bioanalytical methods i · institute of analytical and bioanalytical chemistry faculty of natural...

19
LESEPROBE Bioanalytical Methods I Prof. Dr. Boris Mizaikoff, Angelika Holzingerand Julian Haas Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University

Upload: others

Post on 29-Jul-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

LESEPROBE

Bioanalytical Methods I

Prof. Dr. Boris Mizaikoff, Angelika Holzingerand Julian Haas

Institute of Analytical and Bioanalytical ChemistryFaculty of Natural SciencesUlm University

Page 2: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Modulinhalt 2

1 ModulinhaltBioanalytical Methods

[59]

Modulnummer 4.3

Modultitel Bioanalytical Methods – Basics and Advanced

Modulkürzel BMB

Studiengang Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)

Ort der Veranstaltung Universität Ulm

Modulverantwortlichkeit Prof. Dr. Boris Mizaikoff

Lehrende Prof. Dr. Boris Mizaikoff

Voraussetzungen

Verwertbarkeit

Das Modul ist im Masterstudiengang Biopharmazeutisch-Medizin-technische Wissenschaften, aber auch für andere naturwissen-schaftliche Studiengänge, vor allem im Bereich der Biophysik, Bio-chemie, Biopharmazie und Biotechnologie anwendbar.

Semester (empfohlen) 2

Max. Teilnehmerzahl 25

Art der Veranstaltung ☐Präsenzveranstaltung(en) ☐Präsenzveranstaltung(en) mit E-Learning-Elementen ☐Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen ☒reine E-Learning-Veranstaltung(en)

Veranstaltungssprache ☐Deutsch, ☒Englisch, ☐Weitere, nämlich: ECTS-Credits 6 Credits Prüfungsform und –umfang ☐Klausur, ☐Referat, ☐Kolloquium, ☐Posterpräsentation,

☐Podiumsdiskussion, ☐Mündliche Einzel-/ Gruppenprüfungen, ☒Essay, ☐Forumsbeitrag, ☒Übungen, ☐Wissenschaftspraktische Tätigkeit, ☐Bachelor- und Masterarbeit ☐Haus-/ Seminararbeit, ☐Einzel-/Gruppenpräsentation, ☐Portfolio, ☐Protokoll, ☐Projektarbeit, ☐Lerntagebuch/ Lernjournale Umfang der Prüfung: Die Teilnahme an den Übungen ist Voraussetzung für die schriftli-che Ausarbeitung (Essay). Prüfungssprache wird mit Studierenden gemeinsam festgelegt.

Lernziele Fachkompetenz Die Studierenden können bioanalytische Methoden und Verfahren (inkl. Chemo-/Biosensoren) grundlegend erklären.

Page 3: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Modulinhalt 3

Bioanalytical Methods

[60]

Die Studierenden können verschiedene Anwendungsgebiete identi-fizieren. Die Studierenden können analytische Ergebnisse bewerten. Die Studierenden können Methoden zur Strukturaufklärung, bildge-bende Verfahren, sowie weitere fortschrittliche Methoden erklären. Die Studierenden erkennen den fachlichen Zusammenhang zwi-schen bioanalytischen Methoden und verschiedenen Anwendungs-gebieten. Methodenkompetenz Die Studierenden verfügen über die Fertigkeit bioanalytische Fra-gestellungen zu analysieren und lösen zu können. Die Studierenden können selbstständig eine Datenanalyse durch-führen. Selbst- und Sozialkompetenz Lernbereitschaft und Belastbarkeit helfen den Studierenden Anwen-dungsaufgaben zu analysieren und Lösungen zu erörtern.

