big ideas geometry and data analysis · we will be giving you other definitions of geometry as we...

231
Big Ideas in Mathematics for Future Teachers Big Ideas in Geometry and Data John Beam, Jason Belnap, Eric Kuennen, Amy Parrott, Carol E. Seaman, and Jennifer Szydlik (Updated Summer 2019)

Upload: others

Post on 23-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

BigIdeasinMathematicsforFutureTeachers

BigIdeasinGeometryandData

JohnBeam,JasonBelnap,EricKuennen,AmyParrott,CarolE.Seaman,andJenniferSzydlik

(UpdatedSummer2019)

Page 2: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

2

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Page 3: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

3

Hey!Readthis.Itwillhelpyouunderstandthebook.

Theonlywaytolearnmathematicsistodomathematics. PaulHalmos

Thisbookwaswrittentopreparefutureteachersforthemathematicalworkofteaching.Thefocusofthismoduleisgeometryanddata–andthisdomainencompassesmanydeepandwonderfulmathematicalideas.Thistextisnotintendedtohelpyourelearnyourelementarymathematics;itisaboutteachingyoutothinklikeamathematiciananditisabouthelpingyoutothinklikeamathematicsteacher.TheNationalCouncilofTeachersofMathematics(NCTM,2000)writes:

Teachersneedseveraldifferentkindsofmathematicalknowledge–knowledgeaboutthewholedomain;deep,flexibleknowledgeaboutcurriculumgoalsandabouttheimportantideasthatarecentraltotheirgradelevel;knowledgeaboutthechallengesstudentsarelikelytoencounterinlearningtheseideas;knowledgeabouthowtheideascanberepresentedtoteachthemeffectively;andknowledgeabouthowstudents’understandingcanbeassessed(p.17).

Wearegoingtoworktowardthesegoals.(Readthemagain.Thisisatallorder.Inwhichareasdoyouneedthemostwork?)Throughoutthisbook,wewillaskyoutoconsiderquestionsthatmayariseinyourelementaryclassroom.

Isasquarealwaysarectangle?

Whatdoesthisnumbercalledprepresent?Whatdoesitmeantomeasure“area”?

Cantworectangleswiththesameareahavedifferentperimeters?

Whatissospecialaboutrighttriangles? IfIbuya5-inchpizzaandmyfriendbuysa10-inchpizza,doessheget twiceasmuchtoeat?

HowmanypeopledoyouneedtosampleinordertoreasonablyfindouthowmanyhoursofTVsecondgraderswatchinaweek?

Whatdoesitmeantosaythattheprobabilityofaheadwhenflippingacoinis½?

Page 4: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

4

Asmathematicianswewillalsoconveytoyouthebeautyofoursubject.Weviewmathematicsasthestudyofpatternsandstructures.Wewanttoshowyouhowtoreasonlikeamathematician–andwewantyoutoshowthistoyourstudentstoo.Thiswayofreasoningisjustasimportantasanycontentyouteach.Whenyoustandbeforeyourclass,youarearepresentativeofthemathematicalcommunity;wewillhelpyoutobeagoodone.Noonecandothisthinkingforyou.Mathematicsisn’tasubjectyoucanmemorize;itisaboutwaysofthinkingandknowing.Youneedtodoexamples,gatherdata,lookforpatterns,experiment,drawpictures,think,tryagain,makearguments,andthinksomemore.Thebigideasofgeometryarenotalwayseasy–buttheyarefundamentallyimportantforyourstudentstounderstandandsotheyarefundamentallyimportantforyoutounderstand.EachsectionofthisbookbeginswithaClassActivity.Theactivityisdesignedforsmall-groupworkinclass.Someactivitiesmaytakeyourclassaslittleas20minutestocompleteanddiscuss.Othersmaytakeyoutwoormoreclassperiods.TheReadandStudy,ConnectionstoTeaching,andHomeworksectionsarepresentedwithinthecontextoftheactivityideas.Nosolutionsareprovidedtoactivitiesorhomeworkproblems–youwillhavetosolvethemyourselves.ThemathematicscontentinthisbookpreparesyoutoteachtheCommonCoreStateStandardsforMathematicsforgradesK-8.Thesearethestandardsthatyouwilllikelyfollowwhenyouareanelementaryteacher,sowewillhighlightaspectsofthemthroughoutthetext.Inorderforyoutoseehowthemathematicalworkyouaredoingappearsintheelementarygrades,wehavemadeexplicitconnectionstoBridgesinMathematicsfromTheMathLearningCenter.ThisistheonlineelementarygradesmathematicscurriculumadoptedbytheOshkoshAreaSchoolDistrict.Youwilloftenbeaskedtogotothesitebridges.mathlearningcenter.orgtoreadordoproblems.Yourinstructorwillprovideyouwithacodesothatyoucanaccessthesematerials. Allourbest,

John,Jason,Eric,Amy,Carol&Jen

Page 5: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

5

TableofContents

Tobeateacherrequiresextensiveandhighlyorganizedbodiesofknowledge.Shulman,1985,p.47

ChapterOne.......................................................................................................9ClassActivity1: TrianglePuzzle.......................................................................................10

WhatisGeometry................................................................................................................11

NatureofMathematicalObjects..........................................................................................11

MathematicalCommunication.............................................................................................13

ClassActivity2: DefiningMoments.................................................................................17

RoleofDefinitions................................................................................................................18

ParallelandPerpendicularLines..........................................................................................19

ClassActivity3: GetitStraight........................................................................................26

LanguageofMathematics....................................................................................................29

DeductiveversusInductiveReasoning.................................................................................29

IdeaofAxioms......................................................................................................................30

MakingConvincingMathematicalArguments.....................................................................32

ClassActivity4: AlltheAngles.........................................................................................39

MeasuringAnglesinDegrees...............................................................................................39

RegularPolygons..................................................................................................................41

ClassActivity5: ALogicalInterlude.................................................................................45

ConverseandContrapositive...............................................................................................46

SummaryofBigIdeas........................................................................................................49

ChapterTwo.....................................................................................................50ClassActivity6: MeasureforMeasure............................................................................51

StandardandNonstandardUnits.........................................................................................53

ApproximationandPrecision...............................................................................................54

ClassActivity7: Part1Triangulating................................................................................57

ClassActivity7: Part2AreaEstimation...........................................................................58

IdeaofArea..........................................................................................................................59

CoveringwithUnitSquares..................................................................................................60

Page 6: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

6

ClassActivity8: FindingFormulas....................................................................................64

MakingSenseofAreaFormulas...........................................................................................65

ClassActivity9: TheRoundUp........................................................................................70

Whatisπ?............................................................................................................................72

InscribedPolygons................................................................................................................74

ClassActivity10: PlayingPythagoras...............................................................................75

ProofsofthePythagoreanTheorem....................................................................................77

GeometricandAlgebraicRepresentations...........................................................................78

SummaryofBigIdeas........................................................................................................80

ChapterThree..................................................................................................81ClassActivity11: StrictlyPlatonic(Solids)........................................................................82

RegularPolyhedra................................................................................................................83

SpatialReasoning.................................................................................................................84

ClassActivity12: PyramidsandPrisms............................................................................87

CountingVertices,Edges,andFaces....................................................................................87

ClassActivity13: SurfaceArea........................................................................................90

IdeaofSurfaceArea.............................................................................................................91

ClassActivity14: NothingButNet...................................................................................94

NetsforCylindersandPyramids..........................................................................................94

ClassActivity15: BuildingBlocks.....................................................................................95

IdeasofVolume....................................................................................................................97

VolumesofPrismsandCylinders.........................................................................................97

ClassActivity16: VolumeDiscount..................................................................................99

Capacity..............................................................................................................................101

VolumesofPyramids,Cones,andSpheres........................................................................102

ClassActivity17: VolumeChallenge..............................................................................106

BuildingModelstoSpecification........................................................................................106

SummaryofBigIdeas......................................................................................................109

ChapterFour..................................................................................................110ClassActivity18: Slides.................................................................................................111

RigidMotions.....................................................................................................................112

Translations........................................................................................................................112

Page 7: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

7

ClassActivity19: Turn,Turn,Turn.................................................................................115

Rotations............................................................................................................................117

ClassActivity20: ReflectingonReflecting.....................................................................120

Reflections..........................................................................................................................122

ClassActivity21: Part1ASimilarTask..........................................................................125

ClassActivity21: Part2Zoom.......................................................................................126

SimilarPolygons.................................................................................................................127

ClassActivity22: SearchingforSymmetry.....................................................................130

SymmetriesinthePlane.....................................................................................................131

SummaryofBigIdeas......................................................................................................134

ChapterFive...................................................................................................135ClassActivity23: DiceSums..........................................................................................136

LanguageofProbability......................................................................................................137

ExperimentalandTheoreticalAnalysis..............................................................................141

ClassActivity24: RatMazes..........................................................................................144

TreeDiagrams....................................................................................................................145

CompoundEvents..............................................................................................................146

ClassActivity25: TheMaternityWard...........................................................................149

LawofLargeNumbers........................................................................................................150

IndependentEvents...........................................................................................................150

SummaryofBigIdeas......................................................................................................153

ChapterSix.....................................................................................................154ClassActivity26: StudentWeightsandRectangles........................................................155

TheLaguageofSampling....................................................................................................158

RandomSamples................................................................................................................159

ClassActivity27: SnowRemoval...................................................................................165

AnalyzingaSurvey..............................................................................................................166

ClassActivity28: Part1NameGames...........................................................................172

ClassActivity28: Part2IntheBalance..........................................................................174

RedistributionConceptoftheMean..................................................................................176

BalanceConceptoftheMean............................................................................................176

MedianandMode..............................................................................................................176

Page 8: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

8

FiveNumberSummary.......................................................................................................177

Percentiles..........................................................................................................................178

ClassActivity29: MeasuringtheSpread........................................................................183

Range,IQR,andMeanAbsoluteDeviation........................................................................185

ACriterionforFindingSuspectedOutliers.........................................................................185

Boxplots..............................................................................................................................186

ClassActivity30: TheMatchingGame...........................................................................191

Distributions,Skewness,andSymmetry............................................................................193

SummaryofBigIdeas......................................................................................................203

References.......................................................................................................................204

APPENDICES...................................................................................................206Euclid’sPostulatesandPropositions................................................................................207

Glossary..........................................................................................................................212

GraphPaper....................................................................................................................227

Tangrams.........................................................................................................................229

PatternBlocks.................................................................................................................230

Page 9: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

9

ChapterOne

SeeingtheWorldGeometrically

Page 10: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

10

ClassActivity1: TrianglePuzzle

Geometryisthescienceofcorrectreasoningonincorrectfigures. Originalauthorunknown,butquotedfromG.Polya,HowtoSolveIt.Princeton:

PrincetonUniversityPress.1945.Whathappenedtothemissingsquare?

Page 11: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

11

ReadandStudy

Geometricfiguresshouldhavethisdisclaimer:

“Noportrayalofthecharacteristicsofgeometricalfiguresorofthespatialpropertiesofrelationshipsofactualbodiesisintended,andanysimilaritiesbetweentheprimitiveconceptsandtheircustomarygeometricalconnotationsarepurely

coincidental.”

"GeometryandEmpiricalScience"inJ.R.Newman(ed.)TheWorldofMathematics,NewYork:SimonandSchuster,1956.

Mathematicalobjects–geometricobjectsincluded–arenotrealobjects.Theyareidealobjects.Thismightseemdisturbingbecausethismeansthatgeometricobjects–liketrianglesandcircles–donotexistinthephysicalworld.Youcandrawsomethingthatlookslikeatriangleoracircle,butitwon’thavethepreciseandperfectpropertiesthattheidealmathematicaltriangleorcirclehas.Thesketchwillsimplycalltomindtheidealobject.Whilewedrawlotsofpicturesingeometry,weneedtokeepinmindthatthepicturescanbemisleading.TaketheTrianglePuzzleasanexample.Thispuzzleiscompellingbecauseitreallylookslikethetopandbottomfiguresarebothtriangles.Theyarenot.Onlybyreasoningabouthowtheidealizedpiecesfittogethercanwediscoverthetruth.Thepuzzleisgovernedbyanunderlyingstructure–thepropertiesoftheshapesinvolveddeterminehowtheywillfittogether.Mathematicianslovetorevealhiddenstructureandtoexplainpatterns.Thisiswhatmathematicsisabout.Andthisiswhatgeometry,inparticular,isabout.Onedefinitionofgeometryisthatitisthestudyofidealshapesandtheirproperties,ofthepatternsthoseshapescanform,andoftheactionsonthoseshapesthatpreservetheirproperties.Wewillbegivingyouotherdefinitionsofgeometryaswegoalong.Watchforthevarietyofwaysofthinkingaboutgeometry.W H A T I S G E O M E T R Y N A T U R E O F M A T H E M A T I C A L O B J E C T S

Thisbookisdesignedsothatyougettodogeometry.Wegenerallydonotteachyoutechniquesandthenhaveyoupractice.Instead,weaskthatyouworkonproblemstohelpyouconstructimportantideas.Theproblemscanbedifficult–whichiswhywehopethatyouwillworkonthemingroupsandthendiscussthemasaclass.Wemadethemthatwayonpurpose.Webelievethataproblemisonlyaproblemifyoudon’tknowhowtosolveit.Ifyoudoknowhowtosolveit,thenitisjustanexercise.Wehopethisbookisfullofproblemsforyouandthatyouwill‘getstuck’alot.Trynottoletbeingstuckdiscourageyou.Itispartofdoingmathematics.Thereisnomagictechniqueforsolvingamathematicsproblem–whichisgood,becauseotherwisemathematicswouldn’tbeanyfun.Basically,youjusthavetowrestlewiththe

Page 12: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

12

problem.Theprocessmighttakeminutes,orhours,orevenyears.Therearestrategiesthatmayprovehelpful,andapurposeofthisfirstsectionistomakeyouawareofsomeofthethingspeopledotoworkonproblems.Fornow,wewouldlikeyoutoseparateyourthinkingaboutproblemsolvingintofourcategories:

1) Understandingtheproblem.Whatdoesitmeantosolvethisproblem?Doyouunderstandtheconditionsandinformationgiveninthestatementoftheproblem?(FortheTrianglePuzzleabove,thismeansunderstandingthatsinceareamustbepreserved,thepictureshavetobemisleadinginsomeway.Solvingthisproblemmeansshowingexactlyhowthepicturesaremisleading.)

2) Reflectingonyourproblemsolvingstrategies.Whatdidyoudotoworkonthe

problem?(Didyoustudythepiecestoseehowtheyfittogether?Randomlyorinsomesystematicmanner?Didyoukeeptrackofanything?Didyoudrawpictures?Didyoucomputesomething?)

3) Explainingthesolution.Whatistheanswertothequestion?(Exactlywhatiswrong

withthepictures?)

4) Justifyingthatyouarebothdoneandcorrect.Whydoesyoursolutionmakesense?Canyouprovethatyouarecorrectandthattheproblemiscompletelysolved?

Beforewegetintothisbookanyfurther,wemightaswelltellyouthatwe’rebossy.Throughoutthereadingsections(whichyoumustdo–youoweittothechildreninyourfutureclassrooms)wewillaskquestionsandissuecommandsinitalics.Dothethingswesuggestinitalics.Don’tworrythatitslowsthereadingdown.Mathematiciansreadvery,very,agonizinglyslowlyandcarefully,withpencilinhand.Wewriteonourbooks–alloverthem.Weverifyclaims;wedotheproblems;weasknewquestionsandtrytoanswerthem.Sowechallengeyoutodofourthingsthisterm.Firstandsecond,readeverywordofyourtextandworkhardoneachandeveryproblem.Third,makeacontributiontoeachdiscussionofaclassactivity.Andfinally,practicelisteningtoandmakingsenseofotherstudents’mathematicalideas.Asateacher,youwillneedtounderstandthemathematicalthinkingofothers;useyourclasstopracticethatskill.ConnectionstoTeaching

Page 13: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

13

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstoorganizeandconsolidatetheirmathematicalthinkingthrough

communication;tocommunicatetheirmathematicalthinkingcoherentlyandclearlytopeers,teachers,andothers;toanalyzeandevaluatethemathematicalthinking

andstrategiesofothers;andtousethelanguageofmathematicstoexpressmathematicalideasprecisely. NCTMPrinciplesandStandardsforSchoolMathematics,2000

Learningviaproblemsolvingandcommunicationofideasaretwomajorthreadsinelementarymathematicseducation.TheNationalCouncilofTeachersofMathematics(2000),inadoptingthePrinciplesandStandardsforSchoolMathematics,advocatedthatallstudentsofmathematicsengageinproblemsolvingandcommunication,bothoralandwritten,atallgradelevels.Theywrite:

“Solvingproblemsisnotonlyagoaloflearningmathematicsbutalsoamajormeansofdoingso”(p.52).“Communicationisanessentialpartofmathematicsandmathematicseducation.Itisawayofsharingideasandclarifyingunderstanding….Whenstudentsarechallengedtothinkandreasonaboutmathematicsandtocommunicatetheresultsoftheirthinkingtoothersorallyorinwriting,theylearntobeclearandconvincing”(p.60).

Mathematicseducatorsbelievethatproblemsolvingandwrittencommunicationarealsoessentialcomponentsofyourmathematicalpreparationtobecomeelementaryschoolteachers.Wewillbeaskingyoutowriteaboutmathematicsinthisclass.Wewillaskyoutowriteinterpretationsofproblems,descriptionsofstrategies,explanationsofsolutions,andjustificationsofsolutions.M A T H E M A T I C A L C O M M U N I C A T I O N

Howdowewriteaboutmathematics?Isn’tmathematicsallaboutnumberslike2andp?Andaboutsymbolslike║andÐ?Well,no,it’snot.Mathematiciansusesymbolslikethesetowritestatementsandtosolvesomeproblems,andyoucanusesymbolslikeÐand^and@whenyouwriteaboutgeometryproblems.Butmathematicsismuchmoreaboutexploringpatterns,makingconjectures,explainingresultsandjustifyingsolutions.Theseactivitiesrequireustowritewithwordsincompletesentencesthatusemathematicallanguageandlogicappropriately.Symbolsareatoolwewilluse.Butfornow,youshouldfocusonwritingwithwords–clearly,completely,correctly,andconvincingly.Asfutureteachersyoumustpracticecommunicatinginthelanguageofmathematics.Youwillhaveachancetopracticerightnowinthehomework.

