bioenergetics of the mitochondrion iii 2017_lecture_notes_comp.pdf•dimers of mitochondrial atp...

80
1

Upload: others

Post on 16-Mar-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

1

Page 2: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Bioenergetics of the Mitochondrion: Structure and Function of the ATPase

Page 3: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Then Now

Page 4: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Peter Mitchell (1920-1992)

Page 5: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 6: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Metabolism in mitochondria

Page 7: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 8: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 9: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

L Sazanov

Page 10: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

L Sazanov, J Hirst

Page 11: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Zhu, Vinothkumar & Hirst (2016) Nature 536, 354-358

Fiedorczuk, Letts, Degliuposti, Kaszuba, Skehel & Sazanov (2016) Nature 536, 19794

Page 12: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 13: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Dudkina, et al. FEBS Letters (2005) 579, 5769–5772

Page 14: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Subunit compositions of F-ATPases

Page 15: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 16: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

What do we still need to know about the F-ATPase?

• 1. How is rotation generated during ATP hydrolysis?

• 2. How is rotation generated during ATP synthesis?

• 3. The role of cardiolpin

• 4. Is the permeability transition pore associated?

• 5. And others

Page 17: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

1. How rotation is generated from ATP hydrolysis

• “Single molecule” rotational data mainly from bacteria

• Structural data almost entirely from mitochondria

• Reconciliation of these two data sets

Page 18: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 19: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 20: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 21: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Kinosita, Yoshida, Noji & colleagues

Page 22: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 23: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 24: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Structures of inhibited F1-ATPase did not explain the intermediate rotary steps

Page 25: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 26: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Structural definition of phosphate release stepp

IF1 stops the enzyme at the catalytic dwell

Thiophosphate stops F1-ATPase at the phosphate release dwell

Page 27: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Active mammalian IF1 is an antiparallel

α-helical dimer

N

130 Å

N CCN

Page 28: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 29: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Bason, Montgomery, Leslie & Walker 2015 PNAS 112, 6009-6014

Thiophosphate inhibited bovine F1-ATPase

Page 30: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 31: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 32: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 33: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

2. How is rotation driven by the pmf?

• mechanical coupling mechanism

• the proton pathway

Page 34: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

W. Junge

Page 35: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

H+/ATP = ring symmetry/ 3

Page 36: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Morales et al, 20155 Vinothkumar et al, 2016 Zhou et al, 2015

Page 37: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

b

αTP

αDP

βTP

βE

αEβDP

h

Page 38: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 39: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 40: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 41: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 42: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 43: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 44: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 45: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 46: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

P. angustaa Bovine

Subunits e and g

Page 47: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

3. Role of cardiolipin

Page 48: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Cardiolipin binding sites in mitochondrial proteins

• bound permanently to specific sites in structures of

ADP/ATP translocase, and complexes III and IV

• in simulations, same sites occupied quickly and permanently

• binds transiently and repeatedly to specific sites in c-rings

Page 49: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 50: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

A Duncan, A Robinson, & J E Walker (2016) PNAS 113, 8587-8692

Page 51: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

c-ringTime (ns)

Inner Outer

c8 520 230

deMe-c8 500 280

c10 310 250

c11 620 350

Residence times for cardiolipin

In 500 ns, the active ring turns > 0.05°

Page 52: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Inner mode 1 Inner mode 2

Outer

Page 53: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Possible roles of cardiolipin in ATP synthase

• stabilises c-ring

• lubricates rotating ring

• facilitates proton dispersion from exit half-channel

• brings protons to entry half-channel

Page 54: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

4. The mitochondrial

permeability transition pore

Page 55: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

55

Mitochondrial permeability transition pore

1976, Hunter et al

Allows molecules < 1.5 kDa to pass; diameter 2 nm

Consequences: mitochondrial depolarization, uncoupling of ox-phos, mitochondrial swelling

Proposed components: VDAC, ANT

Inducers: Ca2+, adenine nucleotides, phosphate, oxidative stress

Inhibitor: Cyclosporin A

Page 56: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 57: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Pore opening and cyclophilin D

•peptidylprolyl cis-trans isomerase

•mitochondrial version of a larger family

• modulates PTP, but is not a component

•binding of cyclosporin A inhibits pore opening

Page 58: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Topic 1: The membrane rotors of ATP synthases in various species have a range of symmetries from 8-15. For example for humans it is 8; for Synechococcus it is 15. What are the bioenergetic consequences, and why do you think that the enzymes have evolved in this way?

