biochemistry ii: binding of ligands to a macromolecule (or the secret of life itself...) karsten...

42
Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik Im Neuenheimer Feld 227 Tel: 54-9270 e-mail: [email protected] http://www.dkfz.de/kompl_genome/rippe/pdf-files/Rippe_Futura_97.pdf Principles of physical biochemistry, van Holde, Johnson & Ho, 1998. Slides available at http://www.dkfz.de/Macromol/lecture/index.html

Upload: barbara-fitzgerald

Post on 30-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Biochemistry II: Binding of ligands to a macromolecule(or the secret of life itself...)

Karsten RippeKirchoff-Institut für PhysikMolekulare BiophysikIm Neuenheimer Feld 227Tel: 54-9270e-mail: [email protected]

• http://www.dkfz.de/kompl_genome/rippe/pdf-files/Rippe_Futura_97.pdf

• Principles of physical biochemistry, van Holde, Johnson & Ho, 1998.

• Slides available at http://www.dkfz.de/Macromol/lecture/index.html

Page 2: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The secret of life, part I

“The secret of life is molecular recognition; the

ability of one molecule to "recognize" another

through weak bonding interactions.”

Linus Pauling at the 25th anniversary of the Institute of

Molecular Biology at the University of Oregon

Page 3: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The secret of life, part II

A new breakthrough in biochemical research... and paradise is to be mine! It was strange the way it happened... suddenly you get a break... and whole pieces seem to fit into place ... and that's how I discovered the secret to life... itself!

Frank’n Further in the Rocky Horror Picture Show

Page 4: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The secret of life, part III

In the end it is nothing but equilibrium binding and kinetics

Karsten Rippe, Biochemistry II Lecture

Page 5: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Binding of dioxygen to hemoglobin(we need air ...)

Page 6: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Binding of Glycerol-Phosphate to triose phosphate isomerase(we need energy...)

Page 7: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Complex of the HIV protease the inhibitor SD146(we need drugs ...)

Page 8: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Antibody HyHEL-10 in complex with Hen Egg White Lyzoyme

(we need to protect ourselves ...)

Page 9: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

X-ray crystal structure of the TBP-promoter DNA complex(transcription starts here...)

Nikolov, D. B. & Burley, S. K. (1997). RNA polymerase II transcription initiation: a structural view. PNAS 94, 15-22.

Page 10: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Structure of the tryptophan repressor with DNA(what is this good for?)

Page 11: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Biochemistry II: Binding ofligands to a macromolecule

• General description of ligand binding– the esssentials

– thermodynamics

– Adair equation

• Simple equilibrium binding– stoichiometric titration– equilibrium binding/dissociation constant

• Complex equilibrium binding– cooperativity

– Scatchard plot and Hill Plot

– MWC and KNF model for cooperative binding

Page 12: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The mass equation law for binding of a protein P to its DNA D

Dfree+Pfree

→← DP K1=Dfree⋅Pfree

DP

binding of the first proteins with the dissociation constant K1

Dfree, concentration free DNA; Pfree, concentration free protein

binding constantKB = 1dissociation constantKD

Page 13: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

What is the meaning of the dissociation constant forbinding of a single ligand to its site?

2. KD gives the concentration of ligand that saturates 50% of the

sites (when the total sit concentration ismuch lower than KD)

3. Almost all binding sites are saturated if the ligand

concentration is 10 x KD

1. KD is a concentration and has units of mol per liter

4. The dissociatin constant KD is related to Gibbs free energy

∆G by the relation ∆G = - R T KD

Page 14: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

KD values in biological systems

Allosteric activators of enzymes e. g. NAD have KD 0.1 µM to 0.1 mM

Site specific binding to DNA KD 1 nM to 1 pM

Movovalent ions binding to proteins or DNA have KD 0.1 mM to 10 mM

Trypsin inhibitor to pancreatic trypsin protease KD 0.01 pM

Antibody-antigen interaction have KD 0.1 mM to 0.0001 pM

Page 15: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

What is ∆G? The thermodynamics of a system

• Biological systems can be usually described as having constant pressure P and constant temperature T– the system is free to exchange heat with the surrounding to remain

at a constant temperature– it can expand or contract in volume to remain at atmospheric

pressure

Page 16: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Some fundamentals of solution thermodynamics

• H is the enthalpy or heat content of the system, S is the entropy of the system

• a reaction occurs spontaneously only if ∆G < 0• at equilibrium ∆G = 0• for ∆G > 0 the input of energy is required to drive the reaction

ΔG=ΔH −TΔSG≡H −TS

• At constant pressure P and constant temperature T the system is described by the Gibbs free energy:

Page 17: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

the problem

In general we can not assume that the total free energy G of a

solution consisting of N different components is simply the sum of the

free energys of the single components.