Page 14: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

14

HomeworkYoualwayspassfailureonthewaytosuccess.

MickeyRooney(MQS)

1) TheTangrampuzzleiscomposedofsevenshapesincludingonesquare,oneparallelogram,twosmallisoscelesrighttriangles,onemedium-sizedisoscelesrighttriangle,andtwolargeisoscelesrighttriangles.Inthediagrambelow,thesevenpiecesarearrangedsothattheyfittogethertoformasquare.a) Tracethepieces,cutthemout,andthenidentifyeachone.Lookuptheterms

isosceles,righttriangleandparallelogramintheglossaryandlearnthosedefinitions.

b) Figureouthowtorearrangeallsevenpiecestoformatrapezoid.Noticethatyoufirstneedtounderstandtheproblem.Lookupthedefinitionofatrapezoidifyouneedtodoso.

c) Reflectonyourproblemsolvingstrategiesandwriteadescriptionofthestrategies

youusedtoworkontheaboveTangrampuzzle.

d) Explainthesolutionbygivingcarefulinstructions,usingwordsonly(nopictures),forarrangingthesevenpiecestoformatrapezoid.

Page 15: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

15

2) ChildrenintheearlyelementarygradescansolvepuzzlessimilartotheTangrampuzzleusingpatternblocks(asetofflatblocksinsixshapes:regularhexagon,isoscelestrapezoid,tworhombi,square,andequilateraltriangle).Lookupthetermsrhombus(thepluralformofrhombusisrhombi)andhexagonintheglossary,thendotheactivitydescribedbelow.

a) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade1TeachersGuide(yourprofessorshouldhaveacodeforyoutoviewthis).Spend10-15minuteslookingthroughUnit5Module1.ThenworkthroughPatternBlockPuzzle3.Howmanydifferentwaysarepossibletofillthisshape?Seeifyoucanfindatleast5.

b) Whatmightchildrenlearnabouttherelationshipsamongthepatternblocksbyworkingontheseproblems?

Page 16: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

16

3) HereisapictureofallsevenTangrampiecesrearrangedtomakeatriangle.

Youaregoingtobeginto“justifythatwearecorrect.”Thisinvolvesarguingthatthepiecesreallydofittogetherasshown.(Rememberthatjust“lookingliketheyfit”isn’tgoodenough.)Yougettoassumethattheoriginalpiecesreallyareallperfectshapesandthattheyoriginallyfitperfectlytoformasquarelikethis:

a) Arguethatthevertexoftheyellowtrianglealongwiththeverticesofthelargeorangeandbluetrianglesreallydomeettomake180degrees(theyformastraightangle)atthebottomedgeofthepuzzle.

b) Arguethattheedgeoftheorangetrianglefitsperfectlywiththeedgesofthesquareandyellowtriangleandthatthebigbluetrianglereallyfitsperfectlyalongtheedgesoftheparallelogramandyellowtriangle.

Page 17: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

17

ClassActivity2: DefiningMoments

Wherethereismatter,thereisgeometry.JohannesKepler(1571-1630)

Mathematicaldefinitionsareimportanttomathematiciansbecausetheygiveustheexactcriteriaweneedtoclassifyobjects.Usethedefinitionofapolygontodecidewhethereachoftheobjectsthesketchcallstomindarepolygons.Ifanobjectdoesnotmeetthedefinition,explainexactlyhowitfails.Visittheglossaryifyouneedtolookupterms.Apolygonisasimple,closedcurveintheplanecomposedonlyofafinitenumberoflinesegments.

1) 2)3) 4) 5)6) 7)

8) 9)

Page 18: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

18

ReadandStudy

Everythingyou’velearnedinschoolas“obvious”becomeslessandlessobviousasyoubegintostudytheuniverse.Forexample,therearenosolidsintheuniverse.There’snotevenasuggestionofasolid.Therearenosurfaces.Therearenostraightlines. R.BuckminsterFuller

Mathematicianscaredeeplyaboutthewordsweusetotalkaboutmathematics.Wehavemanyspecialwords,likeisosceles,thatdonotappearineverydaylanguage.Thesewordshaveprecisedefinitionsthatprovidepowerfulknowledgeabouttheobjectstowhichtheyrefer.Evencommonwordslikerighttakeonspecialmeaningwhentheyareusedinmathematicaltalk.R O L E O F D E F I N I T I O N S

Wewillsaylots,andwemeanlots,moreaboutthetermsweuseinmathematicsthroughoutthepagesofthisbook.Everytimeyouencounteratermyoudon’tknow,lookupthedefinitionintheglossaryandmakecertainyouunderstandjusthowthewordisusedinmathematicaltalk.Tohelpyoudothis,wewillcontinuetounderlineandboldfacemathematicaltermsthefirsttimeweusethem.Thiswillletyouknowthatthewordhasaparticularmeaninginmathematicstowhichyouneedtopayattention.Mathematicaldefinitionsaresoimportantbecause:

1) Definitionsprovideprecisecriteriafordescribingandclassifyingtheseidealobjects;

2) Definitionsdescriberelationshipsamongobjects;and

3) Definitionsgiveusthepowertomakemathematicalarguments.

Let’stalkabitmoreabouteachofthese.IntheClassActivityyouhadtheopportunitytomakesenseofadefinitionandtouseittoclassifypolygons.Diditsurpriseyouthatthedefinitionreliedonsomanyotherterms?Afterall,theideaofapolygondoesn’tseemthatcomplicated.Howeveryouwillfindthatyourstudentshavemanydifferentideasinmindaboutpolygons.Somewillthinkthatsolidshapesarepolygons.Somemightclassifyshapeswithcurvededges(likecircles)aspolygons.Inordertobesurethatweareallimaginingthesameidealobjects,wemustallhavethesamedefinition.Thatsaid,wehavetostartsomewherewhenwritingourdefinitions,andthatmeansthatnotalltermscanbepreciselydefined.Inparticular,ingeometry,weacceptthefollowingideasasundefined:point,line,plane,andspace.Thesetermscorrespondtothe0-dimensional,the1-dimensional,the2-dimensional,andthe3-dimensionalobjectstowhichthedefinitionsofgeometryapply.

Page 19: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

19

Maybeitseemsstrangethatsuchafundamentalobjectasalineisanundefinedterm,buteventhoughwedon’tdefineit,wecanunderstandalinetobeacollectionofpoints(alsoundefined)thatobeysasetofrules.Wehaveintuitiveideasaboutwhatapointorlineis,butwecanbestunderstandortalkaboutpointsorlinesintermsofamodel.Usefulmodelsofalineincludethecreaseinasheetofpaper,thestraightedgewherethewallofaroommeetsthefloor,atautpieceofthinstring,orthepicturebelow.Ofcourseeachofthesemodelsisonlyarepresentationofaline.A“true”linehasnowidthatall–onlylength–anditextendsindefinitelyinbothdirections.Likeallothermathematicalobjects,a“true”lineisanidealobject–itexistsonlyinourminds.Itmayalsoseemstrangethatwecan’tdefinealinebysayingthatitis“straight.”Thepropertyof“straightness”isanotherintuitiveideathatcarrieswithitthenotionof“shortestdistance.”Thatis,wesaythatalineis“straight”ifitismeasuringtheshortestdistancebetweenpoints(the“tautstring”idea).Theseintuitiveideasof“straight”workwellonflatsurfaces(andintheworldofEuclideangeometry),butarenotashelpfuloncurvedsurfacessuchasasphere.Whatistheshortestdistancebetweentwopointsonasphere?Findaball(oranorangeoraglobe)andastringandhavealook.Twocommonmodelsforaplaneareaflatsheetofpaperandthesurfaceofawhiteboard(providedwerememberthateachisonlyaportionoftheplanewhichactuallyextendsinfinitelyinalldirections).Asecondwaythatweusedefinitionsistocreaterelationshipsbetweenobjects.Forexample,wesaythattwolinesareparalleliftheylieinthesameplaneanddonotintersect.Thisdefinitionhelpsusunderstandtherelationshipbetweenlinesthatareparallelprovidedweunderstandwhataplaneisandwhatitmeansforlinestointersect.Alternatively,wecansaythattwolinesareparalleliftheylieinthesameplaneanddonothaveanypointsincommon.Thisseconddefinitionincorporatestheideaofnon-intersectionwithoutusingawordthatmaynotbeknown.P A R A L L E L A N D P E R P E N D I C U L A R L I N E S

Weusedefinitionsinathirdwaywhenwemakearguments.Wewilltalkaboutthisfurtherinthenextsection,butfornow,let’slookatasimpleexample:Supposewewanttoarguethatnotrianglecanalsobeasquare.Sincethedefinitionofatrianglestatesthatitisapolygonwithexactlythreesidesandthedefinitionofasquarestatesthatitisapolygonwithexactlyfourcongruentsidesandfourrightangles,andsincethreedoesnoteverequalfour;wecanconcludethatitisnoteverpossibleforatriangletohavefoursides.Soatrianglecanneveralsobeasquare.Nowthisargumentmayseemtrivial,butthepointhereisthatweusedefinitionstomakearguments.Usethedefinitionsof“parallel”and“perpendicular”toarguethattwolinesthatareparallelcanneveralsobeperpendicular.

Page 20: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

20

ConnectionstoTeachingInprekindergartenthroughgrade2allstudentsshouldrecognize,name,build,draw,

compare,andsorttwo-andthree-dimensionalshapes. NCTMPrinciplesandStandardsforSchoolMathematics,2000

Inrecentyearsmoststates(includingWisconsin)haveadoptedcommonstandardsforschoolmathematics.Thesestandards,calledtheCommonCoreStateStandards(CCSS),prescribethemathematicalcontentandpracticesthatteachersshouldaddressateachgradelevel.Asafutureteacher,youwillneedtoknowandunderstandthem.Thepracticestandardsdescribeexpectationsforstudentsacrossallgradelevels.Whichofthesestandardshaveyouexperiencedsofarinthisclass?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Inthisbook,wewillfocusonthecontentstandardsrelatedtogeometryandmeasurement,andwewillbeginnowwithgeometryforchildreninkindergartenandfirstgrade.Takeaminutetoreadthem.

CommonCoreStateStandardsforMathematicalPractice

Childrenshould…

1. Makesenseofproblemsandpersevereinsolvingthem.2. Reasonabstractlyandquantitatively.3. Constructviableargumentsandcritiquethereasoningofothers.

4. Modelwithmathematics.

5. Useappropriatetoolsstrategically.

6. Attendtoprecision.

7. Lookforandmakeuseofstructure.

8. Lookforandexpressregularityinrepeatedreasoning.

Page 21: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

21

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Inordertohelpchildrentodistinguishbetweendefiningandnon-definingattributes,youmightaskchildrentosortshapesintocategories.Forexample,youmightaskthattheyidentifyallthetrianglesinthefollowinggroupofshapes:

CCSSKindergarten:GeometryIdentifyanddescribeshapes(squares,circles,triangles,rectangles,hexagons,cubes,cones,cylinders,andspheres).

1. Describeobjectsintheenvironmentusingnamesofshapes,anddescribetherelativepositionsoftheseobjectsusingtermssuchasabove,below,beside,infrontof,behind,andnextto.

2. Correctlynameshapesregardlessoftheirorientationsoroverallsize.

3. Identifyshapesastwo-dimensional(lyinginaplane,“flat”)orthree-dimensional(“solid”).

Analyze,compare,create,andcomposeshapes.

4. Analyzeandcomparetwo-andthree-dimensionalshapes,indifferentsizesandorientations,usinginformallanguagetodescribetheirsimilarities,differences,parts(e.g.,numberofsidesandvertices/“corners”)andotherattributes(e.g.,havingsidesofequallength).

5. Modelshapesintheworldbybuildingshapesfromcomponents(e.g.,sticksandclayballs)anddrawingshapes.

6. Composesimpleshapestoformlargershapes.Forexample,“Canyoujointhese

twotriangleswithfullsidestouchingtomakearectangle?”

Page 22: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

22

Whatconversationscouldyouhavewithchildrenregardingthisactivity?InwhatwaysmightyouuseittoaddresstheCCSSforkindergarten?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Anotherideaistoaskchildrentomakeuptherule,sorttheshapes,andthenhaveotherchildrenfigureoutarulethatwillgivethesame“sort.”Childrensometimesattendtoattributesinsolvingsortingproblemsthatwe,asmathematicians,wouldnotpayattentionto.Thusactivitiesliketheseprovideopportunitiestodrawchildren’sattentiontodifferentthings.Forexample,manychildrenwouldsaythatthis

figure▼is“upsidedown”orthattheseare“differentshapes”becausetheyareorienteddifferently.Mathematicianswouldsaythattheabovefiguresarethesameshape.Theydonottakeorientationoftwo-dimensionalshapesintoaccountwhendecidingifthoseshapesare“thesame.”Belowweshowa“studentsort”fromafirstgradeclassroom.CanyoufigureoutDevione’srule?Istheremorethanonerulethatcouldgivethesamesort?

CCSSGrade1:GeometryReasonwithshapesandtheirattributes.

1. Distinguishbetweendefiningattributes(e.g.,trianglesareclosedandthree-sided)versusnon-definingattributes(e.g.,color,orientation,overallsize);buildanddrawshapestopossessdefiningattributes.

2. Composetwo-dimensionalshapes(rectangles,squares,trapezoids,triangles,half-circles,andquarter-circles)orthree-dimensionalshapes(cubes,rightrectangularprisms,rightcircularcones,andrightcircularcylinders)tocreateacompositeshape,andcomposenewshapesfromthecompositeshape.

3. Partitioncirclesandrectanglesintotwoandfourequalshares,describetheshares

usingthewordshalves,fourths,andquarters,andusethephraseshalfof,fourthof,andquarterof.Describethewholeastwoof,orfouroftheshares.Understandfortheseexamplesthatdecomposingintomoreequalsharescreatessmallershares.

Page 23: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

23

TheseshapesfitMyRule TheseshapesdonotfitMyRule TheCommonCoreStateStandardsaskthatyou,asateacher,alsohelpchildrentotalkaboutthepositionofobjects,toreasonabouthowobjectsarecomposedofotherobjects,andtorecognizewhetheranobjectistwo-dimensional(flat)orthree-dimensional.Whataresomeactivitiesthatyoumightdowithchildrentoaccomplishthesethings?

Homework

Theonlyplacesuccesscomesbeforeworkisinthedictionary. VinceLombardi

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

Page 24: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

24

A B

3) Thereareseveraltermsassociatedwithlinesthatyouneedtounderstandandusewithpropernotation.Takeafewminutestostudythese.

Supposewehavethethreepoints,A,B,andC.(Noticethatmathematicianscustomarilyusecapitallettersfromthebeginningofthealphabettodenotepoints.SometimeswearetalkingaboutenoughpointsthatwemakeitallthewaytoZ,butwealmostalwaysstartwithA.)ThelineABistheentiresetofpointsextendingforeverinbothdirections.We

commonlydenotealineas AB andrepresent AB asshownbelow(notethearrowsateachendindicatingthatthelinecontinues):

TherayABisthesetofpointsincludingAandallthepointsonthelineABthatareontheBsideofA.ThepointAiscalledthevertexoftheray.WecommonlydenotearayasAB andrepresent AB asshownbelow:

ThelinesegmentABisthesetofpointsbetweenAandB,includingbothAandB,whicharecalledtheendpointsofthelinesegment.WecommonlydenotealinesegmentasAB andrepresent AB asshownbelow:

4) Visittheglossaryandlearntheprecisedefinitionsforeachofthefollowingterms:square,

parallelogram,rectangle,rhombus,andtrapezoid.Makesureyoucanexplainthedefinitionsusinggoodmathematicallanguage.Sketchanexampleofeach.

5) Whichpropertiesaresufficienttodefinearectangle?Thatis,ifaquadrilateralhasaparticularproperty,doyouknowforcertainthatthequadrilateralmustbearectangle?Explainwhyyouransweris‘yes’or‘no’ineachcase.

a) Ifaquadrilateralhastwosetsofcongruentsides,thenitmustbearectangle.b) Ifaquadrilateralhasoppositeanglescongruent,thenitmustbearectangle.c) Ifaquadrilateralhasdiagonalsthatbisecteachother,thenitmustbearectangle.d) Ifaquadrilateralhastworightangles,thenitmustbearectangle.e) Ifaquadrilateralhascongruentdiagonals,thenitmustbearectangle.f) Ifaquadrilateralhasperpendiculardiagonals,thenitmustbearectangle.g) Ifaquadrilateralhastwosetsofparallelsidesandonerightangle,thenitmustbea

rectangle.h) Ifaquadrilateralhastwosetsofcongruentsidesandonerightangle,thenitmustbe

arectangle.

A B

A B

Page 25: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

25

Concave PolygonsConvex Polygons

6) Studythefollowingexamplesandformadefinitionofeachoftheseterms:convexandconcave,inyourownwords.Thenlookupthemathematicaldefinitionsintheglossary.Explainthemathematicaldefinitionsinyourownwords.

7) Athirdgradeclassweobservedwaslearningaboutparallellines.Theteacherexplained

thatparallellinesarelinesintheplanethathavenocommonpoints.Thenshedrewthepicturebelowandaskedthechildrenwhetherthelinesshownwereparallelornot.

Severalchildrenarguedthattheywereparallel.Whymighttheyhavesaidthat,andwhatwouldyousaytothemastheirteacher?

