6 77.4 22.6 35.1 42.3

    (L) 1.7 77.0 23.0 42.2 34.8

    ZnC12 (H) 9.8 87.1 12.9 38.4 48.8

    (L) 1.5 78.1 21.9 30.0 48.1

    Un trea ted - 82.7 17.3 41.2 41.5

    Dem inera l ized - 75.6 24.4 57.4 18.2

    17.1 -3 7.6 -33 .1 73.1

    10.0 -22 .0 -21 .7 45 .4

    31.1 -28 .5 -28 .5 97 .6

    21.7 -19 .0 -19 .0 67 .0

    - 2 . 5 - 5 . 5 - 1 8 . 8 2 6 .2

    5 .8 -15 .3 -25 .4 59 .5

    1 .8 -4 .7 -14 .4 29 .6

    25.1 -66 .3 -58 .9 170.0

    5 .3 -14 .1 -41 .6 89 .3

    0 .5 -1 .5 -11 .8 21 .7

    2 .4 -7 .5 -38 .8 132.2

    1 .9 -5 .9 -26 .4 91 .2

    15.3 -47 .3 -33 .1 167.9

    3 .4 -10 .5 -47 .7 164.3

    9 .5 -29 .2 -28 .2 128.2

    a Com pa re d wi th de m ine ra l i z e d b iom a ss

    Ta ble 9 Inf lue nce of c a rbona te s a l t im pre gna t ion on pyro lys is in r e a c tor

    Sa l t Y ie ld (w t% da f )

    im pre gna te d

    (wt%) Vola t i le s Cha r L iquid

    G a s

    Rela t ive change (%)a

    Vola t i le s Cha r L iquid Ga s

    Groundnut shell

    K z C O 3 (H) 49.4 68.3 31.7 6.1 62.2

    (L) 6.8 73.7 26.3 10.0 63.7

    Zn CO 3 (H) 39.5 83.9 16.1 5.9 78.0

    (L) 11.8 75.3 24.7 16.7 58.6

    Un trea ted 72.9 27.1 40.5 32.4

    Dem inera l ized 72.5 27.5 45.9 26.6

    Rice husk

    KzC O 3 (H) 33.3 71.7 28.3 5.5 66.2

    (L) 11.1 86.7 13.3 11.9 74.8

    ZnCO 3 (H) 22.8 78.4 21.6 5.5 72.9

    (L) 6.5 78.0 22.0 13.9 60.0

    Un trea ted - 82.7 17.3 41.2 41.5

    Dem inera l ized 75.6 24.4 57.4 18.2

    -5 .9 15 .6 -86 .8 133.6

    1.6 -4 .3 -78 .1 139.2

    15.1 -4 1.4 -87 .2 193.0

    3.8 -1 0.0 -6 3.6 120.1

    0 .5 -1 .5 -11 .8 21 .7

    -5 .1 15 .6 -90 .4 263.9

    14.7 -45 .5 -79 .4 311.0

    3 .8 -11 .8 -90 .4 300.8

    2 .1 -6 .4 -75 .7 230.0

    9 .5 -29 .2 -28 .2 128.2

    a Com pa re d wi th de m ine ra l iz e d b iom a ss

    w a s f u r t h e r i n v e s t i g a t e d b y s t u d i e s c o n d u c t e d w i t h s a l t -

    i m p r e g n a t e d b i o m a s s . B e c a u s e o f th e r e la t i v e l y h ig h K

    c o n t e n t s o f g r o u n d n u t s h el l, co i r p i t h a n d r ic e h u s k

    T a b l e 3 )

    a n d t h e h i g h Z n c o n t e n t o f ri c e h u s k

    T a b l e

    4 ) , p o t a s s i u m a n d z i n c s a lt s w e r e u s e d f o r i m p r e g n a t i o n .

    T h e r e s u lt s a re c o m p a r e d w i t h t h o s e f o r t h e u n t r e a t e d

    a n d d e m i n e r a l i z e d o r i g i n a l b i o m a s s i n T a b l e 6 .