Page 18: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Why is it necessary to use partial specific orpartial molar quantities?

the problem: In general we can not assume that the total volume V of a

solution consisting of N different components is simply the sum of the

volume of the single components. For example this is the case for mixing

the same volumes of ethanol and water.

V≠ ni⋅Vi0

i=1

N

∑ ni: moles of component i

Vi0: molar volume of pure component i

v i =∂v∂mi

Vi =∂V∂ni

partial specific volume= increase of volume upon addition of mass

partial molar volume= increase of volume upon addition of mol particles

∂m

∂n

the solution: use of partial specific or partial molar quantities

Page 19: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Increase of the solution volume upon adding solute

Solute added (moles)

Vol

ume

of s

olut

ion

V i =∂V∂ni

real solutions

volumes additive

slope =

n1⋅V 10

V 2

V 20

volume ofpure solvent

slope at indicated concentration =

V= ni⋅V ii=1

N

∑The total volume of the solution is thesum of the partial molar volumes:

Page 20: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The chemical potential µ of a substance is the partial molar Gibbs free energy

G i =∂G∂ni

=μi G= ni⋅μi

i=1

n

μi =μi0+RTlnCifor an ideal solution it is:

μi =μi0 forCi =1 mol/ l

Ci is the concentration in mol per liter

is the chemical potential of a substance at 1 mol/lμi0

Page 21: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Changes of the Gibbs free energy ∆G of an reaction

ΔG=G(final state)−G(initial state)

from μi =μi0+RTlnCi it follows:

aA+bB+... →

← gG+hH...

ΔG=gμG +hμH +...−aμA −bμB −...

ΔG=gμG0 +hμH

0 +...−aμA0 −bμB

0−...+RTln[G]g[H]h...[A]a[B]b...

ΔG=ΔG0+RT ln[G]g[H]h...[A]a[B]b...

Page 22: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

∆G of an reaction in equilibrium

0=ΔG0+RT ln[G]g[H]h...[A]a[B]b...

⎝ ⎜

⎠ ⎟

Eq

ΔG0=−RTln[G]g[H]h...[A]a[B]b...

⎝ ⎜

⎠ ⎟

Eq

=−RT lnK

K =[G]g[H]h...[A]a[B]b...

⎝ ⎜

⎠ ⎟

Eq

=exp−ΔG0

RT⎛

⎝ ⎜

⎠ ⎟

aA+bB+... →

← gG+hH...

Page 23: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Titration of a macromolecule D with n binding sitesfor the ligand P which is added to the solution

ν = [boundligand P][macromolecule D]

ΔXΔXmax

=νn

=θ (fraction saturation)

free ligand Pfree (M)

degr

ee o

f bi

ndin

g

n n binding sitesoccupied

∆Xmax

∆X

0

Page 24: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Analysis of binding of RNAP·54 to a promoter DNA sequenceby measurements of fluorescence anisotropy

Rho

Rho

+

RNAP·54

promoter DNA

RNAP·54-DNA-Komplex

Kd

free DNA with a fluorophorewith high rotational diffusion

-> low fluorescence anisotropy rmin

RNAP-DNA complexwith low rotational diffusion

-> high fluorescence anisotropy rmax

θ =Ptot[ ]

Ptot[ ]+KD

=rmeasured−rmin

rmax−rmin

Page 25: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

How to measure binding of a protein to DNA?One possibility is to use fluorescence anisotropy

z

y

x sample

I

verticalexcitation

filter/mono-chromator

polarisatorIII

filter/monochromator

polarisator

measured fluorescence

emission intensity

r =III −I⊥

III +2I⊥

Definition of fluorescenceanisotropy r

The anisotropy r reflects the rotational diffusion of a fluorescent species

Page 26: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

0

0.2

0.4

0.6

0.8

1

0.01 0.1 11 0 100 1000

nifH nifLglnAp2

RNAP 54 (nM)

200 mM KAc

Measurements of fluorescence anisotropy tomonitor binding of RNAP·54 to different promoters

0

0.2

0.4

0.6

0.8

1

0.01 0.1 11 0 100 1000

50 mM 150 250 mM

RNAP 54 (nM)

Vogel, S., Schulz A. & Rippe, K.