Lehrinhalte Basics: - Grundlagen und Kenngrößen der Analytischen Chemie - Probenvorbereitung (Zellaufschluss, Fällung, Zentrifugation, Di-

alyse, Filtration, Extraktion, Gelfiltration, Präzipitation) - Spektroskopische Methoden (Wechselwirkung Licht-Materie,

UV-Vis-, Fluoreszenz-, IR-, Raman-, SPR-Spektroskopie, FRET) - Elektrophoretische Verfahren (Wanderung geladener Teilchen

in elektrischem Feld, Gel-, Zonen-, Disk-, Kapillarelektropho-rese, SDS-PAGE, nativ, isoelektrische Fokussierung, Elektroblot-ting, 2D)

- Chromatographische Trennmethoden (Verteilung zwischen mo-biler und stationärer Phase, RP, HIC, HILIC, IEXC, SEC, AC)

- Massenspektrometrie (Trennung von Ionen, MALDI, ESI, TOF, Quadrupol, Ionenfalle, SEV, Nachweis, Identifizierung)

- Assays (Prinzip, Enzym-, Immuno-Assays) - Chemo- und Biosensoren (Aufbau, elektrochemisch, optisch, ra-

diochemisch) - Weitere Methoden (DNA Sequenzierung, PCR) Advanced: - Methoden zur Strukturaufklärung (CD-, NMR-Spektroskopie,

Röntgenstrukturanalyse, SAXS, Sequenzanalyse, MS) - Bildgebende Verfahren (Licht-, Fluoreszenz-, Elektronen-, Ras-

ter-sondenmikroskopie, Probenpräparation)

Page 4: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Modulinhalt 4

Bioanalytical Methods

[61]

- Kopplungs- und Hochdurchsatzverfahren: LC-MS, MS-MS, Sen-sorarrays, etc.

- Miniaturisierte Chemo- und Biosensoren - Lab-on-a-chip - Weitere Methoden (Ultrazentrifugation, Mikrokalorimetrie, etc.)

Literatur - F. Lottspeich, J. W. Engels: Bioanalytik, 3. Auflage, Springer Spektrum, 2012

- S. R. Mikkelsen, E. Cortón: Bioanalytical Chemistry, Wiley-Inter-science, 2004

- M. H. Gey, Instrumentelle Analytik und Bioanalytik, Springer Berlin Heidelberg, Berlin, Heidelberg, 2. Auflage, 2008.

- Cammann, Instrumentelle Analytische Chemie, Spektrum Akad-emischer Verlag, Heidelberg, 1. Auflage, 2010.

- M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag, Stuttgart, 7th edn., (2005).

- D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Funda-mentals of Analytical Chemistry, Cengage Learning, Brooks/Cole, 9th edn., (2014).

- Skoog, F. J. Holler and S. R. Crouch, in Principles of Instrumen-tal Analysis, Cambridge University Press, Cambridge, (2007), vol. 9.

Page 5: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Inhaltsverzeichnis 5

2 Inhaltsverzeichnis

Contents

Contents

Chapter 1 Basics of analytical chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Criteria for selecting analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.1 Population vs. sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.2 Trueness vs. precision vs. accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.3 Differences in errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3.4 How to find outliers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Calibration in quantitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.4.1 Calibration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.4.2 Gaussian error propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A Appendix1.0

AppendixBibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Page 6: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Inhaltsverzeichnis 6

Contents

Contents

Chapter 2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Cell disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Lyophilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2.1 Freeze-induced damage and problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2.2 Cryoprotectants: stability vs. toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3.1 Cohn Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3.2 Hofmeister Ion Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4 Centrifugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4.1 (Hydro)Cyclones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4.2 Single use insets – kSep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.5 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.5.1 Depth filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.5.2 Dialysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.5.3 Reversed osmosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.5.4 Biomimetic and bioinspired membranes . . . . . . . . . . . . . . . . . . . . . . . . . 162.6 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A Appendix1.0

AppendixBibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Page 7: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Inhaltsverzeichnis 7