    T a b l e 6

    s h o w s t h a t , o n i m p r e g n a t i o n w i t h e it h e r K C 1

    o r Z n C 12 , a t b o t h l o w a n d h i g h c o n c e n t r a t i o n s , t h e y ie l d

    o f v o l a t i l e s i n c r e a s e s f o r a l l t h r e e b i o m a s s t y p e s t h e r e b y

    r e d u c i n g t h e c h a r y i e l d . I t i s e v i d e n t f r o m t h e s e r e s u l t s

    t h a t t h e p o t a s s i u m a n d z i n c p r e s en t i n t h e u n t r e a t e d

    b i o m a s s i n f l u e n c e t h e f o r m a t i o n o f v o l a t i l e s , s o t h a t o n

    d e m i n e r a l i z a t i o n , g r o u n d n u t s h el l, c o i r p i t h a n d r i ce

    h u s k y i e l d l e ss v o l a t i l e s . T h e i n i t i al d e c o m p o s i t i o n

    t e m p e r a t u r e d e c r e a s e s o n K C 1 i m p r e g n a t i o n . I n c o n t r a s t ,

    Ta ble 10 Crys ta l l in i ty inde x of b iom a ss

    Crysta l l ini ty index

    C h a n g e

    Biom a ss Unt re a te d De m ine ra l i z e d in Cr l (%)

    Co ir pi th 8.7 12.5 43.2

    Corn c ob 34 .6 32 .3 -6 .6

    Gro und nut shell 25.0 50.1 100.0

    Rice husk 43.6 53.3 22.2

    W ood 44 .0 41 .8 -5 .1

    Z n C 12 i m p r e g n a t i o n n o t o n l y in c r e a se s th e d e c o m p o s i -

    t i o n t e m p e r a t u r e b u t i n c r e a s e s i t m o r e , t h e h i g h e r t h e s a lt

    c o n c e n t r a t i o n . I t i s c l e a r f r o m t h i s t h a t t h e s h i f t in

    d e c o m p o s i t i o n t e m p e r a t u r e o b s e r v e d o n d e m i n e r a l i z a -

    8 8 Fue 995 Volume 74 Num ber 2

  • 8/10/2019 Biomass Fuel Chemical Analysis

    8/11

    I n f l uenc e o f m i ne ra l ma t t e r on b i omas s py ro l y s i s K R av eend ran et al

    a b l e

    11 Char adsorption properties

    State InZdex

    Change

    12 in 12 12 12 BET Change

    adsorbed adsorbed index adsorbed area in BET

    (wt%) (%) (daf) (daf) (m2 g J) area (%)

    Coir pith

    Corn cob

    Groundnut shell

    Rice husk

    Wood

    Standard c

    U 1.56 29.9

    D 2.07 39.8

    U 1.20 23.0

    D 2.89 55.5

    U 0.89 19.6

    D 2.01 43.0

    U 2.09 44.6

    D 1.62 34.6

    DD a 3.20 61.3

    U 0.72 15.5

    D 0.75 16.1

    - 4.18 98.0

    1.77 33.9 470

    32.9 2.26 45.2 625 32.6

    1.49 28.5 381

    141.4 3.51 67.3 500 31.2

    1.11 24.4 277

    119.0 2.18 46.6 375 35.4

    6.42 137.1 260

    22.4 6.59 140.8 340 30.8

    0.75 16.2 234

    3.9 0.76 16.2 252 7.7

    Alkali-treated after acid treatment

    b i2 adsorbed (g) from standard 12 solution (2.7gml I) by 0.5g of carbon

    c AR-grade activated carbon

    Table 12 Higher heating value (MJkg

    i

    daf) of biomass pyrolysis

    products

    Sta te B io ma ss Char Liquids Gas~

    Coir pith U 19.46 24.97 18.66 16.06

    D - 26.19 22.33 10.51

    Corn cob U 16.11 28.59 23.81 05.19

    D - 26.35 24.19 08.01

    Groundnut shell U 19.82 27.43 23.62 10.00

    D - 29.76 26.15 02.97

    Rice husk U 19.98 44.24 22.45 07.42

    D - 30.96 23.72 07.13

    Wood U 19.95 24.13 24.94 16.61

    D 24.24 28.54 11.28

    a By difference

    tion can be at tributed to the presence of inorganic

    material.

    yrolysis

    To ve r i fy the above resu l t s the th ree excep t iona l

    materials (coir pi th, rice husk and gro und nut shell) and

    two other typical representat ive materials (wood and

    corncob) were used for further studies with the packed

    bed pyrolyser, in the untreated, demineral ized and sal t-

    impregnated forms.

    b~uence of demineralization.

    The results obtained,

    Table 7 show a similar trend to that in the t.g.a, experi-

    ments. The main findings are:

    (1) as observed in thermal analysis, the char yield

    increases on d emineral izat ion of the coir pi th, g rou ndn ut

    shell and rice husk;

    (2) again, the char yield decreases on demi ner aliza tion of

    the other two representative materials;

    (3) the increase in char yield on demin erali zatio n is much

    greater for rice husk than for coir pi th and groundnut

    shell;

    (4) there is a su bst ant ial increase in liq uid yield for all five

    materials, ranging from 77% for wood to 13% for

    gr ou nd nu t shell; cons equen tly there is a decrease in gas

    yield.