Page 26: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

26

ClassActivity3: GetitStraightGobackalittletoleapfurther. JohnClarke

1) Hereisanactivitytohelpyourupperelementarychildrenmaketheconjecturethattakentogether,theanglesofanytrianglecanformastraightangle.Eachgroupshouldcutoutalargeobtusetriangle,alargeacutetriangleandalargerighttriangle.Foreachtriangle,labelthevertexangles(inanyorder)#1,#2and#3.Then,foreachtriangle,tearoffthethreecornersandputthemtogethersothattheanglesareadjacent.Dothis,anddiscusswhatchildrenmightlearn.Didthisactivityprovethattheanglesofatrianglealwayscanformastraightangle?Whyorwhynot?

2) Again,asinpart1),eachgroupshouldcreatealargeobtusetriangle,alargeacutetriangleandalargerighttriangleand,foreachtriangle,labelthevertexangles#1,#2and#3.Butinsteadoftearingoffthecorners,thistimehaveonepersonuseaprotractortocarefullymeasureeachanglelabeled#1,anotherpersonmeasureeachanglelabeled#2,andanotherpersonmeasureeachanglelabeled#3(eachwithoutlookingattheothers’measurements).Wasthetotalanglemeasureforeachtriangle180degrees?Shouldithavealwaysbeen?Explainanydiscrepancies.

(continuedonthenextpage)

Page 27: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

27

3) Ourexplorationsinparts1)and2)mighthaveconvincedyouthatthesumofthevertexanglesofanytriangleisthesameasastraightangle,butmathematiciansdonotconsidereitherofthosedemonstrationstobeaproof.Whynot,doyouthink?Nowwearegoingtolearntomathematicallyprovethatsumofthevertexanglesofanytriangleisthesameasastraightangle.

Step1.Startwithanytriangle:Nowwe’llcreatealinethroughonevertexthatisparalleltotheoppositesideofthetriangleandlabelalltheanglessowecantalkaboutthem.Weknowwecanalwaysdothisbecauseitisanaxiomofplanegeometrythatthroughapointnotonalinetherecanbedrawnone(andonlyone)lineparalleltothegivenline.

Bytheway,itshouldn’tbeobvioustoyouwhywe’vedecidedtocreatethisparallelline;itjustturnsouttogiveusagreatwaytobeginourproof.InStep2,wearegoingtoprovethatÐ1iscongruenttoÐ5,andthatÐ2iscongruenttoÐ4.Sofornow,supposingthistobetrue,arguethatangles1,2,and3wouldcombinetoformastraightangle.

(continuedonthenextpage)

m

5

432

1

B

A

C

Page 28: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

28

Step2.Thisistheonlymissingpieceofourproof.Lookupthedefinitionsofatransversalandofalternateinteriorangles.CanyouseethatÐ1andÐ5arealternateinteriorangles?Whatisthecorrespondingtransversal?

CanyouseethatÐ2andÐ4arealternateinteriorangles?Whatisthecorrespondingtransversal?Nowarguethatiftwoparallellinesarecutbyatransversal,thenthealternateinterioranglesarecongruent.Youmayassumethatiftwoparallellinesarecutbyatransversal,thentheinterioranglesonthesamesideofthetransversalformastraightangle.(Note:Thisisabigthingtoassume.ItisoneofEuclid’sfundamentalassumptionsaboutgeometry.)

Page 29: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

29

ReadandStudy

Iargueverywell.Askanyofmyremainingfriends.Icanwinanargumentonanytopic,againstanyopponent.Peopleknowthisandsteerclearofmeatparties.

Often,asasignoftheirgreatrespect,theydon’teveninviteme. DaveBarry

Mathematicalthinkingalwaysinvolvesreasoningandmakingarguments,andwehaveawholevocabularyfordescribingthatprocess.Inthissection,wehighlightthetermswemathematiciansusetodescribefacetsofdoingmathematics.Theseareimportant.Makesureyouunderstandthem.L A N G U A G E O F M A T H E M A T I C S

1) Anaxiomisastatementthatweagreetoacceptwithoutproof.Itisanassumptionorstartingpoint.(Note:Anotherwordforaxiomispostulate.)

2) Inductivereasoningiscomingtoaconclusionbasedonexamples.Forexample,Iobservethat3,5and7areallprimenumbers.Now,basedontheseexamplesImightreason(incorrectly,bytheway)thatalloddnumbersareprime.OrImightnoticethatthesunrosedaybeforeyesterday,itroseyesterday,itrosetoday.SoImightconcludethatthesunwillrisetomorrow.Thisisinductivereasoning.

3) Deductivereasoningiscomingtoconclusionbasedonlogic.Forexample,Iwillargue

deductivelythatthesunwillcomeuptomorrow:Theearthiscaughtinthesun’sgravitysoitwon’tfloataway,andtheearthisspinning.Wearehereontheearthandsowhenourpartoftheearthturnstowardthesun,wesayit“comesup.”Aslongasnocatastropheoccurstochangethesefacts,thesunwillrisetomorrow.We’llgiveyouanother(moremathematical)exampleinaminute.

D E D U C T I V E V E R S U S I N D U C T I V E R E A S O N I N G

4) Aconjectureisahypothesisoraguessaboutwhatistrue.Forexample,aftersomeexperiencewithcircles,astudentmightconjecturethattwointersectingcirclesalwayssharetwodistinctpointsincommon.Conjecturesareoftenmadebasedoninductivereasoning.

5) Acounterexampleisaspecificexamplethatshowsaconjectureisfalse.Forexample,

thetwocirclesbelowaretangent(theyshareexactlyonepointincommon)andsotheaboveconjectureisshowntobefalsebythecounterexampleshownhere:

Page 30: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

30

6) proof:amathematicalproofconsistsofadeductiveargumentthatestablishesthetruth

ofaclaim.(Note:Bytruthwemeantruthinthecontextofthemathematicalworldthatiscreatedbytheaxioms.Somethingistrueifitisalogicalimplicationoftheaxioms.)

7) theorem:atheoremisamathematicalstatementthathasbeenprovedtobetrue.For

example,itisatheoremthatverticalanglesarecongruent.YouprovedthisintheClassActivity.(Note:Anotherwordfortheoremisproposition.)

WearegoingtousewhatyoudidintheClassActivitytohighlightthemeaningofsomeoftheseterms.First,youtoreapartavarietyoftrianglesandarrangedthemtoseethateachappearedtohaveastraightangle(180degrees)ofvertexangles.Thiswasinductivereasoning,becauseyouweretestingexamplesoftrianglestoseewhatseemedtrueabouttheirvertexanglemeasure.Atthispointitwouldhavebeenreasonabletoconjecturethatthesumofthevertexanglesofatriangleis180degrees.Thenyouwereaskedtomakeanargumentusingdefinitions,axioms,andlogicthatyouwerecorrect.Inotherwordsyougaveaproofthatthevertexanglesofatrianglesumto180degrees,andnowthatconjectureiscalledatheorem.Oneofthereasonsthatgeometryclass(remembertenthgrade?)hastraditionallyfocusedonproofisthattheaxiomsofgeometryareeasiertostatethantheaxiomsofarithmetic.Butproofispartofallmathematics.Don’tworry,wearenotplanningtofocusontwo-columnproofsoranaxiomaticdevelopmentofgeometry,butwewouldberemissifwedidn’tatleaststatetheoriginalaxioms(assumptions)ofplanegeometry.TheaxiomswerefirstmadeexplicitbyEuclid,aGreekmathematicianwholivedandworkedattheAcademyinAlexandria,Egypt.Heisbestknownforwritinga13-volumebookofmathematicscalledTheElements-thesecondmostpublishedbookintheworld.Ithasbeenusedasamathematicstextbookforover2000years.Inthefirsttwovolumesofthiswork,hedevelopedallofthe(then)knowntheoremsabouttwo-dimensional(plane)geometrystartingwithjustfiveaxioms:I D E A O F A X I O M S

TheAxiomsofEuclideanGeometry:1. Auniquestraightlinesegmentcanbedrawnfromanypointtoanyotherpoint.2. Alinesegmentcanbeextendedtoproduceauniquestraightline.3. Auniquecirclemaybedescribedwithagivencenterandradius.4. Allrightanglesareequaltoeachother.

Page 31: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

31

5a.Ifastraightlinefallingontwostraightlinesmaketheinterioranglesonthesamesidelessthantworightangles,thetwostraightlines,ifproducedindefinitely,meetonthatsideonwhicharetheangleslessthanthetworightangles.

5b.Throughapointnotonalinetherecanbedrawnexactlyonelineparalleltothegivenline.

Uponassumingaxioms1-4,axioms5aand5bareequivalent.Axiom5aisEuclid’sversion,and5bisamoremoderninterpretationknownasPlayfair’sAxiom.Lookinthisbook’sappendixandyouwillfindtheaxioms(postulates)andtheorems(propositions)fromBook1ofEuclid’sElements,writtenmorethan2,000yearsago.Axiom5aishisfifthpostulate.Youmayfinditinterestingthatuntilthelate1800s,manymathematiciansthoughtEuclid’sfifthaxiomwasredundant–thatitalreadyhadtobetrueifaxioms1-4wereassumedtobetrue–butithassincebeenproventhatthosemathematicianswerewrong.Noticethateachoftheaxiomsdescribessomethingthatcanbeconstructedwiththeexceptionofthefourth.Axiom4saysthattheEuclideanplaneis,insomesense,uniform(nodistortions).Namely,itsaysthatwhereveryouconstructaperpendicularlinesontheplane(andsoformfourangles),thoseangleswillallhavethesamemeasure.ItturnsoutthatEuclidmadesomeimplicitassumptionsthatheshouldhavestatedasadditionalaxiomsinordertodogeometryrigorously–andsomodernmathematicianshaveextendedhislistofaxioms.Butyoudon’tneedtoworryaboutthosetechnicalitiesinthiscourse.Sketchapictureofaxioms1–3and5tohelpyoumakesenseofeach.Then,describehowyoucancreateanequilateraltrianglebyfollowingEuclid’saxioms.WealsowanttonotethatEuclidoftenusedtheword“equal”whenwewouldusetheword“congruent.”Today’smathematiciansuse“equal”whentheywanttocomparetwonumbers.Sowemightsaythat½isequalto0.5.Weusetheword“congruent”whenwewanttosaythattwoobjects(liketwotrianglesortwosegments)arethesamesizeandshape.Thebasicideahereisthattwoobjectsarecongruentinthecasewhereifoneobjectwasmovedtolieontopoftheotherobject,theywouldcorrespondexactly.Wewilldoamorecarefuljobofdefining“congruent”later.

Page 32: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

32

Whileprovingtheoremsisnotthefocusofthiscourse,wemayoccasionallyaskthatyoutrytoproveaEuclideantheorem.Whenwedo,youshouldturntotheAppendixwhereEuclid’spostulates(axioms)andpropositionsarelistedandfindit.Thenyouarefreetouse(assume)anypostulateandanypropositionlistedbeforetheoneyouaretryingtoprove.Forexample,sayyouwanttoprovethatinanisoscelestriangle,thebaseanglesarecongruent.GototheAppendix(reallydoit)andseeifyoucanfindthattheorem.Thencomerightbackhere.Let’sendthissectionwiththebigidea:Geometryintheplanearisesfromsomeintuitiveidealobjects,theirmathematicaldefinitions,thesefiveaxioms,andalotofdeductivereasoning.Infact,asecondpossibledefinitionofgeometryisthis:anaxiomaticsystemaboutidealobjectscalled“points,”collectionsofpointscalled“lines,”andtherelationshipsbetweenpointsandlines.

ConnectionstoTeaching

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstorecognizereasoningandproofasfundamentalaspectsofmathematics;tomakeandinvestigatemathematicalconjectures;todevelopandevaluatemathematicalargumentsandproofs;andtoselectandusevarioustypesofreasoningandmethodsofproof.

ReasoningandProofStandard,NCTMPrinciplesandStandardsforSchoolMathematics,2000

M A K I N G C O N V I N C I N G M A T H E M A T I C A L A R G U M E N T S

Itisimportantthatyouprovidechildreninyourfutureclasseswiththeopportunitiestoreallydomathematics.Theytooneedtouseinductivereasoning,makeconjectures,lookforcounterexamples,andmakedeductivearguments.Inordertounderstandbetterwhatyoushouldexpectfromchildren,readthefollowingfromthediscussionoftheReasoningandProofstandardforthePreK–2gradebandfoundinNCTMPrinciplesandStandardsforSchoolMathematics,2000,pages122–125.Noticetheiruseofmathematicallanguage.

Whatshouldreasoningandprooflooklikeinprekindergartenthroughgrade2?p.122

Theabilitytoreasonsystematicallyandcarefullydevelopswhenstudentsareencouragedtomakeconjectures,aregiventimetosearchforevidencetoproveordisprovethem,andareexpectedtoexplainandjustifytheirideas.Inthebeginning,perceptionmaybethepredominantmethodofdeterminingtruth:ninemarkersspreadfarapartmaybeseenas“more”thanelevenmarkersplacedclosetogether.Later,asstudentsdeveloptheirmathematicaltools,theyshoulduseempiricalapproachessuchasmatchingthecollections,whichleadstotheuseofmore-abstractmethodssuchascountingtocomparethecollections.Maturity,experiences,andincreasedmathematicalknowledgetogetherpromotethedevelopmentofreasoningthroughouttheearlyyears.»

Page 33: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

33

Creatinganddescribingpatternsofferimportantopportunitiesforstudentstomakeconjecturesandgivereasonsfortheirvalidity,asthefollowingepisodedrawnfromclassroomexperiencedemonstrates.

Thestudentwhocreatedthepatternshowninfigure4.27proudlyannouncedtoherteacherthatshehadmadefourpatternsinone.“Look,”shesaid,“there’striangle,triangle,circle,circle,square,square.That’sonepattern.Thenthere’ssmall,large,small,large,small,large.That’sthesecondpattern.Thenthere’sthin,thick,thin,thick,thin,thick.That’sthethirdpattern.Thefourthpatternisblue,blue,red,red,yellow,yellow.”Herfriendstudiedtherowofblocksandthensaid,“Ithinktherearejusttwopatterns.See,theshapesandcolorsareanAABBCCpattern.ThesizesareanABABABpattern.ThickandthinisanABABABpattern,too.Soyoureallyonlyhavetwodifferentpatterns.”Thefirststudentconsideredherfriend’sargumentandreplied,“Iguessyou’reright—butsoamI!”

Fig.4.27.Fourpatternsinone

Beingabletoexplainone’sthinkingbystatingreasonsisanimportantskillforformalreasoningthatbeginsatthislevel.

Findingpatternsonahundredboardallowsstudentstolinkvisualpatternswithnumberpatternsandtomakeandinvestigateconjectures.Teachersextendstudents’thinkingbyprobingbeyondtheirinitialobservations.Studentsfrequentlydescribethechangesinnumbersorthevisualpatternsastheymovedowncolumnsoracrossrows.Forexample,askedtocoloreverythirdnumberbeginningwith3(seefig.4.28),differentstudentsarelikelytoseedifferentpatterns:“Somerowshavethreeandsomehavefour,”or“Thepatterngoessidewaystotheleft.”Somestudents,seeingthediagonalsinthepattern,willnolongercountbythreesinordertocompletethepattern.Teachersneedtoaskthesestudentstoexplaintotheirclassmateshowtheyknowwhattocolorwithoutcounting.Teachersalsoextendstudents’mathematicalreasoningbyposingnewquestionsandaskingforargumentstosupporttheiranswers.“Youfoundpatternswhencountingbytwos,threes,fours,fives,andtensonthehundredboard.Doyouthinktherewillbepatternsifyoucountbysixes,sevens,eights,ornines?Whataboutcountingbyelevensorfifteensorbyanynumbers?”Withcalculators,studentscouldextendtheirexplorationsoftheseandothernumericalpatternsbeyond100.

Page 34: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

34

Fig.4.28.Patternsonahundredboard

p.123Students’reasoningaboutclassificationvariesduringtheearlyyears.Forinstance,whenkindergartenstudentssortshapes,onestudentmaypickupabigtriangularshapeandsay,“Thisoneisbig,”andthenputitwithotherlargeshapes.Afriendmaypickupanotherbigtriangularshape,traceitsedges,andsay,“Threesides—atriangle!”andthenput»itwithothertriangles.Bothofthesestudentsarefocusingononlyoneproperty,orattribute.Bysecondgrade,however,studentsareawarethatshapeshavemultiplepropertiesandshouldsuggestwaysofclassifyingthatwillincludemultipleproperties.Bytheendofsecondgrade,studentsalsoshouldusepropertiestoreasonaboutnumbers.Forexample,ateachermightask,“Whichnumberdoesnotbelongandwhy:3,12,16,30?”Confrontedwiththisquestion,astudentmightarguethat3doesnotbelongbecauseitistheonlysingle-digitnumberoristheonlyoddnumber.Anotherstudentmightsaythat16doesnotbelongbecause“youdonotsayitwhencountingbythrees.”Athirdstudentmighthaveyetanotherideaandstatethat30istheonlynumber“yousaywhencountingbytens.”Studentsmustexplaintheirchainsofreasoninginordertoseethemclearlyandusethemmoreeffectively;atthesametime,teachersshouldmodelmathematicallanguagethatthestudentsmaynotyethaveconnectedwiththeirideas.Considerthefollowingepisode,adaptedfromAndrews(1999,pp.322–23):

Onestudentreportedtotheteacherthathehaddiscovered“thatatriangleequalsasquare.”Whentheteacheraskedhimtoexplain,thestudentwenttotheblockcornerandtooktwohalf-unit(square)blocks,twohalf-unittriangular(triangle)blocks,andoneunit(rectangle)block(showninfig.4.29).Hesaid,“Ifthesetwo[squarehalf-units]arethesameasthisoneunitandthesetwo[triangularhalf-units]arethesameasthisoneunit,thenthissquarehastobethesameasthistriangle!”