Contents

Contents

Chapter 3 Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1 Distribution between mobile and stationary phases . . . . . . . . . . . . . . . . . . . . . 23.1.1 Plate theory and van Deemter equation . . . . . . . . . . . . . . . . . . . . . . . . . . 33.1.2 Chromatographic resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.1.3 Kovats index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2 Liquid chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2.1 HPLC instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2.2 Planar chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3 Normal-phase vs. reverse-phase chromatography . . . . . . . . . . . . . . . . . . . . . 113.3.1 Hydrophobic and hydrophilic interactions . . . . . . . . . . . . . . . . . . . . . . . . 123.4 Ion-exchange chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.5 Size-exclusion chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.6 Affinity chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.6.1 Molecular imprinted polymers – MIPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.7 Chromatography in purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Appendix1.0

AppendixBibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Page 8: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Inhaltsverzeichnis 8

Contents

Contents

Chapter 4 Electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.1 Principles of electrophoretic separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.2 Gel electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44.3 2D electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84.4 Electroblotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.4.1 Western blotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114.5 Capillary electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.5.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.5.2 Different types of CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A Appendix1.0

AppendixBibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Page 9: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Inhaltsverzeichnis 9

Contents

Contents

Chapter 5 Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.1 Ion separation and identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Ionization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45.3 MS analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.4 MS detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.5 MS imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A Appendix1.0

AppendixBibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Page 10: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 10

3 Leseprobe 1Basics of analytical chemistry

1

1.1 Introduction

Fig. 1.1: AntoineLavoisier (Public Do-main, details on wikime-dia commons)

The concept of chemical analysis was first developedby R. Boyle (1627 – 1691). However, analytical chem-istry was readily used before, e. g. by Paracelsius(1493 – 1541) for water analysis. Even alchemy canbe viewed as the allocation of materials into individ-ual compounds. First quantitative experiments wereexecuted by Antoine Lavoisier, who is known as the“father” of analytical chemistry. In 1801, the sub-ject of analytical chemistry was first mentioned ina textbook leading to the establishment of Ana-lytical Chemistry as an independent scientific disci-pline.

Nowadays, analytical chemistry is used in many different ar-eas ranging from clinical tests for blood or saliva samples tomonitoring of critical parameters in food analysis. Likewise,concepts derived from analytical chemistry are essential inbiomedical analysis, environmental analysis, and quality monitoring in productionprocesses. Additionally, analytical tools are also used in security and forensic scenarios,and for the investigation of ancient art or archaeological artifacts, as well as forcounterfeit screening.

1.2 DefinitionIn general, analytical chemistry combines and embraces several scientific disciplines.Accordingly, analytical chemistry deals with a variety of challenges including, e. g.,guidelines for inter-laboratory comparisons or sample (pre)treatment (i. e., samplecollection, preparation, storage, and handling). Additionally, methods and criticaldata evaluation routines are defined and optimized for maximizing efficiency andaccuracy. Analytical methods can be classified into classical analytics and instru-mental analytics, whereby the classical methods include separation or extraction of

Page 11: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 11

Criteria for selecting analytical methods 1

2

different components via so-called wet-chemical methods. This includes techniqueslike titration, gravimetry, extraction, distillation, filtration or chemical pulping.

Since the 20th century instrumental methods became increasingly important, andthe technological progress along with advancements in computers and software haveenabled the detection and determination of increasingly smaller compounds or tracesof analytes within complex matrices. Nowadays, modern analytical methods dealwith challenges including miniaturization (i. e., detection at micro- and nano-scales,but also devices that are small (e. g., on-chip) yet remain manageable), combinationof techniques (i. e., so-called “hyphenated-techniques”), on-line detection scenarios,increasingly smart and reliable analytical tools (i. e., control systems and automationof processes), and the optimization of qualitative and quantitative results toward moreprecision, accuracy, reliability, and repeatability.