Ptot = KD

= 0.5 = 0.5

Ptot = KD

Page 27: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Example: binding of a protein P to a DNA-fragment D with one or two binding sites

Dfree+Pfree

→← DP K1=Dfree⋅Pfree

DPbinding of the first proteins with

the dissociation constant K1

Dfree, concentration free DNA; Pfree, concentration free protein;

DP, complex with one protein; DP2, complex with two proteins;

binding constantKB = 1dissociation constantKD

DP+Pfree

→← DP2 K2=DP⋅Pfree

DP2

binding of the second proteins withthe dissociation constant K2

D+2Pfree

→← DP2 K 2

* =Dfree⋅Pfree2

DP2

K 2* =K1⋅K2 alternative expression

Page 28: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Definition of the degree of binding

for n binding sites (Adair equation)

ν =

i⋅1Ki

⋅Dfrei⋅Pfreii

i=1

n

∑1K i

⋅Dfrei⋅Pfreii

i=0

n

∑=

i⋅1K i

⋅Pfreii

i=1

n

∑1Ki

⋅Pfreii

i=0

n

∑mitK0=1

ν1= DPDfree+DP

ν2= DP+2⋅DP2Dfree+DP+DP2

ν = [boundligand P][macromolecule D]

degree of binding for one binding site for two binding sites

Page 29: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Binding to a single binding site: Deriving an expressionfor the degree of binding or the fraction saturation

KD =Dfree⋅Pfree

DPDfree+Pfree

→← DP

ν1=θ =

1KD

⋅Pfree

1+1

KD

⋅Pfree

⇔ ν1=θ= Pfree

KD+Pfree

from the Adair equation we obtain:

ν1=Dtot+Ptot+KD− Dtot+Ptot+KD( )

2−4⋅Dtot⋅Ptot

2⋅Dtot

Pfree=Ptot−ν1⋅Dtot

Often the concentration Pfree can not be determined but the total concentration of added protein Ptot is known.

Page 30: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Stoichiometric titration to determinethe number of binding sites

To a solution of DNA strands with a single binding site small amounts of protein P are added. Since the binding affinity of the protein is high (low KD value as compared to the total

DNA concentration) practically every protein binds as long as there are free binding sites on the DNA. This is termed “stoichiometric binding” or a “stoichiometric titration”.

or

0

0.2

0.4

0.6

0.8

1

0 1·10 -10

Ptot (M)

equivalence point1 protein per DNA

2·10 -10

Dtot = 10-10 (M)

KD = 10-14 (M)

KD = 10-13 (M)

KD = 10-12 (M)

νn

for n=1

ν =θ

Page 31: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Binding to a single binding site. Titration of DNA with aprotein for the determination of the dissociation constant KD

ν1= Pfree

Pfree+KD

≈ Ptot

Ptot+KD

if Pfree≈Ptot d. h. 10×Dtot≤KD

Ptot (M)

or

0

0.2

0.4

0.6

0.8

1

0 2 10-9 4 10-9 6 10-9 8 10-9 1 10-8

Ptot = KD

or = 0.5

Dtot = 10-10 (M)

KD = 10-9 (M)

KD = 10-9 (M)

ν1= Pfree

Pfree+KD

ν1= Ptot

Ptot+KD

Page 32: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Increasing complexity of binding

all binding sites areequivalent and independent

cooperativity heterogeneity

all binding sites areequivalent and not independent

cooperativityheterogeneity

all binding sites arenot equivalent and not independent

all binding sites areindependent but not equivalent

simple

difficult

verydifficult

Page 33: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Binding to n identical binding sites

ν1= Pfree

Pfree+KDbinding to a single binding site

νn = n⋅Pfree

kD+Pfree

binding to n independent andidentical binding sites

D+n⋅Pfree

→← DPn Kn =Dfree⋅Pfree

n

DPn

νn = n⋅Pfreen

Kn+Pfreen

strong cooperative binding to n identical binding sites

νn = n⋅PfreeαH

KαH +PfreeαH

approximation for cooperative binding ton identical binding sites, H HiIl coefficient

Page 34: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Difference between microscopic andmacroscopic dissociation constant

1 2

1 2 1 2

1 2

kD kD

kD kD

Dfree

DP

DP2

K1

K2

=kD 22⋅kD

=14

K1=kD

2

K2 =2⋅kD

microscopic binding macroscopic binding

2 possibilities for the formation of DP

2 possibilities for the dissociation of DP2

Page 35: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Cooperativity: the binding of multiple ligandsto a macromolecule is not independent

2

P free (M)