Page 35: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

35

Fig.4.29.Astudent’sexplanationoftheequalareasofsquareandtriangularblockfaces

p.124Eventhoughthestudent’swording—thatshapeswere“equal”—wasnotcorrect,hewasdemonstratingpowerfulreasoningasheusedtheblockstojustifyhisidea.Insituationssuchasthis,teacherscouldpointtothefacesofthetwosmallerblocksandrespond,“Youdiscoveredthat»theareaofthissquareequalstheareaofthistrianglebecauseeachofthemishalftheareaofthesamelargerrectangle.”

Whatshouldbetheteacher’sroleindevelopingreasoningandproofinprekindergartenthroughgrade2?Teachersshouldcreatelearningenvironmentsthathelpstudentsrecognizethatallmathematicscanandshouldbeunderstoodandthattheyareexpectedtounderstandit.Classroomsatthislevelshouldbestockedwithphysicalmaterialssothatstudentshavemanyopportunitiestomanipulateobjects,identifyhowtheyarealikeordifferent,andstategeneralizationsaboutthem.Inthisenvironment,studentscandiscoveranddemonstrategeneralmathematicaltruthsusingspecificexamples.Dependingonthecontextinwhicheventssuchastheoneillustratedbyfigure4.29takeplace,teachersmightfocusondifferentaspectsofstudents’reasoningandcontinueconversationswithdifferentstudentsindifferentways.Ratherthanrestatethestudent’sdiscoveryinmore-preciselanguage,ateachermightposeseveralquestionstodeterminewhetherthestudentwasthinkingaboutequalareasofthefacesoftheblocks,oraboutequalvolumes.Oftenstudents’responsestoinquiriesthatfocustheirthinkinghelpthemphraseconclusionsinmore-precisetermsandhelptheteacherdecidewhichlineofmathematicalcontenttopursue.Teachersshouldpromptstudentstomakeandinvestigatemathematicalconjecturesbyaskingquestionsthatencouragethemtobuildonwhattheyalreadyknow.Intheexampleofinvestigatingpatternsonahundredboard,forinstance,teacherscouldchallengestudentstoconsiderotherideasandmakeargumentstosupporttheirstatements:“Ifweextendedthehundredboardbyaddingmorerowsuntilwehadathousandboard,howwouldtheskip-countingpatternslook?”or“Ifwemadechartswithrowsofsixsquaresorrowsoffifteen

Page 36: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

36

squarestocounttoahundred,wouldtherebepatternsifweskip-countedbytwosorfivesorbyanynumbers?”Throughdiscussion,teachershelpstudentsunderstandtheroleofnonexamplesaswellasexamplesininformalproof,asdemonstratedinastudyofyoungstudents(CarpenterandLevi1999,p.8).Thestudentsseemedtounderstandthatnumbersentenceslike0+5869=5869werealwaystrue.Theteacheraskedthemtostatearule.Annsaid,“Anythingwithazerocanbetherightanswer.”Mikeofferedacounterexample:“No.Becauseifitwas100+100that’s200.”Annunderstoodthatthisinvalidatedherrule,sosherephrasedit,“Isaid,umm,ifyouhaveazeroinit,itcan’tbelike100,becauseyouwantjustplainzerolike0+7=7.”Thestudentsinthestudycouldformrulesonthebasisofexamples.Manyofthemdemonstratedtheunderstandingthatasingleexamplewasnotenoughandthatcounterexamplescouldbeusedtodisproveaconjecture.However,moststudentsexperienceddifficultyingivingjustificationsotherthanexamples.

p.125Fromtheverybeginning,studentsshouldhaveexperiencesthathelpthemdevelopclearandprecisethoughtprocesses.Thisdevelopmentofreasoningiscloselyrelatedtostudents’languagedevelopmentandisdependentontheirabilitiestoexplaintheirreasoningratherthanjust»givetheanswer.Asstudentslearnlanguage,theyacquirebasiclogicwords,includingnot,and,or,all,some,if...then,andbecause.Teachersshouldhelpstudentsgainfamiliaritywiththelanguageoflogicbyusingsuchwordsfrequently.Forexample,ateachercouldsay,“Youmaychooseanappleorabananaforyoursnack”or“Ifyouhurryandputonyourjacket,thenyouwillhavetimetoswing.”Later,studentsshouldusethewordsmodeledforthemtodescribemathematicalsituations:“Ifsixgreenpatternblockscoverayellowhexagon,thenthreebluesalsowillcoverit,becausetwogreenscoveroneblue.”Sometimesstudentsreachconclusionsthatmayseemoddtoadults,notbecausetheirreasoningisfaulty,butbecausetheyhavedifferentunderlyingbeliefs.Teacherscanunderstandstudents’thinkingwhentheylistencarefullytostudents’explanations.Forexample,onhearingthathewouldbe“StaroftheWeek”inhalfaweek,Benprotested,“Youcan’thavehalfaweek.”Whenaskedwhy,Bensaid,“Sevencan’tgointoequalparts.”Benhadtheideathattodivide7by2,therecouldbetwogroupsof3,witharemainderof1,butatthatpointBenbelievedthatthenumber1couldnotbedivided.Teachersshouldencouragestudentstomakeconjecturesandtojustifytheirthinkingempiricallyorwithreasonablearguments.Mostimportant,teachersneedtofosterwaysofjustifyingthatarewithinthereachofstudents,thatdonotrelyonauthority,andthatgraduallyincorporatemathematicalpropertiesandrelationshipsasthebasisfortheargument.Whenstudentsmakeadiscoveryordetermineafact,ratherthantellthemwhetheritholdsforallnumbersorifitiscorrect,theteachershouldhelpthestudentsmakethatdeterminationthemselves.Teachersshouldasksuchquestionsas“Howdoyouknowitistrue?”andshouldalsomodelwaysthatstudentscanverifyordisprovetheirconjectures.Inthisway,studentsgraduallydeveloptheabilitiestodeterminewhetheranassertionistrue,ageneralizationvalid,orananswercorrectandtodoitontheirowninsteadofdependingontheauthorityoftheteacherorthebook.

NCTMPrinciplesandStandardsforSchoolMathematics

Page 37: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

37

Homework

Euclidtaughtmethatwithoutassumptionsthereisnoproof.Therefore,inanyargument,examinetheassumptions. EricTempleBell

1) DoalltheitalicizedthingsintheReadandStudysection.Writeadescriptionofthe

strategiesyouusedinsolvingtheproblemofcreatinganequilateraltriangleusingonlyEuclid’sfiveaxioms.

2) WhichofthechildrenfromtheConnectionsreadingareusingdeductivereasoningand

whichareusinginductivereasoning?Explain.

3) AccordingtotheNCTM,whatistheteacher’sroleinpromotingreasoningamongchildrenintheearlyelementarygrades?

4) Explainwhyverticalanglesformedbyintersectinglinesarethesame.

5) HavealookatProposition32oftheappendix.Doyouseethatitisthetheoremyou

provedintheClassActivity?Whichpropositionsthatcomebefore#32didyouuseintheproof?

6) DecideifeachofthefollowingstatementsaboutEuclideanlinesandanglesistrueorfalsebyexploringexamplesandlookingupdefinitions.Ifyoudecidethatastatementistrue,writeadeductiveargumentbasedonaxiomsanddefinitions.Ifyoudecidethestatementisfalse,giveacounterexampleoradeductiveargumentthatitisnotpossible.

a) Anytwodistinctlineswilleitherintersectinexactlyonepointortheywillbeparallel.

b) Thereexisttwoacuteangleswhicharesupplementary.c) Everytwolinesthatareeachparalleltoathirdlinemustbeparalleltoeach

other.d) Everytwolinesthatareeachperpendiculartoathirdlinewillbeperpendicular

toeachother.e) Everytwoacuteanglesmustbecomplementary.f) Thereexisttwooppositesidesinanytrapezoidwhichareparallel.g) Ifoneoftwosupplementaryanglesisacute,theotheranglemustbeobtuse.

Page 38: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

38

7) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade2TeachersGuide(yourprofessorshouldhaveacodeforyoutoviewthis).Spend10-15minuteslookingthroughUnit6Module1.CarefullyreadthroughtheactivityGuessMyShape,thenmakeupyourownriddleforyoursecondgradestudentstosolve.

8) Wehaveaconjecture.Everyrectangleisaparallelogram.Giveaninductiveargumentthatthisconjectureistrue.Now,sincemathematiciansarenotsatisfieduntiltheyhaveadeductiveargument,giveoneofthose.

9) Wehaveanotherconjecture!Everyrectangleisasquare.Isthisconjecturetrueorfalse?

Ifitistrue,giveadeductiveargument.Ifitisfalse,giveacounterexample.

10) HerearesomemoreoftheCommonCoreStateStandardsrelatedtoreasoningaboutshapes.InwhatwaysdoHWproblems4)–7)addressthesestandards?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

11) DrawaVenndiagramshowingtherelationshipbetweenallthevariousquadrilateralswehavestudied.HowdoesthisfitwiththeCommonCoreStateStandardsdescribedbelow?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

CCSSGrade3:Reasonwithshapesandtheirattributes.

1. Understandthatshapesindifferentcategories(e.g.,rhombuses,rectangles,andothers)mayshareattributes(e.g.,havingfoursides),andthatthesharedattributescandefinealargercategory(e.g.,quadrilaterals).Recognizerhombuses,rectangles,andsquaresasexamplesofquadrilaterals,anddrawexamplesofquadrilateralsthatdonotbelongtoanyofthesesubcategories.

CCSSGrade5:Classifytwo-dimensionalfiguresintocategoriesbasedontheirproperties.

1. Understandthatattributesbelongingtoacategoryoftwo-dimensionalfiguresalsobelongtoallsubcategoriesofthatcategory.Forexample,allrectangleshavefourrightanglesandsquaresarerectangles,soallsquareshavefourrightangles.

2. Classifytwo-dimensionalfiguresinahierarchybasedonproperties.

Page 39: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

39

ClassActivity4: AlltheAngles

DonotworryaboutyourdifficultiesinMathematics.Icanassureyoumineare stillgreater.

AlbertEinstein

1) Hereisthedescription–fromtheCommonCoreStateStandardsforgradefour–ofhowtothinkaboutmeasuringanglesusingdegrees.Readitcarefullyandsketchapicturetohelpyourgroupmakesenseoftheirexplanation.

Anangleismeasuredwithreferencetoacirclewithitscenteratthecommonendpointoftherays,byconsideringthefractionofthecirculararcbetweenthepointswherethetworaysintersectthecircle.Ananglethatturnsthrough1/360ofacircleiscalleda“one-degreeangle,”andcanbeusedtomeasureangles.

Ananglethatturnsthroughnone-degreeanglesissaidtohaveananglemeasureofndegrees.

M E A S U R I N G A N G L E S I N D E G R E E S

2) Makesureeveryoneinyourgroupcanusetheirprotractortomeasure(indegrees)theangleindicatedbelow:

(continuedonthenextpage)

Page 40: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

40

3) Findaformulaforthesumofthemeasuresofthevertexanglesofann-gon(apolygonwithnsides).Youmayneedtocollectsomedata.Intheend,makeamathematicalargumentthattheformulayoufindwillworkforaconvexpolygonofanynumberofsides.(Theformulathatyoudevelopedwillworkforconcavepolygonsaswell,buttheargumentistrickier,sowearenotaskingyoutojustifyitatthistime.)

Page 41: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

41

ReadandStudy

Theknowledgeofwhichgeometryaimsistheknowledgeoftheeternal. Plato

Aregularpolygonisoneinwhichallofthelinesegmentsarecongruentandallofthevertexanglesarealsocongruent.Sketcharegulartriangleandaregularquadrilateral.Isthebelowrhombusaregularquadrilateral?Explain.

R E G U L A R P O L Y G O N S

Polygonsareoftennamedforthenumberofsidestheycontain.Infact,theprefix“poly”means“many”andtheroot“gon”means“side.”So“polygon”means“many-sided”figure.Inordertonamepolygons,you’llneedtoknowthefollowingprefixes: Five–“penta” Six–“hexa” Seven–“hepta” Eight–“octa” Nine–“nona” Ten–“deca” Twelve–“dodeca”Forexample,five-sidedpolygonsarecalledpentagons.Hereareacoupleexamplesofconvexpentagons.Drawanexampleofaconcavepentagon.Mathematiciansidentifythreetypesofanglesinapolygon:thevertexangles,thecentralangles,andtheexteriorangles.Studythehexagoninthefollowingdiagramandthenexplainthedifferencebetweenthethreetypesofanglesinyourownwords.Theboldarcsmarkthevertexangles;thethinsolidarcsmarkthecentralangles;andthedashedarcsmarktheexteriorangles.PointGisanyinteriorpoint.

Page 42: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

42

ThinkaboutthesumofthesixcentralanglesformedatpointG.Thissumwillalwaysbe360°regardlessofwhereintheinteriorpointGis,regardlessofhowmanysidesthepolygonhas,andregardlessofwhetherornotthepolygonisregular.Why?Wealsoclaimthatthesumoftheexterioranglesofanypolygonis360°.Wewillaskyoutomakeamathematicalargumenttosupportthisclaiminthehomeworksection.Thecaseofthesumofthevertexanglesofapolygonistheinterestingcase.IntheClassActivityyoufoundthatthissumdoesdependonthenumberofsidesinthepolygon.Doesitdependonwhetherthepolygonisregular?Explain.

ConnectionstoTeaching

Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsinconstructingarguments.

CCSS,p.6

Anglesarenotoriouslydifficultidealobjectsforchildren.Ontheonehand,theyareoftendefinedasafigureformedbytworayswithacommonendpoint(and,infact,thatisexactlyhowwehavedefinedthem).Ontheotherhand,whatisimportantinmeasuringanangleisitsdegreeofturn.

A

B

C

DE

F

G

Page 43: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

43

Whenyoutalkaboutangleswithchildren,wesuggestthatyoualwaysuseyourhandorarmtoshowthesweepoftheangleinadditiontoshowingthestaticpicture.Childreningradefourlearntouseaprotractortomeasureanglesindegreesandtoaccuratelyestimatethemeasureofangles.BelowyouwillfindtheCCSSrelatedtoanglemeasureinthisgrade.Readthemcarefully.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

CCSSGrade4:Geometricmeasurement:understandconceptsofangleandmeasureangles.

1. Recognizeanglesasgeometricshapesthatareformedwherevertworaysshareacommonendpoint,andunderstandconceptsofanglemeasurement:

a. Anangleismeasuredwithreferencetoacirclewithitscenteratthecommon

endpointoftherays,byconsideringthefractionofthecirculararcbetweenthepointswherethetworaysintersectthecircle.Ananglethatturnsthrough1/360ofacircleiscalleda“one-degreeangle,”andcanbeusedtomeasureangles.

b. Ananglethatturnsthroughnone-degreeanglesissaidtohaveananglemeasureofndegrees.

2. Measureanglesinwhole-numberdegreesusingaprotractor.Sketchanglesof

specifiedmeasure.

3. Recognizeanglemeasureasadditive.Whenanangleisdecomposedintonon-overlappingparts,theanglemeasureofthewholeisthesumoftheanglemeasuresoftheparts.Solveadditionandsubtractionproblemstofindunknownanglesonadiagraminrealworldandmathematicalproblems,e.g.,byusinganequationwithasymbolfortheunknownanglemeasure.

CCSSGrade4:Drawandidentifylinesandangles,andclassifyshapesbypropertiesoftheirlinesandangles.

1. Drawpoints,lines,linesegments,rays,angles(right,acute,obtuse),andperpendicularandparallellines.Identifytheseintwo-dimensionalfigures.

2. Classifytwo-dimensionalfiguresbasedonthepresenceorabsenceofparallelorperpendicularlines,orthepresenceorabsenceofanglesofaspecifiedsize.Recognizerighttrianglesasacategory,andidentifyrighttriangles.

Page 44: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

44

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module1.PrintoutandthenworkthroughtheMeasuringPatternBlockAnglesactivity.(Notethatinthisactivitystudentsarenotusingprotractorstomeasuretheangles.Youalsowillnotneedtouseaprotractor.).

Homework

Energyandpersistenceconquerallthings. BenjaminFranklin

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) ChildreninyourclassmaysaythatÐABCissmallerthanÐDEF.Isthistrue?Astheir

teacher,whatwouldyousaytothesechildren?

4) Usingtheresultsoftheclassactivity,findthemeasureofonevertexangleinan

equilateraltriangle,asquare,aregularpentagon,aregularhexagon,aregularoctagon,aregulardecagon,andaregulardodecagon.

5) Astudentclaimsthatthesumofthevertexanglesofahexagonis6×180becauseeachtrianglehas180degreesofanglesmeasureandshehasshownthat6trianglestomakeupthehexagon.Whatwillyousayasherteacher?

6) IntheReadandStudysectionweclaimthatthesumoftheexterioranglesofanypolygonisalways360°.Makeamathematicalargumenttosupportthisclaim.

B

A

CE

D

F

Page 45: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

45

ClassActivity5: ALogicalInterludeEquationsarejusttheboringpartofmathematics.Iattempttoseethingsintermsof

geometry. StephenHawking

Inthepicturebelow,eachcardhasacolorononesideandashapeontheotherside.Whichcard(s)wouldyouhavetoturnovertobesurethatthefollowingstatementistrue?

Ifacardisredononeside,thenithasasquareontheotherside.

Page 46: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

46

ReadandStudy

Whenintroducedatthewrongtimeorplace,goodlogicmaybetheworstenemyofgoodteaching.

GeorgePolya TheAmericanMathematicalMonthly,v.100,no3.

HerearetwotheoremsaboutparallellinesthatcanbeprovedfromEuclid’saxioms.

1) Iftwolinesarecutbyatransversalandthealternateinterioranglesarecongruent,thenthelinesareparallel.

2) Iftwoparallellinesarecutbyatransversal,thenthealternateinterioranglesarecongruent.

Drawasketchtomakesurethatyouseewhateachofthesehastosay.

