bio degradation of pollutants

40
Transformation and Degradation of Pollutants Important Variables for Contaminant Transformations 1. Chemical Structure of the Contaminant 2. Presence of Transforming Species 3. Physical Availability of the contaminant. 4. Dissolved Oxygen 5. pH 6. Temperature

Upload: api-3723327

Post on 13-Dec-2014

127 views

Category:

Documents


0 download

DESCRIPTION

Para sa last exam sa BC 168

TRANSCRIPT

Page 1: Bio Degradation of Pollutants

Transformation and Degradation of Pollutants

Important Variables for Contaminant Transformations

1. Chemical Structure of the Contaminant

2. Presence of Transforming Species

3. Physical Availability of the contaminant.

4. Dissolved Oxygen

5. pH

6. Temperature

Page 2: Bio Degradation of Pollutants

Abiotic Transformation of Pollutants

1. Nucleophilic Substitution

2. Elimination Reaction

3. Oxidation/Reduction

OH = One of the most important oxidants found in air, water and biological systems.

Sources of OH Radical:

a. Fenton Reaction

b. Reaction of Ozone wigth NOx

Page 3: Bio Degradation of Pollutants

Biodegradation Reactions and Pathways of Hazardous Contaminants

Page 4: Bio Degradation of Pollutants

Microbial Transformation of Pollutants

Microorganisms involved in Biotransformations

1. Bacteria

2. Fungi

3. Algae

4. Protozoan

Page 5: Bio Degradation of Pollutants

Classification of Bacteria in Microbial Metabolism

1. Based on Energy Sourcesa. Chemotrophsb. Phototrophs2. Based on Sources of Carbona. Autotrophsb. Heterotrophs3. Based on Sources of Electronsa. Organotrophsb. Lithotrophs

Page 6: Bio Degradation of Pollutants

Microbial Growth Pattern

Lag PhaseLog Phase

Stationary Phase

Death Phase

Mic

robi

al P

opul

atio

n

Time

Page 7: Bio Degradation of Pollutants

Conceptual Basis for Biodegradation Reaction

Contaminant + Xox Product + Xred

Page 8: Bio Degradation of Pollutants

Redox Couple

» Eo’ (V)

• Succinate + CO2 + 2H + 2e a-ketoglu + H2O -0.67

• AcetylcoA + CO2 + 2H + 2e Pyruvate + COAsH -0.48

• A-ketoglu + CO2 + 2H + 2e isocitrate -0.38

• Acetaldehyde + 2H + 2e ethanol -0.20

• Pyruvate + 2H + 2e Lactate -0.19

• Oxaloacetate + 2H + 2e Malate -0.17

• Fumarate + 2H + 2e Succinate 0.03

Substrate Redox Couple

ETS Couple (Aerobic Respiration

2H + 2e - H2 -0.42

Ferridoxin (Fe3+) + 1e Ferridoxin (Fe2+) -0.42

NAD + H+ + 2e --- NADH -0.32

NADP + H+ + 2e - NADPH -0.32

FAD + 2H + 2e - FADH2 -0.18

Cytb(Fe2+) + 1e Cytb(Fe2+) +0.10

Cytc (Fe3+) + 13 Cytc (Fe2+) 0.25

Cyta3 (Fe3+) + 1e Cyta3 (Fe2+) 0.55

O2 + 4H +4e - 2H2O 0.82

Page 9: Bio Degradation of Pollutants

• 2H + 2e - H2 -0.42• Ferridoxin (Fe3+) + 1e Ferridoxin (Fe2+) -0.42• NAD + H+ + 2e --- NADH -0.32• NADP + H+ + 2e - NADPH -0.32• FAD + 2H + 2e - FADH2 -0.18• Cytb(Fe2+) + 1e Cytb(Fe2+) 0.10• Cytc (Fe3+) + 1e Cytc (Fe2+) 0.25• Cyta3 (Fe3+) + 1e Cyta3 (Fe2+) 0.55• O2 + 4H +4e - 2H2O 0.82

ETS Couple (Aerobic Respiration

ETS Couple (Anaerobic Respiration

SO42- + 3H + 2e - HSO3- + H2O -0.52

NO3- +2H + 2e NO2- + H2O +0.42

NO2- + 8H + 6e NH4

+ + 2H2O +0.44

Fe3+ + 1e - Fe2+ +0.77

Page 10: Bio Degradation of Pollutants
Page 11: Bio Degradation of Pollutants

Dependence of Bacteria on Electron Acceptor

• Aerobic Reaction- O2 is the e- acceptor

• Anaerobic Process: 3 Pathways• 1. Anaerobic Respiration• 2. Fermentation• 3. Methanogenesis

Page 12: Bio Degradation of Pollutants

Aerobic Metabolism Pathways

• Emden-Meyerhof Pathway• TCA• Electron Transport System• Glucose Metabolism:• Glucose Pyruvate 2 ATP and 2 NADH• 2 Pyruvate 2 AcetyCoA 2 NADH

• 2 AcetylcoA 4 CO2 + 2 H2O 6 NADH, 2 FADH, 2 ATP

Page 13: Bio Degradation of Pollutants

• Lactate Fermentation• Glucose + 2 NAD+ + 2 ADP + 2Pi 2 Pyruvate

+ 2 NADH + 2 H+ + 2 ATP• 2 NADH + 2 H + 2 Pyruvate 2 Lactate• Glucose + 2 ADP + 2Pi 2 Lactate + 2 ATP