    These results are of maj or significance for increased

    liquids production and optimizing the production of

    both liquids and char.

    Influence of salt impregnation.

    The results,

    Table 8

    again show a similar trend to that obtained in the t.g.a.

    experiments. It can be observed that

    (1) salt imp regnat ion of demineral ized biomass reduces

    the char yield for all three samples studied (coir pith,

    gro und nut shel l and rice husk);

    Table 13 Distribution of energy in biomass pyrolysis products

    Energy (%)

    Change in energy (%)

    State Char Liquids Gas Char Liquids Gas

    Coir pith U 37.9 28.2 33.8

    D 42.1 39.3 18.6 I 1.0 39.2 -45.0

    Corn cob U 35.6 49.4 15.0

    D 21.2 53.2 25.7 -40.6 7.6 71.8

    Groundnut shell U 37.4 44.7 17.9

    D 41.2 54.0 04.8 10.1 20.9 -73.6

    Rice husk U 38.3 46.3 15.4

    37.9 50.3 11.8 - 1.2 8.7 -23.4

    Wood U 23.4 28.3 48.3

    D 16.5 57.3 26.2 -29.5 102.5 -45.8

    F u el 1 9 9 5 V o l u m e 7 4 N u m b e r 1 2 1 8 1 9

  • 8/10/2019 Biomass Fuel Chemical Analysis

    9/11

    In f luen ce o f min era l mat te r on b ioma ss py ro lys is . K . Ravee ndran e t a l

    T a b l e 14 Elemental analysis of pyrolysis prod ucts

    Composit ion (wt daf) Ratio

    State C H O H/C O/C C

    Change ( )

    H O H / C O / C

    h a r

    Co ir pith U 83.6 2.4 14.1 0.028

    D 76.7 2.1 20.9 0.028

    Co rn cob U 85.3 2.4 11.8 0.028

    D 79.5 2.3 17.0 0.029

    G.n ut shell U 78.9 2.4 17.7 0.030

    D 80.0 2.2 16.8 0.027

    Rice husk U 88.8 3.2 08.2 0.036

    D 59.5 2.4 38.0 0.041

    W oo d U 83.7 2.4 13.8 0.029

    D 84.7 1.8 13.0 0.022

    Liquid

    Co ir Pith U 47.0 6.0 46.9 0.13

    D 50.2 6.4 43.5 0.13

    Co rn cob U 54.6 6.3 39.1 0.12

    D 53.5 6.5 39.5 0.12

    G.n ut shell U 55.4 7.3 34.6 0.13

    D 34.2 7.8 57.1 0.23

    Rice husk U 41.2 7.4 51.2 0.18

    D 48.9 6.1 44.2 0.12

    W oo d U 16.7 7.4 75.8 0.44

    D 53.2 6.3 40.5 0.12

    Gas

  • 8/10/2019 Biomass Fuel Chemical Analysis

    10/11

    I n f l uenc e o f m i ne ra l ma t t e r on b i omas s py ro ly s i s : K R av eend ran et a l

    iodine adsorpt ion by the char increases in most instances,

    the greatest increases being obtained with corn cob and

    groundnut shell.

    The BET measurements show an increase in surface

    area on demineralizat ion. It is interesting to note that the

    increase in surface area is similar (~30 ) in almost all

    instances. Demineralized coir pith char has the highest

    surface area, followed by demineralized corn cob and

    groundnut shell. Wood shows very low iodine adsorp-

    tion and BET surface area.

    It is well established that pores are developed during

    pyrolysis23-26, depending on the amount of volatiles

    released and the rate of their evolution for a given

    biomass. On the other hand, it is also known that the

    volatiles released undergo condensation reactions, form-

    ing deposits on the pores or pore mouths developed.

    As observed earlier

    Table 5),

    the amount of volatiles

    released and their rate of evolution increase on deminer-

    alization. An increase in rate reduces the residence time

    of the volatile matter in the pores, consequently reducing

    condensation in the pores. This explains the increases in

    both char adsorptivity and liquids yield. These results are

    of importance for obtaining a high char yield and a high

    active surface area for activated carbon manufacture.

    He a t i n g v a l u e .

    The heating values of the chars and

    liquids were measured and that of the gases was obtained

    by difference. Table 12 presents the results. As can be

    seen, the higher heating value of biomass on the dry

    ash-free basis is similar for coir pith, groundnut shell,

    rice husk and wood. However, the heating values of

    the products are different for different types of biomass.