Different types of instrumental methods have been defined, which can be divided intoseveral groups. The physical and chemical parameters used for the characterizationand determination of analytical species are divided into radiation, electrical properties,mass and charge of the analytes, thermal or kinetic characteristics, radioactivity, etc.resulting in different demands and in consequence different instrumental methods.Hence, analytical chemistry is not just aimed towards the detection of analyte species,but also with the optimized application of physical stimuli followed by evaluation ofthe obtained response of the sample, i. e., analytical information and data. Analyticalmethods can also be divided with respect to the collected information. There are four“W-questions”, which can be answered by analytical methods:

What’s in the sample? → Qualitative analysisWhat’s the amount of analyte? → Quantitative analysisWhere is the analyte located? → Surface or distribution analysisWhat’s the structure of the sample? → Structural/chemical composition of

the analytes

1.3 Criteria for selecting analytical methodsThere are numerical criteria for selecting suitable analytical methods, and for assessingthe obtained analytical result to its trueness and accuracy. In the following, somestatistical descriptors are briefly explained, which are commonly used in analyticalchemistry.

1.3.1 Population vs. sampleThe population represents the entire sample unit (e. g., an entire lake, river, etc.).The entire population is therefore usually not available for evaluation due to restrictionsin time, cost and appropriate effort. Hence, a so-called sample is collected, whichshould be a representative amount of the unknown species representing the entiresystem. By definition, statistical terms, which pertain to the entire population arewritten in Greek letters, and terms describing a sample are written in Latin letters.

Page 12: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 12

Criteria for selecting analytical methods 1

3

population sample

Mean value µ = limN→∞

∑Ni=1 xiN x =

∑Ni=1 xiN

Standard deviation σ =

limN→∞

∑Ni=1(xi − µ)2

N s =

√∑Ni=1(xi − x)2

N − 1Variance σ2

t = σ21 + σ2

2 + ... + σ2n s2

t = s21 + s2

2 + ... + s2n

Relative standard de-viation

RSD = σ

µ× 10z RSD = s

x × 10z

Coefficient of Varia-tion (z=2)

CV = σ

µ× 100 % CV = s

x × 100 %

With: number of measurement (N), the signal value (xi , with i = 1− N) andz = (x−µ)

σ .Fig. 1.2: Population vs. sample

1.3.2 Trueness vs. precision vs. accuracyThe trueness of a result describes the level of agreement of the measured mean valuewith the true value. This value is in general unknown, however, the goal remains toget as close as possible to the true value. Therefore, every systematic error has tobe eliminated. This can be realized by using reference materials and performing amethod or instrumental validation. By repeating the measurement ≥ 30 times andtaking the average, one may statistically assume normally distributed values close tothe true value (in most cases; not always), if there is no systematic error. It shouldbe noted again that meaningful average values are only obtained, if the underlyingdata points are normally distributed.

The precision describes the coincidence of individual data points, and the repro-ducibility of the obtained results using the same method (i. e., same technique, sameinstrumental set-up, etc.). In other words, the scattering of the data points aroundthe average value is described using the absolute/relative standard deviation, variance,and the coefficient of variation. As a statistical parameter, precision can be dividedinto reproducibility of a result investigated by different laboratories, repeatabilityof consecutive measurements, and repeated measurements over a period of time(intermediate precision).

The accuracy describes the correctness of the result and combines trueness with theprecision of an experimental value. It comprises all errors within the method or thesystem.

Page 13: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 13

Criteria for selecting analytical methods 1

4

Fig. 1.3: Trueness vs. precision vs. accuracy

1.3.3 Differences in errors

Fig. 1.4: Differences in errors

In an experiment with a large number of individual data points and the assumptionthat no systematic errors occur, the distribution of the values is safely assumed as“normal” (i. e., Gaussian). This implies the symmetrical distribution of values aroundthe mean value, which has the maximum frequency of data points. Additionally, thebehavior of the data points should show an exponential decrease with increase ofthe deviation from the mean value. This can be expressed by a normal Gaussiandistribution.