Noticethattheybothhavean‘if-then’statementform.Lotsofmathematicaltheoremsarelikethis.Whenatheoremisstatedin‘if-then’form,whateverfollowsthe‘then’isalwaystruewhenevertheconditionsstatedinthe‘if’partaremet.Youcanthinkofan‘if-then’statementasapromisethatiskeptunlessthe‘if’partistrueandthe‘then’partisnot.Wecallstatement2)theconverseofstatement1).Thesetwotheoremsmaysoundthesametoyou,buttheyarenotsayingthesamething.Tohelpyouseethis,let’schangethecontext.Hereisanotherpairofstatementsinwhichthesecondistheconverseofthefirst(andviceversa):

3) IfIliveinChicago,thenIliveinIllinois.

4) IfIliveinIllinois,thenIliveinChicago.Thinkabouteachofthestatements.Whichoftheseistrue?Sinceoneistrueandtheotherfalse,thesetwostatementscannotbesayingthesamething.Inotherwords,theconverseofastatementisalogicallydifferentstatementfromtheoriginalstatement.C O N V E R S E A N D C O N T R A P O S I T I V E

Nowhereisastatementthatislogicallyequivalenttotheoriginalstatementmadein3)above.Itiscalledthecontrapositiveofstatement3).

5) IfIdonotliveinIllinois,thenIdonotliveinChicago.

ThisisessentiallywhatyoufoundwhenyouworkedontheClassActivity.Writethecontrapositivetostatement4)above.

Page 47: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

47

Itishelpfultoknowthatastatementanditscontrapositiveareequivalentbecausethatmeansthatyoucanproveastatementbyprovingitscontrapositive.

ConnectionstoTeaching

Thebeginningofknowledgeisthediscoveryofsomethingwedonotunderstand. FrankHerbert

Nowthatwehavetalkedabitaboutdoingmathematics,wewanttoshowyouthattheCommonCoreStateStandardsrequirethatchildrenalsodomathematics.Giveanexampleofsomethingyouhavedoneinclasssofarthistermthatmeetseachofthesestandards.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

CommonCoreStateStandardsforMathematicalPractice

Childrenshould…

1. Makesenseofproblemsandpersevereinsolvingthem.

2. Reasonabstractlyandquantitatively.

3. Constructviableargumentsandcritiquethereasoningofothers.

4. Modelwithmathematics.

5. Useappropriatetoolsstrategically.

6. Attendtoprecision.

7. Lookforandmakeuseofstructure.

8. Lookforandexpressregularityinrepeatedreasoning.

Page 48: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

48

Homework

Amultitudeofwordsisnoproofofaprudentmind. Thales

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) Decideifeachofthefollowingstatementsistrueorfalse.Iftrue,giveamathematical

explanation.Iffalse,giveacounterexample.a) Ifaquadrilateralisasquare,thenitisarectangle.b) Ifaquadrilateralhasapairofparallelsides,thenitmusthaveapairof

oppositesidesthatarecongruent.c) Ifthediagonalsofaquadrilateralareperpendiculartoeachother,thenthe

quadrilateralisarhombus.d) Ifaquadrilateralhasonerightangle,thenallofitsanglesmustberight

angles.e) Writetheconverseofeachofthestatementsina)–d)above.Whichare

true?f) Writethecontrapositiveofeachofthestatementsina)–d)above.Which

aretrue?

4) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module4.ThenworkthroughtheClockAngles&ShapeSketchesfromthehomelinksection.Howisdeductivereasoningusedtosolvetheseproblems?

Page 49: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

49

SummaryofBigIdeas

Hey!What’sthebigidea? Sylvester

• Geometryisastudyofidealobjects–notrealobjects.

• Definitionsallowustonameandcategorizeidealobjects,tocreaterelationships

betweenobjects,andtomakeargumentsaboutthepropertiesofobjects.• Onedefinitionofgeometryisthatitisthestudyofidealshapesandtheirproperties,of

thepatternsthoseshapescanform,andoftheactionsonthoseshapesthatpreservetheirproperties.

• Aseconddefinitionisthatgeometryisanaxiomaticsystemaboutobjectscalled

“points,”collectionsofpointscalled“lines,”andtherelationshipsbetweenpointsandlines.

• Mathematicalthinkingalsoinvolvesdeductivereasoningandmakingarguments–this

meansusinglogicaswellasusingdefinitionsandaxioms.• Congruenceisanimportantrelationshipbetweengeometricobjects.Wesaytwo

objectsarecongruentiftheycoincidewhenplacedontopofeachother.

• InEuclideangeometrythesumoftheanglesinatriangleisalways180degreesandyoucanexplainwhythisisso.

• Youwillrepresentthemathematicalcommunityforyourstudents.Theywilllooktoyoutounderstandwhatwemathematiciansdoandhowwethink.Yourstudentswilltrytodiscernthemeaningsthatyou,yourcurriculummaterials,andotherstudentsgivetoideas,strategies,andsymbolsthroughtheirparticipationindoingmathematicsinyourclassroom.Youmustbeawarethattalkingaboutthemeaningsofwords,ideas,andsymbolsisanimportantpartofyourroleasateacher;andyoumustbetransparentandcarefulinyouruseofwords,symbols,andnotationwhenyouareteachingmathematics.

Page 50: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

50

ChapterTwo

MeasurementinthePlane

Page 51: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

51

ClassActivity6: MeasureforMeasureAndtherewentoutachampionoutofthecampofthePhilistines,namedGoliathof

Gath,whoseheightwassixcubitsandaspan. ISamuel17:4

1) Usingyourcubit(lengthfromelbowtofingertips)andhandspan,determinehowtall

GoliathwasbycuttingastringthatisaslongasGoliathwastall.Compareyourstringlengthwiththestringsofothersinyourgroup.Whatarethedifficultiesthatmightarisefromchoosingandusingunitsdeterminedbyeachperson’sownbody?Whydoyouthinkweusethe“foot”asacommonunitoflength?

2) Onthenextpage,arefourcopiesofthesamelinesegment.Usingeachoftherulersprovided,carefullymeasurethelinesegment.

Page 52: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

52

Page 53: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

53

ReadandStudy

Itisnotenoughtohaveagoodmind.Themainthingistouseitwell. ReneDescartes

Thebigideaofmeasurementisthatofcomparinganattributeofanobjecttoanappropriateunit.Forexample,wemightcomparethelengthofourdesktoafoot-longrulerorwemightcomparetheareaofsheetofpapertotheareaofagreentriangle.Sothekeyquestionregardingmeasurementisthis:Howmanyoftheunitfitintotheobject?Whatmakesaunitappropriate?Well,firstitmusthaveadimensionthatmatchestheattributetobemeasured.Forexample,wemeasurelength(orwidthorheight)usingone-dimensionalunits.Hereisanexampleofaone-dimensionalunit:Wemeasureareausingtwo-dimensionalunitslikethis:Wemeasurevolumeusingthree-dimensionalunitslikethis:Wewilltalkmoreaboutvolumemeasurementinlatersections.Second,ifyouwanttobeabletocommunicatewithothers,ithelpsthattheunitbea‘standard’one.Astandardunitisonethattheculturehasagreedupon.Eachpersonhasamentalmodeloftheunitsoheorshecanpicturehowbigitis.Forexample,inourcultureafootisastandardunitformeasuringlength.InEurope(andmostoftherestoftheworld)ameterisastandardunitformeasuringlength.Ifwewanttotalkamongcultures,weneedtobeabletoconvertfromoneunittoanother.Thereareabout3.28feetinameter.Ifaroomis15feetlong,approximatelyhowmanymetersisthat?S T A N D A R D A N D N O N S T A N D A R D U N I T S

Third,itisusefulthattheunitbeofreasonablesizeinrelationtotheattributetobemeasured.Itwouldbeinconvenienttomeasurethelengthoffootballfieldusingmicrons(areallysmallone-dimensionalunit).Inthemetricsystemsizeisindicatedbytheprefix.Forexample,theprefixkilomeans1000times.Soakilometeris1000meters.Inthecurriculummaterialselementarystudentsareexpectedtousetheprefixesmilli(onethousandth),centi(onehundredth),andkilo.Youshouldmemorizetheseandbeabletomakeconversions.Approximatelyhowmanycentimetersarethereinafoot?Becausemeasurementalwaysinvolvescomparison,itisnecessarilyalwaysanapproximation.Weoftenindicateourdegreeofcertaintyaboutameasurementbasedonthewaywereportit.Forexample,ifIclaimadeskis1.23meterslong,thissuggeststhatIamconfidentintheaccuracytothehundredthofameter(tothecentimeter).Whenworkingwithchildrenyou

j ''

Page 54: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

54

shouldexplicitlydiscussthesefacetsofmeasurementandyoushouldbesuretoalwaysreporttheunitwithanyactualmeasurement.Sayingthatadeskis1.23longmeansnothing.Sayingthatitis1.23meterslongmakessense.Acommonmeasurementwemakeforaplaneobjectistomeasurethedistancearounditsboundary.Wecallthismeasurementtheperimeteroftheobject.(Whentheobjectisacircle,wecallthislengththecircumference.)Theperimeterofaplaneobjectisaone-dimensionalmeasurement–soweuselinearunitslikeinchesorcentimeters.Wecalculateaperimeterbysimplyaddingupthelengthsofthecurvesthatmakeuptheobject.Wecanmeasurethelengthsoflinesegmentswitharuler.Wewillfindaformulaforthecircumferenceofacircleinafutureactivity.A P P R O X I M A T I O N A N D P R E C I S I O N

ConnectionstoTeachingOnlythecuriouswilllearnandonlytheresoluteovercometheobstaclestolearning.

Thequestquotienthasalwaysexcitedmemorethantheintelligencequotient. EugeneS.Wilson

TheCommonCoreStateStandardsformathematicsrequirethatchildrenbegintostudystandardmeasurementoflengthbeginningingrade2.ReadtheexcerptfromtheCCSSbelow.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

NoticethatchildrenaretobelearningbothmetricandEnglishunits.Comeupwithabenchmark(somethingtoimaginethatistherightlength)foreachoftheseunits:inches,feet,centimeters,andmeters.

CCSSGrade2:Measureandestimatelengthsinstandardunits.

1. Measurethelengthofanobjectbyselectingandusingappropriatetoolssuchasrulers,yardsticks,metersticks,andmeasuringtapes.

2. Measurethelengthofanobjecttwice,usinglengthunitsofdifferentlengthsforthetwomeasurements;describehowthetwomeasurementsrelatetothesizeoftheunitchosen.

3. Estimatelengthsusingunitsofinches,feet,centimeters,andmeters.

4. Measuretodeterminehowmuchlongeroneobjectisthananother,expressingthe

lengthdifferenceintermsofastandardlengthunit.

Page 55: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

55

TheCommonCoreStateStandardsformeasurementingrade1areshownbelow.Comparethemtothegrade2standards.Howdotheydiffer?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade2TeachersGuide.Spend10-15minuteslookingthroughUnit4Module1Session1TeacherFeet.Inwhatwaysdothechildrenneedtoanalyzetheprocessofmeasurementinthissession?

Homework

Manyoflife'sfailuresarepeoplewhodidnotrealizehowclosetheyweretosuccesswhentheygaveup.

ThomasA.Edison

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DotheConnectionsproblems.

3) Whataregoodbenchmarksforthemillimeter,centimeter,decimeter,andkilometer?Findsomethingthatisaboutthelengthofeach.

4) UseanappropriateEnglishunittoestimatea)thelengthofyourtable,b)thedistancefromChicagotoDenver,andc)thewidthofapencil.

5) Useanappropriatemetricunittoestimatea)thelengthofyourtable,b)thedistancefromChicagotoDenver,andc)thewidthofapencil.

CCSSGrade1:Measurelengthsindirectlyandbyiteratinglengthunits.

1. Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathirdobject.

2. Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesofashorterobject(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectisthenumberofsame-sizelengthunitsthatspanitwithnogapsoroverlaps.Limittocontextswheretheobjectbeingmeasuredisspannedbyawholenumberoflengthunitswithnogapsoroverlaps.

Page 56: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

56

6) Findtheperimetersoftheplanefiguresshownbelowbymeasuringthem

a) UsinganappropriateEnglishunit.b) Usinganappropriatemetricunit.c) NowconvertyourmetricunitstoEnglishunitstocheckthatyourmeasurementsin

b)matchyoumeasurementsina).

7) Explainwhyitmakessensethattheperimeterofarectanglecanbefoundbycomputing2l+2wwherelisitslengthandwisitswidth.

8) Iwanttorunaroundthebelowlake.Iplantohugtheshoreline.HowfardoIhavetorun?Thinkaboutvariouswaysyoucoulduseamaptoanswerthisquestion.Howaccurateisyourestimate?Howcanyouimproveitsaccuracy?LakeJen

Scale1cm=3miles

9) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade2TeachersGuide.Spend10-15minuteslookingthroughUnit4Module1.Then,carefullyexaminetheworksheet4AEstimate&MeasureInchesRecordSheet.Whatconversationscouldyouhavewithyourstudentsaboutthebigideasoflinearmeasurementbasedonthisactivity?

Page 57: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

57

ClassActivity7: Part1Triangulating

Godowndeepenoughintoanythingandyouwillfindmathematics.DeanSchlicter

Defineonetriangleunittobetheareaofthegreentrianglepatternblock.Usingthisunit,determinetheareaofthissheetofpaper.Thenusethetriangleunittoestimatetheareaofeachofthepatternblockshapespicturesbelow.

Page 58: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

58

ClassActivity7: Part2AreaEstimationHereisamapofthegreatstateofWisconsin.Withoutlookinganythinguponline,yourgroupneedstomakeareasonableestimateofitsareainsquaremiles.Firstdiscussacoupleofdifferentwaysofdoingthisusingthemap.Thengoaheadandcarefullycomputeyourestimate.

http://www.nationsonline.org/oneworld/map/USA/wisconsin_map.htm

Wouldyouguaranteeyourestimatetothenearsest10squaremiles?Thenearest100squaremiles?Thenearest1000squaremiles?Somethingelse?Howdidyoudecide?

Page 59: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

59

ReadandStudy

Themanignorantofmathematicswillbeincreasinglylimitedinhisgraspofthemainforcesofcivilization.

JohnKemenyMathematiciansdefineareaasthequantityoftwo-dimensionalspaceenclosedbyaclosedplanefigure.Wecommonlymeasurethisareaintermsofsquareunitssuchassquareinchesorsquarecentimeters.Sotofindtheareaofafigureyouneedtofindthenumberofsquareunitsitwouldtaketocoverthefigure.Wewantyoutoliterallydothisnow.Hereisaunitofarea(thesquarecentimeter):Traceitandthenseehowmanyofthoseunits(includingpartsofunits)ittakestocovertheshapebelow: Iftheshapeisarepresentationofalake,andacentimeteroflengthcorrespondsto3miles,thenwhatistheareaoftheactuallake?Explain.I D E A O F A R E A

Weoftenmeasuretheareaofirregularlyshapedobjectsjustbycounting(andestimating)thenumberofsquareunitswithintheboundaryoftheobject.Sometimeswesuperimposeagridtohelpwiththatestimate.Estimatetheareaofthisobjectnowassumingthateachsmallsquareisaunitofarea.Whenwemeasuretheareaofanobjectinsquareunits,noticethatwearetakingadvantageofthefactthatsquarestessellatetheplane–therearenogapsbetweenthesquares.Wehavealreadydiscoveredthatthereareothershapesthattessellatetheplaneaswell;twoofthem

Page 60: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

60

are,likethesquare,alsoregularpolygons.Whichones?Whydoyouthinkpeoplechosetousesquareunitsinsteadofsomeothershapethattessellatestheplane?

ConnectionstoTeaching

Teachingcreatesallotherprofessions.AuthorUnknown

ChildrenneedtohaveexperiencesfindingareasbycoveringfigureswithsquareunitslikeyoudidintheReadandStudysection.Ifyoushowthemformulastooearly,theywillsimplytrytorememberthoseformulasandtheymaynotfocusontheideaofarea.Besides,formulasworkonlywithalimitednumberofshapes,andsoestimatingareasusingthedefinitionisausefulskillinitsownright.Wesuggestthatchildreningrades2and3spendmanyweeksestimatingareasusingsquarestickersorsquaregridstocoverfigures.Someofthosefiguresshouldhavecurvedboundariesandsomeshouldhavespecialpolygonshapes.Childrenwillquicklybegintoproposeshortcutsontheirownthatwillleadnaturallytotheareaformulas.Forexample,ifchildrencomputeareasofthebelowrectangleshapesusingstickersoragrid,someofthemwillnoticethatashortcutforfindingareasofrectangleshapesistosimplymultiplythelengthoftherectanglebyitswidth.Thenyoucantalkwiththemaboutwhythisisso.Practicethatnowbydoingthebelowtasks.C O V E R I N G W I T H U N I T S Q U A R E S

Firstuseagridtoestimatehowmanyareaunitsittakestofilleachrectangleshape.Thenexplainwhyitmakessensethattheareaofarectanglecanbefoundbymultiplyingitslengthbyitswidth.Hereisaunitoflength:_____ Hereisaunitofarea:

Page 61: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

61

TheCommonCoreStateStandardsdescribethefollowingstandardsforchildreningrade3.Readthemtoseethatthethingschildrenshouldlearnaremanyofthethingswehavedescribedinthissection.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Wehavenottalkedexplicitlyabout2.c.and2.d.above.Sketchpicturestohelpyoutomakesenseofwhattheymeanbythose.

CCSSGrade3:Geometricmeasurement:understandconceptsofareaandrelateareatomultiplicationandtoaddition.

1. Recognizeareaasanattributeofplanefiguresandunderstandconceptsofareameasurement.a. Asquarewithsidelength1unit,called“aunitsquare,”issaidtohave“one

squareunit”ofarea,andcanbeusedtomeasurearea.

b. Aplanefigurewhichcanbecoveredwithoutgapsoroverlapsbynunitsquaresissaidtohaveanareaofnsquareunits.

c. Measureareasbycountingunitsquares(squarecm,squarem,squarein,square

ft,andimprovisedunits).