    The heating value of the char increases marginally on

    demineralizat ion, except for corn cob. The heat ing value

    of the liquids increases in all cases through demineraliza-

    tion, consequently reducing the heating value of the

    gases in almost all cases. The distribution of energy in

    the products is shown in

    Table 13.

    More of the energy

    is transferred to the liquid fraction, except for coir pith,

    which has more energy in the char. These results indicate

    that coir pith could be a potential raw material for char

    (or activated carbon) manufacture. For liquefaction,

    corn cob, groundnut shell and rice husk may be preferred

    to wood, but wood is a good feedstock for gasification.

    These data are also of importance in selection of a

    product for supplying heat for the pyrolysis process itself.

    Elem en ta l com pos i tion .

    Elemental analyses were car-

    ried out on the chars and liquids from the untreated and

    demineralized biomass. The elemental composition of

    the gases was calculated based on the gas yield. The

    results are presented in Table 14.

    The increase in the hydrogen content in gases for

    demineralized rice husk is almost 50 and the highest.

    The basic composition of the liquids is very similar to

    that of the original biomass. This is true for both

    untreated and demineralized material, in accordance

    with reports in the literature 27'z8. For groundnut shell

    and rice husk the O/H ratio increases on demineraliza-

    tion, whereas it decreases for wood and coir pith.

    CONCLUSIONS

    Sodium, potassium, calcium, magnesium, iron, phos-

    phorus, aluminium and silicon are the major elements

    present in biomass fuels; cobalt, chromium, copper,

    manganese, nickel, sulfur and zinc are present in smaller

    amounts.

    The yield of volatiles, the devolatil ization rate and the

    initial decomposition temperature increase on deminer-

    alization for most of the kinds of biomass tested; rice

    husk, groundnut shell and coir pith are exceptions. The

    difference in behaviour of these three materials is

    attributed to their high potassium (and/or zinc) content

    in combination with a high lignin content. A correlation

    has been developed to express this effect. In other words,

    the mineral matter of biomass, in combination with the

    organic composition, plays a major role in determining

    pyrolysis product distribution and product properties.

    ACKNOWLEDGEMENTS

    The authors wish to thank Professor Wolfgang Klose,

    FG Thermodynamik, Kassel University, Germany, for

    useful discussions and valuable suggestions. They also

    thank Mr N. Ganasekaran and Mr A. Sundaresan,

    research scholars in the Chemistry Department, for their

    help in obtaining the XRD patterns and Miss Bakul Rao,

    operator, RISC, liT Bombay, for help in ICP-AES

    analysis.

    REFERENCES

    1 A n t a l , M . J . J r . In A d v a n c e s i n So l a r En e rg y , V o l . 2 (Ed s

    K . W. B o e r a n d J . A . D u f f l e ) , A me r i c a n So l a r En e rg y So c i e t y ,

    N e w Y o rk , 1 9 83

    2 O sm a n , E . A . A S t u d y o f t h e E f fe c ts o f A sh C h e m i c a l C o m p o -

    s i ti o n a n d A d d i t i v e s o n F u s i o n T e m p e r a t u r e i n R e l a t i o n t o S l a g

    F o r m a t i o n D u r i n g G a s i f i c at i o n o f B i o m a s s , P h . D T h e s is ,

    U n i v e rs i t y o f C a l i fo rn i a , 1 9 8 2

    3 G a n e sh , A . S t u d i e s o n C h a r a c t e r i sa t i o n o f B i o ma ss fo r G a s i f i -

    c a t i o n , Ph . D Th e s i s , In d i a n In s t i t u t e o f Te c h n o l o g y , N e w

    Delh i , 1990

    4 Shafizadez , F. A d v C a r b o h y d r a t e C h e m 1968, 23, 419

    5 Fe l d m a n n , H . F ., C h o l , P . S . , C o n k l e , H . N . a n d C h a rh a n , S . P .

    In B i o m a ss a s a N o n Fo ss i l Fu e l So u rc e (Ed . D . L . K l a s s ) ,

    Sy m p o s i u m Se r i es N o . 1 4 4 , A m e r i c a n C h e mi c a l So c i e ty ,

    W a sh i n g t o n , D C , 1 9 81

    6 G r a y , M . R ., C o r c o r a n , W . H . a n d G a v a l a s , G . R .

    In d E n g

    C h e m P r o c e s s D e s D e v 1985, 24 , 646

    7 M a d o rsk y , S . L . , H a r t , V . E . a n d S t ra w s ,

    S J R e s N a t B u r

    S t a n d

    1956, 343

    8 Ess ig , M . , R i c h a rd s , G . N . a n d Sc h e n c k , E . In C e l l u l o se a n d

    W o o d - - C h e m i s t r y a n d T e c h n o l o g y ( E d . S c h u e r c h) , W i l ey ,