•Walker, J. E. (2013). The Keilin Lecture 2012: The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1-16.

•Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W. & Walker, J. E. (2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl. Acad. Sci. U. S. A. 107, 16823-16827.

•Walpole, T. B., Palmer, D. N., Jiang, H., Ding. S., Fearnley, I. M., & Walker, J.E. (2015). Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan ATP synthases. Mol. Cell. Proteomics. 14, 828-840.

Page 59: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

2. In the past 20 years or so, bedaquiline is the only new drug introduced into clinical practice for treatment of tuberculosis. It inhibits the mycobacterial ATP synthase, but how? Given the urgent need for developing new drugs against multiply or even totally resistant bacterial pathogens, what features of the ATP synthase make it an attractive target for development of new drugs against bacterial pathogens, and what are the draw-backs? Remember, ideally the drug should not affect the human enzyme

•Walker, J. E. (2013). The Keilin Lecture 2012: The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1-16

•Bason, J., Montgomery, M. G., Leslie A. G. W., & Walker, J. E. (2014). Pathway of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-ATPase. Proc. Natl. Acad. Sci. U. S. A. 111, 11305-11310.

•Andries et al. (2005). A diarylquinoline drug active on the ATP synthase from Mycobacterium tuberculosis. Science, 307, 223-227.

• Preiss et al (2015). Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv. 1:e1500106

Page 60: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892.

•An uncoupling channel within the c-subunit of the ATP synthase is the permeability transition pore. Alavian et al. (2014) PNAS 111, 10580-10585.

3. The permeability transition in human mitochondria refers to the opening of a non-specific membrane channel, known as the permeability transition pore (PTP), in the inner membrane. Opening is triggered by calcium ions, or reactive oxygen species, among other effectors, leading to swelling of the organelle, disruption of the inner membrane, loss of ATP synthesis and cell death. It is an uncharacterized part of cell death by necrosis and possibly apoptosis. Past proposals that the pore is provided by the voltage dependent ion channel in the outer membrane plus the adenine nucleotide translocase in the inner membrane have not withstood scrutiny. A recent proposal is that the pore is associated with the dimeric ATP synthase. How would you test this hypothesis? Remember, you will probably need to  assay the functional PTP in a cellular  context.

Page 61: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

4. The electron transfer complexes in the inner mitochondrial membrane are organized in super-complexes. Describe the arrangement. What are the advantages of such an arrangement? Apart from ribosomes, where else in the mitochondrion are there indications of super-molecular organization?  How would you improve the evidence? Think metabolons.

•The architecture of respiratory super-complexes (2016) Letts, Fiedorczuk & Sazanov Nature 537, 644-648.

•Kinetic evidence against partitioning of the quinone pool and the and the catalytic relevance of respiratory chain super complexes. (2014) Blaza et al. PNAS 111, 15735- 15740.

•Direct evidence for metabolic formation substrate channeling in recombinant TCA cycle enzymes (2016) Bulutoglu et al. ACS Chem. Biol. 11, 2847-2853.

•Krebs cycle metabolic pathway: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. (2015) Angewandte Chemie 54, 1851-1854.

Page 62: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

c-ring symmetries and H+:ATP ratios

• 8-fold symmetry in metazoans

• 10-fold symmetry in yeast

• 10-15-fold in eubacteria

• 14-fold in chloroplasts

• Therefore, H+/ATP = 2.7-5.0, depending on species

Page 63: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

P/O ratio in mammalian mitochondria

NADH 2e- to O2 =10 H+ pumped out

Succinate 2e- to O2 = 6 H+ pumped out

ADP/ATP exchange + Pi/H+ symport = 1 H+ in

ATP synthase H+/ATP = 8/3 = 2.7

ATP synthesis H+/ATP = 3.7

Moles ADP phosphorylated/2e- to O2 = P/O ratio

e- donor P/O calc P/O exp

NADH 10/3.7=2.7 2.5

Succinate 6/3.7=1.6 1.5

 