2. Relateareatotheoperationsofmultiplicationandaddition.a. Findtheareaofarectanglewithwhole-numbersidelengthsbytilingit,and

showthattheareaisthesameaswouldbefoundbymultiplyingthesidelengths.

b. Multiplysidelengthstofindareasofrectangleswithwholenumbersidelengthsinthecontextofsolvingrealworldandmathematicalproblems,andrepresentwhole-numberproductsasrectangularareasinmathematicalreasoning.

c. Usetilingtoshowinaconcretecasethattheareaofarectanglewithwhole-

numbersidelengthsaandb+cisthesumofa×banda×c.Useareamodelstorepresentthedistributivepropertyinmathematicalreasoning.

d. Recognizeareaasadditive.Findareasofrectilinearfiguresbydecomposing

themintonon-overlappingrectanglesandaddingtheareasofthenon-overlappingparts,applyingthistechniquetosolverealworldproblems.

Page 62: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

62

Homework

ThemoreIpractice,theluckierIget.JerryBarber

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) Useagridtoestimatecarefullytheareaofthebelowcircularfigureinsquare

centimeters.

4) Astudentcomestoyouandasks,"Whydoweusesquarecentimeterstomeasuretheareaofthecircle?Acircleisroundandnotsquare."Explaintoherwhywestillusesquarecentimeterstomeasuretheareaofacircle.

5) WewouldliketohavetheabovelakeclassifiedasoneoftheGreatLakes.AspartoftheapplicationtotheDepartmentoftheInterior,wehavetoreportitsarea.Estimatetheareaofthelakeinsquaremiles.

Scale1cm=3miles

Page 63: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

63

6) Hereisafloorplanforthefirstlevelofahouse.a) Whatisitsareainsquarefeetincludingthegarage?Assumethat1cm

represents6feetoflength.b) Howgoodisyourestimate?Areyouconfidenttothenearestsquarefoot?c) WhatCommonCoreStateStandardismetbythisproblem?Explain.

7) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade3TeachersGuide.Spend10-15minuteslookingthroughUnit6Module3.

a. Howareareaandperimeterintroduced?b. PrintoutandthencarefullyworkthroughtheworksheetBayardOwl’sBorrowed

Tables.Whatconversationscouldyouhavewithyourstudentsaboutthebigideasofperimeterandareabasedonthisactivity?

8) AnNBAbasketballcourtmeasures50feetby96feet.Usethisinformationbelowtodeterminehowmanyacresitcovers.

1foot=12inches1yard=3feet1mile=1760yards1acre=4840squareyards1squaremile=640acres

Page 64: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

64

ClassActivity8: FindingFormulas

Onecannotescapethefeelingthatthesemathematicalformulashaveanindependentexistenceandanintelligenceoftheirown,thattheyarewiserthanwe

are,wisereventhantheirdiscoverers. HeinrichHertz

Wecommonlycomputeareasofsomespecialpolygonshapeswiththeuseofformulas.Theseformulascanbeexplained–theyarebasedongeometricdefinitionsandtheorems–andwewantyoutounderstandwhytheymakesense.Thatisthegoalofthisactivity.

1) Rectangle:Usetheideaofareaasthenumberofsquareunitsittakestocoveranobjecttoexplainwhyitmakessensethattheareaofarectangleissimplytheproductofitslengthandwidth.

2) Parallelogram:Showhowtocutandrearrangeaparallelogramtomakearectanglewith

thesamearea.Arguethattheresultingfigureisinfactarectangle.UsetheformulafortheareaofarectangletofindaformulafortheareaAofaparallelogramusingthebasebandtheheighthoftheparallelogram.

3) Triangle:Showhowtorearrangetwocopiesofthesametriangletomakeaparallelogram.Arguethattheresultingfigureisinfactaparallelogram.UsetheformulafortheareaofaparallelogramtofindaformulafortheareaAofatriangleusingthebasebandtheheighthofthetriangle.

Page 65: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

65

ReadandStudy

Theessenceofmathematicsisitsfreedom. GeorgCantor

Manyofyourstudents(andmanyoftheirparents)willthinkthatformulastellthewholestoryaboutarea.Infact,somepeoplemistakenlydefineareaas“lengthtimeswidth.”Everyclosedtwo-dimensionalshapehasarea,butaswehaveseeninanearliersection,onlyaveryfewoftheseshapeshaveformulaswecanusetocalculatethearea.Theareaofsomegeometricobjectsismoreeasilydeterminedthroughtheuseofareaformulas.IntheClassActivityyoudevelopedseveralusefulandwell-knownformulasthatarereadilyfoundthroughoutthecurriculum.Notethatalloftheseformulasarebasedonthechoiceofasquareastheunitofarea.Ifwehadusedadifferentshapeastheunit(aswedidintheprevioussection),alloftheformulaswouldhavechanged.Themostfundamentalareaformulaisfortheareaofarectangle:length´width.Alloftheotherformulasforareaarebuiltonthat.Asyouhaveseen,theseformulasarereallytheoremsthathavebeenproventowork.And,thesetheoremsareonlytruewhenweusetheunitsquareasourunit.Explaincarefullywhythatpreviousstatementissoimportant.Whathappensifwedonotusesquaresasourunit?YoushouldhaveyourupperelementarystudentsdoactivitieslikethoseintheClassActivitysothattheycanseethisforthemselves.IntheBridgesinMathematicscurriculumforgrade4,studentsdiscovertheformulasfortheareaandperimeterofrectangles.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module3Session3.Inwhatwaysdoesthisactivityhelpstudentstodevelopformulasfortheperimeterandareaofarectangle. M A K I N G S E N S E O F A R E A F O R M U L A S

ConnectionstoTeaching Knowingisnotenough;wemustapply.Willingisnotenough;wemustdo.

JohannWolfgangvonGoethe

Oncechildrenunderstandtheideasofperimeterandarea,theycansolvesomepracticalproblems.Wewillposesomenowthatspecificallyaddressthestandardsthatfollowthem.Dotheseproblemsandthenreadtoseewhichofthestandardswe’veaddressedwiththem.

Page 66: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

66

a) Ifarectangularroomhasalengthof5feetandanareaof60squarefeet,whatisitswidth?

b) Ifarectanglehasalengthof10feetandaperimeterof36feet,whatisitswidth?

c) Isittruethatrectangleswithbiggerperimetersalwayshavebiggerareastoo?Explain.

d) Isittruethatrectangleswithbiggerareasalwayshavebiggerperimeterstoo?Explain.

Page 67: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

67

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Homework

Toliveacreativelife,wemustloseourfearofbeingwrong. JosephChiltonPearce

1) DotheproblemsandthendotheitalicizedstatementintheConnectionssection.

CCSSGrade3:Geometricmeasurement:recognizeperimeterasanattributeofplanefiguresanddistinguishbetweenlinearandareameasures.Solverealworldandmathematicalproblemsinvolvingperimetersofpolygons,includingfindingtheperimetergiventhesidelengths,findinganunknownsidelength,andexhibitingrectangleswiththesameperimeteranddifferentareasorwiththesameareaanddifferentperimeters.

CCSSGrade4:Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmallerunit.

1. Knowrelativesizesofmeasurementunitswithinonesystemofunitsincludingkm,m,cm;kg,g;lb,oz.;l,ml;hr,min,sec.Withinasinglesystemofmeasurement,expressmeasurementsinalargerunitintermsofasmallerunit.Recordmeasurementequivalentsinatwocolumntable.Forexample,knowthat1ftis12timesaslongas1in.Expressthelengthofa4ftsnakeas48in.Generateaconversiontableforfeetandincheslistingthenumberpairs(1,12),(2,24),(3,36),...

2. Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes,massesofobjects,andmoney,includingproblemsinvolvingsimplefractionsordecimals,andproblemsthatrequireexpressingmeasurementsgiveninalargerunitintermsofasmallerunit.Representmeasurementquantitiesusingdiagramssuchasnumberlinediagramsthatfeatureameasurementscale.

3. Applytheareaandperimeterformulasforrectanglesinrealworldandmathematicalproblems.Forexample,findthewidthofarectangularroomgiventheareaoftheflooringandthelength,byviewingtheareaformulaasamultiplicationequationwithanunknownfactor.

Page 68: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

68

2) PracticeexplainingwhyeachoftheformulasfromtheClassActivitymakessense.

3) Oneofyourstudentsisconfusedaboutareacalculations.Adamwonderswhy,ifyoutakearectangleandmultiplythelengthofeachsideby2,theareaofthenewrectangleisn'ttwiceasbigastheareaoftheoldrectangle.Drawsomepicturestohelpyouseewhatisgoingonhere.Whatwillyousaytohim?

4) Explainwhyitmakessensethattheareaofatrapezoidisalways½h(b1+b2)whereb1andb2arethelengthsoftheparallelbasesandhistheheight.Youcandothisbypartitioningthetrapezoidregionintopieces,orbycuttingitapartandrearrangingit,orbyaddingonstructure.Youmayusewhatyouknowaboutfindingareasofrectangles,parallelograms,andtriangles.Seeifyoucanfindmorethanonewaytodothis.

5) Findtheareaofthetrapezoidshownbelowinasmanydifferentwaysasyoucan.

Assumethateachgridsquarerepresentsoneunitofarea.

* * * * * *

* * * * * *

* * * * * *

* * * * * *

6) Supposearectanglehasaperimeterof36units.Whatareallthepossiblewholenumberdimensionsoftherectangle?Makeagraphofwidthvs.area.Whichwidthgivesthegreatestarea?

7) Supposeyouhave100metersofflexiblefencingtomarkapastureoutontheplains.

Howwouldyousetitup(whatshape)toenclosethemostgrazingareaforyourcattle?Whatdimensionswouldyouuseifthepasturehadtobearectangle?

Page 69: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

69

8) Thetrianglebelowisconstructedona1cmgrid.Findtheareaofthetriangleusingatleastthreedifferentmethods.

9) Assumethatthetriangleareaaboverepresentspartofasignthatneedstobepainted.

Thescaleofthedrawingisthat1cmrepresents10feet.Theinstructionsonthepaintcansaythat1gallonofpaintwillcover100squarefeet.Howmanygallonsofpaintwillyouneedtobuyinordertopaintthetriangle?

1 cm

Page 70: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

70

ClassActivity9: TheRoundUp

Donotdisturbmycircles!Archimedes’finalwords

1) Acircleisdefinedasthesetofallpointsintheplanethatareequidistantfromagiven

pointcalledthecenter.Studythisdefinition.Iftheword“all”wasmissing,howwouldthatchangethings?Whatifthewords“intheplane”weremissing?

2) Howmanytimesdoesthediameterofacirclefitintoitscircumference?Gathersomedatatosee.

3) Exploretheideaoftheareaformulaforacircularregionbyrearrangingitintoaparallelogram-shapedfigure.Findtheareaofthe“parallelogram”intermsoftheradiusofthecircle.Whyisthisjusttheideaoftheargument?

Page 71: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

71

ReadandStudy

Itisnotoncenortwice,buttimeswithoutnumberthatthesameideasmaketheirappearanceintheworld.

Aristotle CirclesareasfundamentaltoEuclideangeometryasarepointsandlines.RecallthatEuclid’sthirdaxiomassuresusthatwecanalwaysmakeacircleofanysize(radius)wewant.Ofcourse,thecircleswedrawarestillonlyapproximationsofatruemathematicalcircle,justasthelinesegmentswemakearejustapproximationsofatruelinesegment.Acircleisthesetofallpointsintheplanethatareequidistantfromagivenpoint,calledthecenter(Ointhediagrambelow).Thediagramshowssomeoftheotherimportanttermsassociatedwithacircle.Becertainyouunderstandeachtermandcanexplainitsmathematicaldefinition,whichyouwillfindintheglossary.

Central Angle Ð AOC

Tangent

Secant

Chord DE Diameter AB Arc DE

Radius CO

Sector O

C

A

B

D

E

Page 72: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

72

Itisanamazingfactthat,foranysizecircle,theratioofthecircumferencetothediameteristhesamenumber.Thiswasknowninallearlycivilizations.Wecallthatratio“pi.”Soπ(pi)isthesymbolforthenumberoftimesthediameterofacirclefitsintoitscircumference.Readthatagain;itisimportant.Thisnumberpisanirrationalnumber.Thatmeansithasadecimalrepresentationthatneitherendsnorrepeats.Thiswasprovedin1761byamathematiciannamedJohannHeinrichLambert.Evenwhenweusethepkeyonacalculator,weareusinganapproximatevalue.Elementarystudentscommonlyuseeither3.14or

722 asanapproximatevalueforpwhen

carryingoutcalculationsinvolvingcircles.Alwaysbesuretomakethepointthatthisisjustanapproximation.W H A T I S Π ?

ConnectionstoTeaching

Attheageofeleven,IbeganEuclid,withmybrotherasmytutor.Thiswasoneofthegreateventsofmylife,asdazzlingasfirstlove.

BertrandRussellIntheBridgesinMathematicscurriculumforgrade4,studentsareintroducedtobasiccircleterminology.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module1Session5.Howarethepartsofacircleintroducedtothestudents?Withinthelesson,thestudentsareaskedtowritetheirowndefinitionofacircle.IssaandSuzigavethefollowingdefinitions.Aretheirdefinitionscorrect?Howasateacherdoyourespondtoeachofthesestudents? Issa’sdefinition:Acircleisashapethat’sroundandhas360°. Suzi’sdefinition:Acircleisashapethathasthesamewidthallthewayaround.

Page 73: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

73

Homework

Eureka!I’vegotit! Archimedes

1) DoalltheitalicizedthingsintheReadandStudysection.

2) SolvetheproblemsintheConnectionssection.

3) Studyeachboldandunderlinedtermusedinthissection.Thismeansyoushouldbe

abletoexplainthedefinitionusinggoodmathematicallanguageandthatyoushouldbeablesketchexamplesandnon-examplesofeachterm.

4) HowdoesthedefinitionofπleadtotheformulaC=2πr(whereCisthecircumferenceofacircleandrisitsradius)?

5) Ifacirclehasameasuredradiusof5inches,then,usingtheformulaforfindingtheareaofacircle,wewouldsaythattheareaofthecircleisapproximately78.5squareinches.Giveatleasttwodistinctreasonswhythecalculationisapproximate.

6) Explaintherelationshipbetweenasecantandachordofacircle,betweenaradiusandadiameter,andbetweenasecantandatangentofacircle.

7) Hereisanothersetofpicturesdesignedtogiveanintuitiveargumentthattheareaofacircularregionisπr2.Imaginethatthecircleshownismadeofcircularstringssittingoneinsidethenext.Thenyoutakeascissors,sniparadius,andflattenthestringstomakethetriangularshape.Whatistheareaofthetriangleintermsofr(theradiusofthecircle)?

8) IfIdoublethediameterofacircularregion,whathappenstoitscircumference?

Page 74: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

74

9) IfIdoublethediameterofacircularregion,whathappenstoitsarea?

10) Ifan8-inch(diameter)pizzacosts$5,howmuchshoulda16-inchpizzacost?Justifyyourresult.

11) Havealookatthecirclesbelow.

a) Carefullymeasuretheperimeterofthesquarethatisinscribedinsidethefirstcircle.

b) Carefullymeasuretheperimeteroftheregularpentagoninscribedinsidethesecondcircle.

c) Carefullymeasuretheperimeteroftheregularhexagoninscribedinsidethethirdcircle.

d) TrueorFalse?Asthenumberofsidesoftheinscribedpolygongrows,sodoestheperimeterofthepolygon.

e) TrueorFalse?Ifweinscribeapolygonwithinfinitymanysides,thentheperimeterofthatpolygonwillbeinfinitelylong.Explainyourthinking.

f) Howcouldyouusethesemeasurementstogetanestimateforπ?Explain.

Morethan2000yearsagoArchimedesfoundapproximateboundsforπusinginscribedandcircumscribed(outside)polygonswith,getthis,120sides.WestilluseArchimedesboundstoday( 7

2271223

<< ).Theaverageofthesetwovaluesis

roughly3.1419whichiscorrecttothreedecimalplaces.Notbadfor350BC.

I N S C R I B E D P O L Y G O N S

Page 75: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

75

ClassActivity10: PlayingPythagoras

Ihavehadmyresultsforalongtime,butIdonotknowyethowIamtoarriveatthem.

CarlFriedrichGaussThePythagoreanTheoremisthoughttobealmost4000yearsold.TheBabylonians,theEgyptians,andtheChineseallknewit.Thatis,theyknewthatthesumoftheareaofthesquaresonthelegsofarighttriangleequalstheareaofthesquareonthehypotenuse,andtheyusedthisfactnumericallyinconstructionandcommerceandsurveying.

1) Carefullymeasuretheareasofthesquaresinthebelowexampletoseeifthistheoremseemstrue.

2) Whathappensifthetriangleisn’tarighttriangle?Isthesumofthesquaresonthe“legs”(shortersides)ofanobtusetrianglemoreorlessthanthesquareonthelongestside?Whathappensinanacutetriangle?Drawsomediagramstosee.

(Thisactivityiscontinuedonthenextpage.)

Page 76: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

76

ThefirstproofofthetheoremisattributedtoPythagorasofSamos(it’sinGreece)around600B.C.Sincethen,hundredsofdifferentproofshavebeencreated.Youaregoingtoexploreoneofthem.a) Theproofbeginswithanyrighttriangle.Carefullydrawyourownandlabelthe

lengthofthehypotenusec,thelengthofthelongerlegb,andthelengthoftheshorterlega.

b) Nowmakefourcongruentcopiesofyourtriangle,cutthemout,andarrangethem

intoaquadrilateralasshownbelow.

c) Justifythattheboundaryoftheouterquadrilateralisasquare.

d) Justifythattheinnerquadrilateralisasquare.

e) Nowgiveanalgebraicproofthatc2=a2+b2byusingthefactthatthefivepolygonsformthelargefigure(sotheareaformulasforthefivemustsumtotheareaformulaofthelargesquare).

f) Whatthingsgowrongifthetrianglesarenotrighttriangles?