Page 14: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 14

Criteria for selecting analytical methods 1

5

Fig. 1.5: Normal Gaussian distribution (ISBN: 9780495558286)

In general, a set of data is normally distributed – especially if a large number ofdata points is collected – and the sample can be viewed as a population. In mostexperiments, it is not possible however to repeat a measurement that frequently.Therefore, the mean value and a data range can be estimated and assuming thatwith a sufficiently high probability the true value is within this region. This is calledthe confidence interval P. The interval that is not taken into account, is called thesignificance level α. The calculation of an appropriate interval is done using thet-test (or student distribution).

It should be noted that next to a normal distribution, there are also other possibilitiesfor data distributions, e. g., Bernoulli distribution, Poisson distribution, etc.

Fig. 1.6: Bernoulli distribution (left, https : //media .wsb .wisc . edu/data/act_sci/Frees/ActMathII/InterestRateRisk/InterestRateRisk04Nov2012/bernoulli_distribution.html) and Poisson distribution (right, by Skbkekas, Poisson pmf, CC BY3.0)

Hence, it is obvious that the mean value ± the standard deviation is not alwaysthe most suitable representation of the experimental values. Another possibility tocharacterize the measurement is the median. This is the value, which is in the middleof all data, i. e., divides all data points into 50% to the left and right of the median.This method is more resistant towards outliers. The mode of a data set is the mostfrequently occurring value within all determined values, and is also rather insensitiveto outliers.

Page 15: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 15

Criteria for selecting analytical methods 1

6

Fig. 1.7: Comparison mean median mode (by Cmglee, Comparison mean medianmode, CC BY-SA 3.0)

1.3.4 How to find outliers?The statistics and assumptions discussed above are only reliable, if there are noextreme individual values considered within the data range, i. e., which have a sub-stantial deviation from the mean value. This may occur due to errors, but mayalso be in fact real values with a more pronounced deviation vs. other data points.Such data can significantly affect/distort a result that is usually based on calculat-ing an average value, it is preferable to test an experimental data set for these outliers.

The most frequently used tests for outliers in analytic chemistry include:

• Dean and Dixon: An outlier x∗1 can be distinguished for data sets with n ≤ 25by this method also known as Q-test. Thereby, the values are sorted in increasingor decreasing order (dependent on the outliers with respect to the mean value)and calculated as

M = |x∗1 − xb||x∗1 − xk |

with b = 2 (3 ≤ n ≤ 10) or b = 3 (11 ≤ n ≤ 25) and k = n (3 ≤ n ≤ 7),k = n − 1 (8 ≤ n ≤ 13) or k = n − 2 (14 ≤ n ≤ 25).

• Graf and Henning: For n ≥ 25 the outlier can be determined by calculationof the mean value and the standard deviation without consideration of thesuspected outlier. If this value is within x ± 4s, the discrepancy of this value isstill acceptable.

• Grubbs: This test can be used for an undefined number of values to investigatethe lowest and/or the highest value x∗ in a data series

G = |x − x∗|s

with the mean value (x) and the standard deviation (s).

Page 16: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 16

Calibration in quantitative analysis 1

7

The critical values for G are calculated using tabulated values for the studentdistribution (t) with N values and the significance level α:

G >(N − 1)√

√√√√ (t α2N ,(N−2))2

N − 2 + (t α2N ,(N−2))2

• Nalimov: The extension of the Grubbs outlier test is the Nalimov test takingthe number of data points into account by

G = |x − x∗|s ·

√n

n − 1

1.4 Calibration in quantitative analysisThere are different possibilities for quantifying an unknown amount of a specificanalyte within a sample. Accordingly, analytical methods can be divided into twogroups: absolute and relative quantitative methods.