Page 64: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 65: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 66: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 67: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 68: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 69: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

2. In the past 20 years or so, bedaquiline is the only new drug introduced into clinical practice for treatment of tuberculosis. It inhibits the mycobacterial ATP synthase, but how? Given the urgent need for developing new drugs against multiply or even totally resistant bacterial pathogens, what features of the ATP synthase make it an attractive target for development of new drugs against bacterial pathogens, and what are the draw-backs? Remember, ideally the drug should not affect the human enzyme

•Walker, J. E. (2013). The Keilin Lecture 2012: The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1-16

•Bason, J., Montgomery, M. G., Leslie A. G. W., & Walker, J. E. (2014). Pathway of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-ATPase. Proc. Natl. Acad. Sci. U. S. A. 111, 11305-11310.

•Andries et al. (2005). A diarylquinoline drug active on the ATP synthase from Mycobacterium tuberculosis. Science, 307, 223-227.

• Preiss et al (2015). Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv. 1:e1500106

Page 70: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Mycobacterium tuberculosis

● No significant animal or environmental reservoir

● Humans: metastable equilibrium (HIV/AIDS and type II diabetes)

1.5 million people die/year from a curable disease (200,000 MDR-TB)

1.5

5-10% will develop TB

Latent/persistence “inactive form?”

Page 71: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Shortens anti-tuberculosis treatment (8 weeks) and effective (bactericidal-sterilizing) in patients with drug-susceptible or drug-resistant TB

Most significant discovery in TB research – last 50 years

2 weeks

FDCs

2-4 months6-30 months

Page 72: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892
Page 73: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Subunit compositions of F-ATPases

Page 74: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Mycobacterial ATP synthase

Page 75: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Crystallisation• Unit cell 103.2, 103.2, 615.9 Å• Data collected to 4 Å

Page 76: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892.

•An uncoupling channel within the c-subunit of the ATP synthase is the permeability transition pore. Alavian et al. (2014) PNAS 111, 10580-10585.

3. The permeability transition in human mitochondria refers to the opening of a non-specific membrane channel, known as the permeability transition pore (PTP), in the inner membrane. Opening is triggered by calcium ions, or reactive oxygen species, among other effectors, leading to swelling of the organelle, disruption of the inner membrane, loss of ATP synthesis and cell death. It is an uncharacterized part of cell death by necrosis and possibly apoptosis. Past proposals that the pore is provided by the voltage dependent ion channel in the outer membrane plus the adenine nucleotide translocase in the inner membrane have not withstood scrutiny. A recent proposal is that the pore is associated with the dimeric ATP synthase. How would you test this hypothesis? Remember, you will probably need to  assay the functional PTP in a cellular  context.

Page 77: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

4. The electron transfer complexes in the inner mitochondrial membrane are organized in super-complexes. Describe the arrangement. What are the advantages of such an arrangement? Apart from ribosomes, where else in the mitochondrion are there indications of super-molecular organization?  How would you improve the evidence? Think metabolons.

•The architecture of respiratory super-complexes (2016) Letts, Fiedorczuk & Sazanov Nature 537, 644-648.

•Kinetic evidence against partitioning of the quinone pool and the and the catalytic relevance of respiratory chain super complexes. (2014) Blaza et al. PNAS 111, 15735- 15740.

•Direct evidence for metabolic formation substrate channeling in recombinant TCA cycle enzymes (2016) Bulutoglu et al. ACS Chem. Biol.11, 2847-2853.

•Krebs cycle metabolic pathway: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. (2015) Angewandte Chemie 54, 1851-1854.

Page 78: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Zhu, Vinothkumar & Hirst (2016) Nature 536, 354-358

Fiedorczuk, Letts, Degliuposti, Kaszuba, Skehel & Sazanov (2016) Nature 536, 19794

Page 79: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892

Letts, Fiedorczuk & Sazanov (2016) Nature 537, 644-648

Page 80: Bioenergetics of the Mitochondrion III 2017_lecture_notes_comp.pdf•Dimers of mitochondrial ATP synthase form the permeability transition pore. Georgio et al. (2013) PNAS 110, 5887-5892