Ethanol Fermentation

Glucose + 2 NAD+ + 2 ADP + 2Pi 2 Pyruvate + 2 NADH + 2 H + 2 ATP

2 Pyruvate - 2 Acetaldehyde + 2 CO2

2 Acetaldehyde + 2 NADH + 2 H - 2 Ethanol + 2 NAD+

Glucose + 2 ADP + 2 Pi - 2 Ethanol + 2 CO2 + 2 ATP

Methanogenesis:

CH3COOH -- CH4 + CO2

CO2 + 4 H2 - CH4 + 2 H2O

Page 14: Bio Degradation of Pollutants

• Important Bacteria in Hazardous Waste Systems:

• White Rot Fungus or Wood Rot Fungus

Examples:

Phanerochaete Chrysosporum

Phanerochaete sordida

-These fungi have been shown to degrade PAH, PCB,

pentachlorophenol, DDT through the activity of extracellulase peroxidase enzyme

Important Bacteria in Hazardous Waste Systems:

a. Pseudomonas

b. Nocardia

c. Mycobacterium

d. Arthrobacteria

e. Bacillus

Page 15: Bio Degradation of Pollutants

Biodegradation Reactions and Pathways of Hazardous Contaminants

• 1. Contaminants pass through the cell membrane.• 2. Compounds too large to pass through the cell

membrane may be partially degradaded by exoenzymes which are secreted through the cell wall.

• 3.The following reactions will occur in the cytoplasm: Hydroxylation, Hydrolysis, Dehalogenation, Dealkylation and Reduction

• 4. Dehydrohalogenation

Page 16: Bio Degradation of Pollutants

Oxidative Processes for which Oxygen is the Electron Acceptor

• Monooxygenases are characterized by their ability to introduce one of the atoms of O2 into an organic substrate, S and the other being incorporated into a molecule of water.

• S + O2 + AH + H+ -- SO + A + H2O

• Reactions catalyzed by Monooxygenases:• 1. Hydroxylation at Saturated and Unsaturated Carbon• 2. Epoxidation of Olefin• 3. Baeyer-Villiger Oxidation of Ketones• 4. Oxidation at S and N• 5. Heteroatom Dealkylation

Page 17: Bio Degradation of Pollutants

Protoporphyrin Ring

N

NN

N

CO2-

CO2-

Fe2+

S(Cys-Protein)

Page 18: Bio Degradation of Pollutants

Fe3+

Fe2+---S

S---3+Fe

OOH

S

4+Fe=O

S, 1e

O2, e, H+H+

H2O

S(O)

Fe2+P + O2 -----> Fe3+ (O2-) -----> Fe3+(O2

-) -------> Fe3+(OOH)

Fe3+(OOH)----> Fe4+(O2-) + HO

Fe3+(OOH)---->Fe4+P(O2-) + HO-

HomolyticBond Cleavage

HeterolyticBond Cleavage

1e H+

.

• Cytochrome P450-Dependent monooxygenase delivers oxygen to the substrate in the form of a heme-iron oxo complex

• Responsible for the majority of biological hydroxylation, epoxidation, and heteroatom dealkylation

Page 19: Bio Degradation of Pollutants

Hydroxylation of Alkane

Fe3+P(OOH) + CH4 Fe4+P(O2-) + CH3

. +H2O

Fe4+P(O2-) + CH3

. ---> Fe3+P-OCH3 --

[Fe3+P] + HOCH3

Epoxidation of Alkene

Fe3+P(OOH) + CH2=CH2 Fe3+P(OH) + epoxide

O

OH O

Hydroxylation of Benzylic Carbon, Amines and Mercaptans

-Hydroxylation of the substrate can occur following the removal of one electron from the aromatic ring.

R Fe3+P(OOH)+.

R R

.R

HO

Fe4+P(O-2) + HO.

Fe4+PO. + CH3NH2 ----> Fe4+PO- + CH3NH2+. ----> CH2=NH2

+

PFe3+ + CH3-N+-O- Fe3+PO-N(CH3)3+

Fe4+O. + -S- ------> Fe4+-O- + -S+-

-S-

OFe3+ +

Fe4+P(O2-)EnzymeRecycling

EnzymeRecycling

Page 20: Bio Degradation of Pollutants
Page 21: Bio Degradation of Pollutants
Page 22: Bio Degradation of Pollutants
Page 23: Bio Degradation of Pollutants
Page 24: Bio Degradation of Pollutants
Page 25: Bio Degradation of Pollutants
Page 26: Bio Degradation of Pollutants
Page 27: Bio Degradation of Pollutants
Page 28: Bio Degradation of Pollutants
Page 29: Bio Degradation of Pollutants

Initial Degradation of Benzene

Page 30: Bio Degradation of Pollutants
Page 31: Bio Degradation of Pollutants
Page 32: Bio Degradation of Pollutants
Page 33: Bio Degradation of Pollutants
Page 34: Bio Degradation of Pollutants
Page 35: Bio Degradation of Pollutants
Page 36: Bio Degradation of Pollutants
Page 37: Bio Degradation of Pollutants
Page 38: Bio Degradation of Pollutants
Page 39: Bio Degradation of Pollutants
Page 40: Bio Degradation of Pollutants