Page 77: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

77

ReadandStudy

I’mverywellacquaintedtoowithmattersmathematical,Iunderstandequations,boththesimpleandquadratical,AboutbinomialtheoremI’mteemingwithalotofnews--

Withmanycheerfulfactsaboutthesquareofthehypotenuse.Gilbert&Sullivan,“ThePiratesofPenzance”

ThePythagoreanTheoremisoneofthemostwell-knownandmostimportanttheoremsofallofelementarymathematics.ItisnamedaftertheGreekmathematician,Pythagoras,andEuclidincludeditasthefittingendtovolumeoneofTheElements.InEuclid’swordsthetheoremsaysthis:

Inright-angledtrianglesthesquareonthesideoppositetherightangleequalsthesumofthesquaresonthesidescontainingtherightangle.

Euclidintendedtheword“square”tomeanthephysicalsquaredrawnonthehypotenuseorlegoftherighttriangle.Sohistheoremsaysthattheareaoftheyellowsquare(inthefigureabove)isequaltothesumoftheareasoftheredandbluesquareswhenABCisarighttriangle.Todaywemorecommonlyuseanalgebraicstatement:

Ifarighttrianglehaslegsoflengthsaandbandahypotenuseoflengthc,thenc2=a2+b2.

Noticethathere,a,b,andcarenumbersrepresentingthelengthsofthevarioussidesofthetriangle.Sonowtheword“square”carriesthealgebraicmeaningdenotedbytheexponenttwo.P R O O F S O F T H E P Y T H A G O R E A N T H E O R E M

Therearemany(atonecount,atleast367)proofsofthePythagoreanTheorem.YourecreatedoneoftheproofsintheClassActivity.YouwillbeaskedtoexploretwoothersaspartoftheHomeworkforthissection.

C B

A

Page 78: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

78

ThePythagoreanTheoremisanexampleofatheoremwhoseconverseisalsoatheorem.StatetheconverseofthePythagoreanTheorem.Ifyouhavetolookup“converse,”visittheglossaryanddoso.TheconverseofthePythagoreanTheoremgivesusawaytodiscoverwhetherornotatriangleisarighttriangleevenwhenweknownothingabouttheanglemeasuresofthetriangle.Forexample,supposeweknowthatthesidesofatriangleareexactly3,4,and5incheslong.Isthisarighttriangle?Let’ssubstitutethevalues3fora,4forb,and5forc(Howdoweknowthatthehypotenusemustbethesideoflength5?)andcheckoutthePythagoreanrelationshipc2=a2+b2.Does52=32+42?Iftheansweris“yes,”thenthetriangleisarighttriangle.

ConnectionstoTeaching

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstocreateanduserepresentationstoorganize,record,andcommunicate

mathematicalideas;toselect,apply,andtranslateamongmathematicalrepresentationstosolveproblems;andtouserepresentationstomodelandinterpret

physical,social,andmathematicalphenomena.NCTMPrinciplesandStandardsforSchoolMathematics,2000

Havingtwo(ormore)waystointerpretorrepresentamathematicalideaisanimportantcharacteristicofmathematicsforteaching.TheNCTMStandardsrecognizethisandcallforallelementarystudentsto“select,apply,andtranslateamongmathematicalrepresentationstosolveproblems.”Andso,asteachers,itisalsoimportantthatweunderstandamathematicalconceptfrommorethanonepointofviewinordertoassistourstudentstousedifferentrepresentationsofthatconcepttosolveproblems.G E O M E T R I C A N D A L G E B R A I C R E P R E S E N T A T I O N S

ThePythagoreanTheoremisonesuchideathatcanbeunderstoodfrommanyviewpoints:geometric,numeric,andalgebraic.Someofourstudentswillmoreeasilygraspthealgebraicapproachwhileotherswillpreferthemoreconcretegeometricornumericrepresentation.Asteachers,wemustmasterallrepresentationsinordertocarryoutourresponsibilitiestosupporteachstudent’slearning.

Page 79: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

79

Homework

Thedifferencebetweenasuccessfulpersonandothersisnotalackofstrength,notalackofknowledge,butratheralackinwill.

VinceLombardi

1) DoalltheitalicizedthingsintheReadandStudysection.

2) JamesAbramGarfield(1831-1881),thecountry’stwentiethpresident,createdthisproofofthePythagoreanTheoremin1876,whilehewasamemberoftheHouseofRepresentatives.FindGarfield’sproofbyusingthediagrambelowbyfindingformulasfortheareaofthetrapezoidintwodifferentways.Howdoeshisargumentfailifthetrianglesarenotrighttriangles?

3) Whenthelengthsofthesidesofarighttriangleareallintegersthethreenumbers(a,b,

c)areknownasaPythagoreanTriple.Explainwhy(3,4,5)isaPythagoreanTriple.WhichofthefollowingtriplesofnumbersarePythagoreanTriples?a)(4,5,6) b)(4,6,8) c)(6,8,10)

4) Supposeatrianglehassidesoflength8,15,and17.Isitarighttriangle?

5) Whatistheexactheightofanequilateraltriangleifallsidesareoflength10?Oflength3?Oflength4?Oflengths?

6) Aclosetis3feetdeep4feetwideand12feethigh.Findthedistancefromonecornerat

thefloortothediagonallyoppositecornerattheceiling.Youmightwanttohavealookataboxtohelpyouseewhattodohere.

a

b

c

c b

a

Page 80: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

80

SummaryofBigIdeas Althoughthismayseemaparadox,allexactscienceisdominatedbytheidea

ofapproximation. BertrandRussell

• Measurementisthecomparisonofanattributeofanobjecttoaunit.Tomeasure

meanstoseehowmanyoftheunitfitintotheobjectyouaremeasuring.

• Lengthisaone-dimensionalmeasurement;areaistwo-dimensional;andvolumeisthree-dimensional.

• Allmeasurementisapproximate.• Thechoiceofaunitisafundamentalpartofthemeasuringprocess.

• Areaisthenumberofsquareunitsittakestocoveranobject.Itisnotdefinedas“length

timeswidth,”and,infact,thatformulaworksonlyinafewlimitedcases.

• Formulasforthecalculationofareacanbeexplainedbythegeometryoftheobjectsbeingmeasured.Asateacher,youwillneedtohelpyourstudentstoseewhereformulascomefromandwhytheymakesense.

• πisdefinedasthenumberoftimesthediameterofacirclefitsintoitscircumference.Itisanirrationalnumber.

Page 81: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

81

ChapterThree

TheThirdDimension

Page 82: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

82

ClassActivity11: StrictlyPlatonic(Solids)

IfIhaveevermadeanyvaluablediscoveries,ithasbeenowingmoretopatient attention,thantoanyothertalent. SirIssacNewton

Hereisadefinitionforyoutostudy:Apolyhedronisafinitesetofpolygon-shapesjoinedpairwisealongtheedgesofthepolygonstoencloseafiniteregionofspacewithinonechamber.Thepolygon-shapedsurfacesarecalledfaces.Itisrequiredthatthesurfacebesimple(notmorethanonechamberisenclosed)andclosed(youcan’tgetinfromtheoutsidewithouttearingit).Thesegmentswherethepolygonsmeetarecallededges.Thepointswhereedgesintersectarecalledvertices.

1) Usethedefinitiontodecidewhichofthebelowimagesof3-dimensionalobjectsrepresentpolyhedra(“polyhedra”isthepluralformofpolyhedron)

Apolyhedronisregularifallofthefacesarethesamecongruent,regularpolygonandalloftheverticeshaveexactlythesamenumberofpolygons.

2) UsethepiecesofaFrameworksÔset(manufacturedbyPolydron)tobuildalloftheregularpolyhedra.Besystematicsoyoucangiveanargumentthatyouhavefoundthemall.(Polyhedraarenamedforthenumberoffacestheycontain;forexample,apolyhedronwithtenfaceswouldbecalledadecahedron.)

3) Canyoubuildapolyhedronthatusesonlyonetypeofcongruentregularpolygonbutisnotregular?Explain.

4) Seeifyoucanfindshortcutwaysofcountingthenumbersofverticesoredgesofregularpolyhedra.

Page 83: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

83

ReadandStudy

Everythingshouldbemadeassimpleaspossible,butnotonebitsimpler. AlbertEinstein

IntheClassActivityyouwereaskedtobuildmodelsoftheregularpolyhedra.Thesespecialobjects,alsocalledthePlatonicsolids,havebeenknownsincebeforethedaysoftheGreekmathematics.Approximationsoftheregularpolyhedraevenoccurinnature.Inparticular,thetetrahedron,cube,andoctahedronshapesallappearascrystalstructures.Wealsofindpolyhedralshapesamonglivingthings,suchastheCircogoniaicosahedrashownbelow,aspeciesofRadiolaria,whichisshapedlikearegularicosahedron.

(http://en.wikipedia.org/wiki/Platonic_solids)Manyvirusesalsohavetheshapeofaregularicosahedron.Viralstructuresarebuiltofrepeatedidenticalproteinsubunitsandapparentlytheicosahedronistheeasiestshapetoassembleusingthesesubunits.R E G U L A R P O L Y H E D R A

Netsaretwo-dimensionalfiguresthatcanbefoldedintothree-dimensionalobjects.Belowarenetsfortheregulartetrahedronandforthecube.Imaginehoweachfoldsuptomakethe3-dimensionalobject.

Page 84: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

84

Beforeyoureadfurther,gotothissiteandbuildyourselfoneofeachoftheregularpolyhedra.Youwillneedthemforthehomework.http://www.mathsisfun.com/platonic_solids.html

ConnectionstoTeaching

Studentsingrades3–5shouldexaminethepropertiesoftwo-andthree-dimensionalshapesandtherelationshipsamongshapes.Theyshouldbeencouragedtoreason

aboutthesepropertiesbyusingspatialrelationships. NCTMPrinciplesandStandards,2000

ThefollowingexcerptfromtheNCTMStandardsforGrades3–5Geometry(p.168)describestheimportanceofvisualizationandspatialreasoningastoolselementarystudentscanusetounderstandthepropertiesofgeometricobjectsandtherelationshipbetweenthesepropertiesandtheshapes.Readtheseparagraphsandstudytheexamples.Thenbuildthebuildingtheydescribe.S P A T I A L R E A S O N I N G

Usevisualization,spatialreasoning,andgeometricmodelingtosolveproblemsStudentsingrades3–5shouldexaminethepropertiesoftwo-andthree-dimensionalshapesandtherelationshipsamongshapes.Theyshouldbeencouragedtoreasonaboutthesepropertiesbyusingspatialrelationships.Forinstance,theymightreasonabouttheareaofatrianglebyvisualizingitsrelationshiptoacorrespondingrectangleorothercorrespondingparallelogram.Inadditiontostudyingphysicalmodelsofthesegeometricshapes,theyshouldalsodevelopandusementalimages.Studentsatthisagearereadytomentallymanipulateshapes,andtheycanbenefitfromexperiencesthatchallengethemandthatcanalsobeverifiedphysically.Forexample,“Drawastarintheupperright-handcornerofapieceofpaper.Ifyouflipthepaperhorizontallyandthenturnit180°,wherewillthestarbe?”Muchoftheworkstudentsdowiththree-dimensionalshapesinvolvesvisualization.Byrepresentingthree-dimensionalshapesintwodimensionsandconstructingthree-dimensionalshapesfromtwo-dimensional»representations,studentslearnaboutthecharacteristicsofshapes.Forexample,inordertodetermineifthetwo-dimensionalshapeinfigure5.15isanetthatcanbefoldedintoacube,studentsneedtopayattentiontothenumber,shape,andrelativepositionsofitsfaces.

Page 85: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

85

Fig.5.15.Ataskrelatingatwo-dimensionalshapetoathree-dimensionalshape

Studentsshouldbecomeexperiencedinusingavarietyofrepresentationsforthree-dimensionalshapes,forexample,makingafreehanddrawingofacylinderorconeorconstructingabuildingoutofcubesfromasetofviews(i.e.,front,top,andside)likethoseshowninfigure5.16.

Fig.5.16.Viewsofathree-dimensionalobject(AdaptedfromBattistaandClements1995,p.61)

Page 86: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

86

Homework

Gettingaheadinadifficultprofessionrequiresavidfaithinyourself.Thatiswhysomepeoplewithmediocretalent,butwithgreatinnerdrive,gomuchfurtherthan

peoplewithvastlysuperiortalent. SophiaLoren

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Writeoutthedetailsofamathematicalargumentthatthereareexactlyfiveregular

polyhedra.

3) Thefollowingpictureisoftengivenasanexampleofaregularicosahedron.Examinethepicturecarefullyanddeterminewhythispictureisclaimingtobesomethingthatitisnot.

4) Isitpossibletobuildapolyhedronwhereallofthefacesarecongruentregularpolygonsbutthepolyhedronisnotregular?Explain.

5) Usethefivemodelsyoubuilttofindaformulathatrelatesnumbersofvertices,edges,andfacesinregularpolyhedra.

6) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade

1TeachersGuide.Spend10-15minuteslookingthroughUnit5Module2Session2MysteryBagSorting.Makeupyourownmysteryforyourstudentstosolvesimilartothosegiveninthelesson.

Page 87: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

87

ClassActivity12: PyramidsandPrisms

Itisbettertoknowsomeofthequestionsthanalloftheanswers. JamesThurber

Therearetwospecialcategoriesofpolyhedrawewillexploreinthisactivity:pyramidsandprisms.Apyramidisapolyhedroninwhichonefaceiscalledthebaseandalloftheremainingfacesaretrianglesthatshareacommonvertex(calledtheapex).Apyramidisnamedfortheshapeofitsbase.Forexample,asquarepyramidisonewhosebaseisasquare.(Noticethatthebaseofapyramidneednothavetheshapeofaregularpolygon.Itcouldlooklikethefigurebelow,forexample.)

1) Youhavealreadybuiltapyramidwithanequilateraltrianglebase(thetetrahedron).In

yourgroup,sketchapyramidwithasquarebaseandanotherwithahexagonalbase.

2) Useyourpicturestohelpyoufindformulasforthenumberoffaces,thenumberofvertices,andthenumberofedgesinapyramidwhosebaseisann-gon.Thenprovethatyourformulaswillworkforallpyramids.

Aprismisapolyhedroninwhichtwoofthefaces(calledthebases)arecongruentandlie on parallel (non-intersecting) planes andtheremainingfacesareparallelograms.Theprismisalsonamedafteritsbase.Iftheparallelogramfacesarerectangular,theprismisarightprism.Iftheparallelogramfacesarenon-rectangular,theprismisanobliqueprism.

3) Which(ifany)oftheregularpolyhedraareprisms?Explain.

4) Sketchanobliqueprism.C O U N T I N G V E R T I C E S , E D G E S , A N D F A C E S

5) Sketchaprismwithatriangularbaseandonewithahexagonalbase.Thenuseyour

picturestofindformulasforthenumberoffaces,thenumberofvertices,andthenumberofedgesinaprismwhosebasesarecongruentn-gons.Provethatyourformulaworksinthecaseofallprisms.

Page 88: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

88

ReadandStudy

Themediocreteachertells.Thegoodteacherexplains.Thesuperiorteacherdemonstrates.Thegreatteacherinspires.

WilliamArthurWard

ThemostfamouspyramidsaretheEgyptianpyramids.Thesehugestonestructuresareamongthelargestman-madeconstructions.InAncientEgypt,apyramidwasreferredtoasthe"placeofascendance."TheGreatPyramidofGizaisthelargestinEgyptandoneofthelargestintheworldwithabasethatisover13acresinarea.ItisoneoftheSevenWondersoftheWorld,andtheonlyoneoftheseventosurviveintomoderntimes.TheMesopotamiansalsobuiltpyramids,calledziggurats.Inancienttimesthesewerebrightlypainted.Sincetheywereconstructedofmud-brick,littleremainsofthem.TheBiblicalTowerofBabelisbelievedtohavebeenaBabylonianziggurat.AnumberofMesoamericanculturesalsobuiltpyramid-shapedstructures.Mesoamericanpyramidswereusuallystepped,withtemplesontop,moresimilartotheMesopotamianzigguratthantheEgyptianpyramid.ThelargestpyramidbyvolumeistheGreatPyramidofCholula,intheMexicanstateofPuebla.Thispyramidisconsideredthelargestmonumenteverconstructedanywhereintheworld,andisstillbeingexcavated.Modernarchitectsalsousethepyramidshapeforbuilding.AnexampleistheLouvrePyramidinParis,France,inthecourtoftheLouvreMuseum.DesignedbytheAmericanarchitectI.M.Peiandcompletedin1989,itisa20.6meter(about70foot)glassstructurewhichactsasanentrancetothemuseum.Themostcommonexampleofaprisminthe“realworld”isitsoccurrenceinoptics,whereaprismisatransparentopticalelementwithflat,polishedsurfacesthatrefractlight.Theexactanglesbetweenthesurfacesdependontheapplication.Thetraditionalgeometricalshapeisthatofatriangularprismwithatriangularbaseandrectangularsides,andincolloquialuse"prism"usuallyreferstothistype.Prismsaretypicallymadeoutofglass,butcanbemadefromanymaterialthatistransparenttothewavelengthsforwhichtheyaredesigned.Aprismcanbeusedtobreaklightupintoitsconstituentspectralcolors(thecolorsoftherainbow).Theycanalsobeusedtoreflectlight,ortosplitlightintocomponentswithdifferentpolarizations.

Page 89: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

89

ConnectionstoTeaching

Itisthesupremeartoftheteachertoawakenjoyincreativeexpressionandknowledge.

AlbertEinsteinElementarystudentsbegintheirstudyof3-dimensionalshapesinthefirstandsecondgrades.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade1TeachersGuide.Spend10-15minuteslookingthroughUnit5Module2Sessions4and5.Whatideasaboutprismsandpyramidsareemphasizedinthesesections?NowlookattheHomelinksectionfromSession5.Examinequestions4and5carefully.Determineseveralreasonswhyyourchosenfiguredoesnotbelong.Inquestion5,determineatleasttwodifferentfiguresonwhichtoplacethe“X”.