0

0.5

1

1.5

2

0 2 10-9 4 10-9 6 10-9 8 10-9 1 10-8

Adair equation: ν2= K2⋅Pfree+2⋅Pfree2

K1⋅K2+K2⋅Pfree+Pfree2

independent bindingmicroscopic binding constantkD = 10-9 (M)

macroscopic binding constantsK1 = 5·10-10 (M); K2 = 2·10-9 (M)

cooperative bindingmicroscopic binding constantkD = 10-9 (M)

macroscopic binding constantsK1 = 5·10-10 (M); K2 = 2·10-10 (M)

Page 36: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Logarithmic representation of a binding curve

P free (M)

0

0.5

1

1.5

2

10-11 10-10 10-9 10-8 10-7

2

• Determine dissociation constants over a ligand concentration of at least three orders of magnitudes• Logarithmic representation since the chemical potential µ is proportional to the logarithm of the concentration.

independent bindingmicroscopic binding constantkD = 10-9 (M)

macroscopic binding constantsK1 = 5·10-10 (M); K2 = 2·10-9 (M)

cooperative bindingmicroscopic binding constantkD = 10-9 (M)

macroscopic binding constantsK1 = 5·10-10 (M); K2 = 2·10-10 (M)

Page 37: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Visualisation of binding data - Scatchard plot P

fre

i

0

1 109

2 109

3 109

0 0.5 1 1.5 2

intercept = n/kD

slope = - 1/kD

intercept = n

νn = n⋅Pfree

kD+Pfree

⇔ νn

Pfree

= nkD

−νn

kD

independent bindingmicroscopic binding constantkD = 10-9 (M)

macroscopic binding constantsK1 = 5·10-10 (M); K2 = 2·10-9 (M)

cooperative bindingmicroscopic binding constantkD = 10-9 (M)

macroscopic binding constantsK1 = 5·10-10 (M); K2 = 2·10-10 (M)

Page 38: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Visualisation of binding data - Hill plot

ν2= K2⋅Pfree+2⋅Pfree2

K1⋅K2+K2⋅Pfree+Pfree2

⇔ ν2

2−ν2

= θ1−θ

= K2⋅Pfree+2⋅Pfree2

2⋅K1⋅K2+K2⋅Pfree

Pfree→ 0 ⇒ logν2

2−ν2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =logPfree( )−log2K1( )

Pfree→ ∞ ⇒ logν2

2−ν2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =logPfree( )−log

K2

2⎛ ⎝ ⎜ ⎞

⎠ ⎟

Pfree≈K ⇒ logν2

2−ν2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ =αH ⋅logPfree( )−αH ⋅logK( )

νn = n⋅PfreeαH

KαH +PfreeαH

log (

2–)

]= lo

g (

1–)

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10-11 10-10 10-9 10 -8

strongbinding

limitslope H =1.5

log (P free)

weakbinding

limit 2·K1 K2/2

Page 39: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Binding of dioxygen to hemoglobin

Page 40: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The Monod-Wyman-Changeau (MWC)model for cooperative binding

+P

T0 T1 T2

R0 R1 R2

L0 L1 L2

kT

+P

kR

+P

kR

+P

kT

T conformation (all binding sites

are weak)

R conformation (all binding sites

are strong)

• in the absence of ligand P the the T conformation is favored

• the ligand affinity to the R form is higher, i. e. the dissociation constant kR< kT.

• all subunits are present in the same confomation

• binding of each ligand changes the T<->R equilibrium towards the R-Form

P P P P P

P

P P

P P

+P

kT

+P

kT

T3 T4

P P P P P

P P

P P

P

L3 L4

+P

kR

+P

kR

R3 R4

Page 41: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

The Koshland-Nemethy-Filmer (KNF)model for cooperative binding

+P

k1

+P

k2

• Binding of ligand P induces a conformation change in the subunit to which it binds

from the into the -conformation (“induced fit”).

• The bound ligand P facilitates the binding of P to a nearby subunit

  in the -conformation (red), i. e. the dissociation constant k2 < k’2.

• subunits can adopt a mixture of confomations.

-conformation-conformation(induced by ligand binding)

+P

P

P

k’2

P PP

-conformation(facilitated binding)

Page 42: Biochemistry II: Binding of ligands to a macromolecule (or the secret of life itself...) Karsten Rippe Kirchoff-Institut für Physik Molekulare Biophysik

Summary

• Thermodynamic relation between ∆G und KD

• Stoichiometry of binding

• Determination of the dissociation constant for simple systems

• Adair equation for a general description of binding

• Binding to n binding sites

• Visualisation of binding curves by Scatchard and Hill plots

• Cooperativity of binding (MWC and KNF model)