Fig. 1.8: Absolute and relative quantitative methods

Hence, an important aspect for the detection of a reliable and true value is anappropriate calibration routine providing an analytical signal as a function of theconcentration or amount of the analyte in samples prepared with known concentrations.Important parameters associated with calibration are described in the following:

• Sensitivity describes the ability to discriminate between small differences inconcentrations of the analyte, and can be calculated as the slope of the regressionfunction in a calibration. A quantitative definition (i. e., following IUPAC) is

Page 17: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 17

Calibration in quantitative analysis 1

8

the calibration sensitivity, which is the slope at the concentration of interest.For a linear correlation between concentration and detection signal, the signalcan be described by

S = mc + Sblind

with the signal (S) and the signal of the blind measurement (Sblind), theconcentration (c), and the slope of the linear regression (m). The analyticalsensitivity γ takes also the precision into account, and can be expressed by thestandard deviation of the measurement as

γ = msS

• Selectivity of the calibration or the analytical methods is described by theability of discriminating between the analyte of interest, and other species withinthe sample matrix.

• The limit of detection (LOD) is defined by the blank value and its standarddeviation and describes the minimum signal that can be detected by an analyticalmethod and discriminated from the background noise. Occasionally, the LODis defined as approx. 5-times the standard deviation of the blank value. Bystatistical calculations and in agreement with literature the detection limit Smis more precisely calculated as

Sm = Sblind + 3 · sblind

with the mean blind signal (Sblind) and its standard deviation (sblind).

Fig. 1.9: Dynamic range (ISBN: 9781337468039)

Page 18: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Leseprobe 18

Calibration in quantitative analysis 1

9

• The dynamic range is defined by the lowest detectable value sufficient forquantifying the obtained analytical signal (limit of quantification – LOQ) andthe highest concentration concluding the linear regime of the calibration (limit oflinearity – LOL). The LOQ is defined as approx. 10-times the standard deviationof the blank value. In general, 5% deviation from linearity is considered asthe upper limit. This results from either chemical effects (e. g., molecularinteractions) or non-ideal detection regimes at high concentrations.

1.4.1 Calibration methodsThe easiest calibration routine is the external standard calibration. Thereby, therequirement for the sample is that the unknown concentration has to be withinthe dynamic range of the method, and above the LOD. Additionally, the standardsolutions applied for the calibration routine have to be similar to the sample intheir composition (i. e., also the background matrix and potential interference). Todetermine an adequate linear function for the relation between signal and concentra-tion, least squares regression method is used based on the assumption that thereis a linear correlation between signal and concentration, and that the deviation ofthe data points from this linear regression are due to errors of the experimental method.

In regression analysis, the deviation of individual data points (i. e., residual) iscalculated, and the minimized sum for all residuals of xi data points is determined.The square of this values is used neglecting the direction of deviation (i.e., smaller orlarger than the regression value).

Minimum =N∑

i=1[yi − (b + mxi)]2

with the detected signal (yi), the slope (m) and the y intercept (b).

The standard error of the estimate (sr ) is then:

sr =√

Minimum(N − 2)

Page 19: Bioanalytical Methods I · Institute of Analytical and Bioanalytical Chemistry Faculty of Natural Sciences Ulm University. Modulinhalt 2 1 Modulinhalt Bioanalytical Methods [59]

Beratung und Kontakt 19

4 Beratung und Kontakt

Ansprechpartner

Dr. Gabriele GrögerAlbert-Einstein-Allee 4589081 Ulm

Tel 0049 731 – 5 03 24 00Fax 0049 731 – 5 03 24 09

[email protected]/saps

Geschäftsführender Direktor der SAPS: Prof. Dr.-Ing. Hermann Schumacher

Postanschrift

Universität UlmSchool of Advanced Professional StudiesAlbert-Einstein-Allee 4589081 Ulm

Der Zertifikatskurs „Bioanalytical Methods“ wurde entwickelt im Projekt CrossOver, das aus Mitteln des Ministeriums für Wissenschaft, Forschung und Kunst Baden-Württemberg und vom Ministerium für Soziales und Integration Baden-Württemberg aus Mitteln des Europäischen Sozialfonds gefördert wird (Förderkennzeichen: 696606).

Mod:Master

Mod:Master

berufsbegleitend online zum Master

Sensorsystemtechnik

Beratung und Kontakt