    N e w Y o rk , 1 9 8 9 , p p . 8 4 1 -8 6 2

    9 Sh a p i n o , S . a n d B ra n n o c k , W. W. R a p i d A n a l y s i s o f S i li ca te ,

    C a r b o n a t e a n d P h o s p h a t e R o c k s , U S G e o l o g i ca l S u r v e y,

    B u l l e t i n 1 14 4 -A , Wa sh i n g t o n , D C , 1 9 62

    1 0 B o a r , P . L . a n d In g ra m , L . K .

    A n a l y s t

    1970, 95, 124

    11 S h a f iz a d ez , F . I n F u n d a m e n t a l s o f T h e r m o c h e m i c a l C o n v e r -

    s i o n o f B i o ma ss (Ed s R . P . O v e re n d , T . A . M i l n e a n d L . K .

    M u d g e ) , E l se v i e r A p p l i e d Sc i e nc e , N e w Y o rk , 1 9 85

    1 2 Ta k a ra d a , T . , Ta m a i , T . a n d To m i t a ,

    A F u e l

    1986, 65, 679

    1 3 M i u r a , K . , A i mi , M . , N a i t o , T . a n d H a sh i mo t o , K . F u e l 1986,

    65 , 407

    1 4 H a w l e y , M . L . , B o y d , M . , A n d e rso n , C . a n d D e v e ra , A .

    F u e l

    1983, 62, 213

    1 5 Lo n g , R . J . a n d N e a v e l , R . C .

    F u e l

    1982, 61 , 620

    1 6 H a w l e y , G . G . (R e v . ) . Th e C o n d e n se d C h e m i c a l D i c t i o n a ry ,

    1 0 t h Ed . , V a n N o s t ra n d R e i n h o l d , N e w Y o rk , 1 9 81 , p . 1 1 0 8

    1 7 L i d e, D . R . ( E d .) C R C H a n d b o o k o f C h e m i s t r y a n d P h y s i c s ,

    7 3 rd Ed . , C R C Pre ss , 1 9 9 3

    18 Segal, L., Creely , J . J . , M art in , A. E. , Jr an d Co nra d , C. M.

    T e x

    R e s J 1959, 786

    19 Loeb , L. and Segal, L.

    T e x R e s J

    1955, 516

    2 0 W e i n s t e i n , M . a n d B ro i d o , A .

    C o m b u s t S c i T ech n o l

    1970, 1,

    287

    F u el 1 9 9 5 V o l u m e 7 4 N u m b e r 1 2 1 8 2 1

  • 8/10/2019 Biomass Fuel Chemical Analysis

    11/11

    In f luen ce o f min era l mat te r on b iomass pyro lys is . K . Ravee ndran et al

    21 Broid o, A. and Weinstein, M.

    Combust Sc i Technol

    1970, 1,

    279

    22 Hassler , J . W. A ctive Car bo n , Chem ical Publishing Co. , 1954

    23 Ya ni , H . , Ta ka ha shi , H . a nd I sh iya m a ,

    K J C h e m En g J a p a n

    1973, 6, 443

    24 Cha ne y, N . K . Trans Electrochem Soc 1932, 28

    25 Al lm a nd, A . J . a nd Cha pl in , R . Trans F araday Soc 1932, 28

    26 Mu kherjee , S. and Bhattacharya , S. AC S, 1949, 71, 1725

    27 Pa kde l , H . a nd Roy, C . In Pyrolys i s O i l s f rom Biom ass, Produ-

    c ing , Ana lys ing a nd Upg ra ding (Eds J . Solt e s a nd T . A . M i lne ),

    Sym pos ium Se ries N o. 37 6 , Am e r ic a n Che m ic a l Soc ie ty ,

    Wa shington , DC, 1988

    28 Piskorz , J . , Scott , D. S. and Radle in, D. In Pyrolysis Oils f rom

    Biom ass, P roduc ing , Ana lys ing a nd Upg ra ding (Eds J . Sol te s

    a nd T . A . Mi lne ) , Sym pos ium Se r ie s No. 376 , Am e r ic a n Che m i-

    cal Socie ty, Washington, DC, 1988

    8 2 2 F u e l 1 9 9 5 Vo l u m e 7 4 Nu m b e r 1 2