Homework

Iattributemysuccesstothis:Inevergaveortookanyexcuse. FlorenceNightingale

1) DotheproblemsintheConnectionssection.

2) Makeamathematicalargumentfortheformulasyoufoundforthenumberoffaces,the

numberofvertices,andthenumberofedgesinapyramidwhosebaseisann-gon.

3) Makeamathematicalargumentfortheformulasyoufoundforthenumberoffaces,thenumberofverticesandthenumberofedgesinaprismwhosebasesarecongruentn-gons.

4) Provethattheformulayoufoundrelatingthevertices,edges,andfacesofaregularpolyhedraalsoholdsforthen-gonalpyramidandforthen-gonalprism.

5) Thefollowingaredescriptionsofpyramidsandprisms.Identifytheprismorpyramidandsketchanet.a) Apolyhedronwith5facesand9edges.b) Apolyhedronwithtwohexagonalfacesandtheremainingfacesarerectangles.c) Apolyhedronwith12edgesand8verticies.d) Apolyhedronwith7facesand7verticies.

Page 90: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

90

ClassActivity13: SurfaceArea

Mathematicsmaybedefinedastheeconomyofcounting.Thereisnoprobleminthewholeofmathematicswhichcannotbesolvedbydirectcounting.

ErnstMach

1) Use14interlockingunitcubestobuildthe3-dimensionalfigurepictured.

a) Whatisthesurfaceareaofthisobject?

b) Whatisitsvolume?

c) Isthisapolyhedron?Explain.

2) Whatareallthepossiblevaluesforthesurfaceareaoffiguresmadewith14interlocked

cubes?Explain.

Page 91: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

91

ReadandStudy

Numberrulestheuniverse. Pythagoras

Surfaceareaisthemeasureoftheboundaryofathree-dimensionalobjectinthesamewaythatperimeteristhemeasureoftheboundaryofatwo-dimensionalobject.Andjustlikewemeasureperimeterbyaddingupthelengthsofeachsectionoftheboundaryoftheobject,wemeasuresurfaceareabyaddinguptheareasofeachfaceoftheboundaryoftheobject.Forexample,supposewehavearectangularprismthatis3cmlongby5cmwideby8cmtall.Takeaminutetosketchthatfigure.I D E A O F S U R F A C E A R E A

Thismeansthatwehavetwofacesthatarerectanglesthatare3cmby5cm(andsohaveanareaof15squarecmor15cm2),twofacesthatarerectanglesthatare5cmby8cm(andsohaveanareaof40squarecmeach),andtwofacesthatare3cmby8cm(andsohaveanareaof24squarecmeach).Thenthesurfaceareaoftheprismis15+15+40+40+24+24=158squarecm.(Checkourwork.)Noticethatweusesquareunitstomeasuresurfaceareasinceitisameasureoftwo-dimensional(flat)space.Thereisnoneedtodevelopcompletelynewformulasforsurfacearea.Wecanusewhicheverareaformulasareappropriategiventheshapesthatmakeupthefacesoftheobject.

Page 92: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

92

ConnectionstoTeaching

Theimportantthingisnottostopquestioning.Curiosityhasitsownreasonforexisting.

AlbertEinsteinElementarystudentscanuseinterlockingcubes(suchastheonesweusedintheClassActivity)tocreate“buildings”andthenusethosebuildingstobuildanunderstandingofsurfaceareathroughdrawingthebuildingsfromvariousview-points.Forexample,thebuildingbelowcanbeviewedfromthetop,front,andside.

Buildyourownbuildingoutof5cubes.Thensketchthefigureanditscorrespondingtop,front,andsideviews.Herearethetop,front,andsideviewsofanotherbuilding.Sketchapossiblebuildingwiththeseviews.

Howdotheseactivitiesrelatetothesurfaceareaofthebuilding?Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade5TeachersGuide.Spend10-15minuteslookingthroughUnit1Module2Session4.Theendofthelessonlistsseveralquestionsforyoutoaskyourstudents.Thinkuptwomorequestionsyoucouldaskyourstudentsabouttheactivity.

top front right side

top front right side

Page 93: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

93

Homework

Courageandperseverancehaveamagicaltalisman,beforewhichdifficultiesdisappearandobstaclesvanishintoair.

JohnQuincyAdams

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Supposeyouareaskedtobuildanobjectusinginterlockingunitcubesthathasasurfaceareaof36squareunits.a) Howmanyunitcubesataminimumwouldyouneed?b) Whatisthemaximumnumberofunitcubesyoucoulduse?c) Forwhatthree-dimensionalshapewillthevolumebegreatestforafixedsurface

area?Makeaconjecture.

3) Belowisanetforatetrahedron.Ifeachequilateraltrianglehassidesoflength5cm,whatisthesurfaceareaofthetetrahedron?(Thoselittleextrapartsaretabsthathelpyoutotapeittogether–don’tincludethose.)

4) Whatamountofpaper(area)wouldyouneedtomakeanetforthecubewithanedgelengthof7cm?(Ignoreanypaperneededfortabs.)

5) Sketchanetforarectangularprismthatis4cmby5cmby7cm.Whatisthesurfaceareaofthatprism?

Page 94: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

94

ClassActivity14: NothingButNet

Puremathematicsis,initsway,thepoetryoflogicalideas. AlbertEinstein

1) Figureouthowtobuildapapermodelofarightcylinderwitharadiusof3cmanda

heightof10cm.Useyourmodeltohelpyoufindaformulaforthesurfaceareaofacylinder.

N E T S F O R C Y L I N D E R S A N D P Y R A M I D S

2) Buildapapermodelofapyramidthathasa6cmby6cmsquarebaseandaheightof4

cm.Whatisitssurfacearea?

Page 95: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

95

ClassActivity15: BuildingBlocks

Measurewhatismeasurable,andmakemeasurablewhatisnotso. Galileo

Volumeisameasureoftheamountofspaceenclosedbyathree-dimensionalobject.Onewaytodefinevolumeisasthenumberofcubes(cubicunits)thatittakestofilltheenclosedspace.Usingthisdefinition,wecanmeasurevolumebycarefullyestimatingthenumberofcubesthatfitwithintheobject.Someobjectshaveformulasthatwillhelpustocomputevolume.Whatisaformulaforthevolumeofarectangularprismwithlengthl,widthw,andheighth?Whydoesitmakesense?Next,youaregoingtobuildthreeobjectsoutofsmallwoodencubes(withhalf-inchedges)andlargewoodencubes(withone-inchedges).Followthestepsbelow.StepA:Buildsomethingoutof10smallwoodencubes.We’llcallthisfigure,“ObjectA.”StepB:Using10largewoodencubes,buildalargerversionofObjectA.We’llcallthisfigure,“ObjectB.”StepC:Usingasmanysmallcubesasnecessary,reproduceObjectB.(ItshouldbethesamesizeandshapeasObjectB,butbuildoutofsmallcubesinsteadoflargeones.)We’llcallthisfigure,“ObjectC.”

1) HowmuchtallerisObjectBthanObjectA?

2) HowmuchbiggeristhesurfaceareaofObjectBcomparedtoObjectA?

(Thisproblemcontinuesonthenextpage.)

Page 96: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

96

3) HowmuchbiggeristhevolumeofObjectBcomparedtoObjectA?

4) WhatistherelevanceofObjectCtoansweringthesequestions?

5) WhatifIgaveyoualargerblockthatis3timesthelengthofthesmallcube;howwouldyouranswersto1-3change?Whatabout4timesthelength?

6) WhatifIgaveyouasmallerblockthatis½timesthelengthofthesmallcube;howwouldyouranswersto1-3change?

Page 97: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

97

ReadandStudy

Mathematicsisnotacarefulmarchdownawell-clearedhighway,butajourneyintoastrangewilderness,wheretheexplorersoftengetlost.

W.S.AnglinIntheClassActivityyoutalkedaboutwhyitmadesensetocalculatethevolumeofarectangularprismbymultiplyingthelengthloftheprismbythewidthwoftheprismbytheheighthoftheprism(V=l´w´h).Theideahereisthatwecanthinkofaprismaslayersofthebasestackedoneuponthenext.Sovolumeistheareaofthebasemultipliedbytheheight(V=AreaofBase×h).Havealookatthepicturebelowtoseewhatwemean.

Willthatsameideaworkforacylinder?Isitsvolumetheareaofitsbasemultipliedbyitsheight?Makeasketchofacylinderanduseittohelpyoutoexplainyourthinking.I D E A S O F V O L U M E

V O L U M E S O F P R I S M S A N D C Y L I N D E R S

ConnectionstoTeaching:

Thecureforboredomiscuriosity.Thereisnocureforcuriosity. DorothyParker

Childrenoftenbegintheirexplorationsofvolumebydeterminingthevolumeofvariousrectangularboxes.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade5TeachersGuide.Spend10-15minuteslookingthroughUnit1Module1Sessions4and5.Howdoesthisactivityhelpstudentstounderstandvolume?

Page 98: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

98

Homework

Whentheworldsays,"Giveup,"Hopewhispers,"Tryitonemoretime."

AuthorUnknown

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoallthoseproblemsintheConnectionssection.

3) Whenyoudoublethelengthofallthesidesofacube,whathappenstoitsvolume?Whydoesthishappen?Whathappenswhenyoutriplethelength?

4) Belowwehavesketchedanetforacube.a) Buildapapermodelofacubethatistwiceaslongineachlineardimension.b) Buildapapermodelofacubethathastwicethesurfaceareaofthecubesuggested

bythenet.c) Buildapapermodelofacubethathastwicethevolumeofthecubesuggestedby

thenet.

Page 99: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

99

ClassActivity16: VolumeDiscount

ThelawsofnaturearebutthemathematicalthoughtsofGod.Euclid

1)Reasonwithunitcubestocreatevolumeformulasforthefollowingobjects:

a) arectangularprism

b) atriangularprism

c) acylinder1) Userice--notformulas--toanswerthenextfourquestions:

a) Howdoesthevolumeofthesquarepyramidcomparetothevolumeofthesquareprism?Usethisinformationtocreateavolumeformulaforasquarepyramid.

(Thisactivitycontinuesonthenextpage.)

Page 100: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

100

b) Howdoesthevolumeofthetriangularpyramidcomparetothevolumeofthetriangularprism?Usethisinformationtocreateavolumeformulaforatriangularpyramid.

c) Howdoesthevolumeoftheconecomparewiththevolumeofthecylinder? Usethisinformationtocreateavolumeformulaforacone.

d) Howdoesthevolumeoftheconecomparewiththevolumeofthesphere?Usethisinformationtocreateavolumeformulaforasphere.

Page 101: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

101

ReadandStudy

Ifyouwouldbearealseekeraftertruth,itisnecessarythatatleastonceinyourlifeyoudoubt,asfaraspossible,allthings. ReneDescartes

IntheClassActivityyouobservedthatthevolumeofaprismisaboutthreetimesthevolumeofapyramidwiththesameheightandbase,andthatthevolumeofacylinderisthreetimesthevolumeofaconewiththesameheightandradius.Itturnsoutthatfortheidealobjects,thefactorofthreeisexactlycorrect.Thesenicerelationshipsmakeformulasforvolumerelativelystraightforwardifwebuildonformulaswealreadyknow.C A P A C I T Y

InanearlierClassActivity,youexplainedwhyitmakessensethatthevolumeofarectangularprismisV=(l´w´h).Now,sinceyouhaveseenthatthisvolumeisthreetimesthevolumeofthepyramidwiththesameheightandrectangularbase,thevolumeofthepyramidshouldbegivenbytheformulaV= 13 (l´w´h).

Wecangeneralizethesetwoformulassothattheyapplytoallprismsandallpyramids(andtoallcylindersandallcones).Noticeinthevolumeformulafortherectangularprismthatl´wisjusttheareaoftherectangularbase.Ifthebasehasadifferentshape,wejustneedtousetheappropriateareaformulatofindtheareaofthebaseandthenmultiplybytheheighttofindthevolumeoftheprism:V=(AreaofBase)´hforallprismsandcylinders.

FigurefromG.S.Rehill’sInteractiveMathsSeries.

Page 102: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

102

Likewise,wecanuseV= 13 (Areaofbase´h)forallpyramidsandcones.

Thesphereisanotherthree-dimensionalshapethathasawell-knownvolumeformula, 34

3V r=

,whereristheradiusofthesphere.Thisformulacomesfromcalculus–sowedon’thavethemachinerytoproveitworks–howeveryou(andyourstudents)canobservethattheformulaseemsplausibleusingthewaterexperiment.Here’stheidea.Sinceacylinderhasvolumeπr2×h,andthecylinderyouusedintheClassActivityhasaheightof2r,thismeansthatthecylinderyouusedtopourwaterhasavolumeof2πr3.Takeaminutetocarefullythinkthisthrough.V O L U M E S O F P Y R A M I D S , C O N E S , A N D S P H E R E S

Now,sinceaconehasonethirdthevolumeofacylinderwiththesamebase,theconeyouusedmusthaveavolumeof1/3×(2πr3).Soifittakestwoconestofillasphereitthewaterpouringexperiment,thenitmakessensetoconjecturethatthevolumeofaspheremustbegivenbytheformula, 34

3V r= .Makesurethat

youunderstandwhatwe’resayinghere.Thecorrespondingformulaforthesurfaceareaofasphereis 24SA r= .

Ofcourse,therearemanythree-dimensionalobjectsforwhichwedonothaveformulastocalculatetheirvolume.Forallofthese,wecanusethe“capacity”definitionthatwasdiscussedintheClassActivity.Whenwemeasurevolumeusingcapacitywecommonlyuseunitslikethecup,thequart,thegallon,theliter,etc.Whenwefindvolumeusingaformulawecommonlyuseunitslikecubicinches,cubicyards,andcubiccentimeters.Volumeisathree-dimensionalmeasuresotheunitsusedwillallbecubicunits.

Page 103: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

103

ConnectionstoTeachingPuremathematicsis,initsway,thepoetryoflogicalideas.

AlbertEinsteinChildreningradethreeshouldhaveexperiencesmeasuringvolumesusingwaterandweighingphysicalobjects.HerearetherelevantCommonCoreStateStandards.Readthem.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Ingrade5,studentsshouldlearntodomanyofthethingswehavetalkedaboutinthelasttwosections.Theyshouldthinkofvolumemeasurementasboththenumberofcubicunitsrequiredtofilla3-dimensionalobject,andasthecapacityoftheobject.Theyshouldunderstandhowtothinkaboutthevolumeofaprismandmakesenseofsomevolumeformulas.YouwillfindtherelevantCommonCoreStateStandardsforgrade5below.Readthem.Whatdotheymeanwhentheysaythatstudentsshouldrecognizevolumeas“additive?”

CCSSGrade3:Solveproblemsinvolvingmeasurementandestimationofintervalsoftime,liquidvolumes,andmassesofobjects.

1. Tellandwritetimetothenearestminuteandmeasuretimeintervalsinminutes.Solvewordproblemsinvolvingadditionandsubtractionoftimeintervalsinminutes,e.g.,byrepresentingtheproblemonanumberlinediagram.

2. Measureandestimateliquidvolumesandmassesofobjectsusingstandardunitsofgrams(g),kilograms(kg),andliters(l).Add,subtract,multiply,ordividetosolveone-stepwordproblemsinvolvingmassesorvolumesthataregiveninthesameunits,e.g.,byusingdrawings(suchasabeakerwithameasurementscale)torepresenttheproblem.

Page 104: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

104

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

CCSSGrade5:Geometricmeasurement:understandconceptsofvolumeandrelatevolumetomultiplicationandtoaddition.

1. Recognizevolumeasanattributeofsolidfiguresandunderstandconceptsofvolumemeasurement.

a. Acubewithsidelength1unit,calleda“unitcube,”issaidtohave“onecubic

unit”ofvolume,andcanbeusedtomeasurevolume.

b. Asolidfigurewhichcanbepackedwithoutgapsoroverlapsusingnunitcubesissaidtohaveavolumeofncubicunits.

2. Measurevolumesbycountingunitcubes,usingcubiccm,cubicin,cubicft,and

improvisedunits.

3. Relatevolumetotheoperationsofmultiplicationandadditionandsolverealworldandmathematicalproblemsinvolvingvolume.

a. Findthevolumeofarightrectangularprismwithwhole-numbersidelengths

bypackingitwithunitcubes,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengths,equivalentlybymultiplyingtheheightbytheareaofthebase.Representthreefoldwhole-numberproductsasvolumes,e.g.,torepresenttheassociativepropertyofmultiplication.

b. ApplytheformulasV=l×w×handV=b×hforrectangularprismstofind

volumesofrightrectangularprismswithwholenumberedgelengthsinthecontextofsolvingrealworldandmathematicalproblems.

c. Recognizevolumeasadditive.Findvolumesofsolidfigurescomposedoftwo

non-overlappingrightrectangularprismsbyaddingthevolumesofthenon-overlappingparts,applyingthistechniquetosolverealworldproblems.

Page 105: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

105

Homework

Toclimbsteephillsrequiresaslowpaceatfirst. WilliamShakespeare

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DotheitalicizedthingsintheConnectionssection.

3) Supposeyouhavearightcircularcylinderwithheighthandradiusrandanoblique

circularcylinderwithheighthandradiusr.Dothesetwocylindershavethesamevolume?Compareastraightstackofpenniestoa“slanted”stacktosee.(Reallydoit.)Ineachcase,howisheightmeasured?

4) Theclosetinmylivingroomhasanoddshapebecausemyapartmentisonthetopfloorofahousewithaslantedroof.Theclosetis6feettallinfrontbutonly4feettallinback.Itis3feetdeepand12feetwide.

a) Buildascaleddownpapermodelofmycloset.Reallydothis.Itwillhelpyouwiththerestofthisproblem.

b) Howmanycubicfeetofstoragedoesithold?c) Iwanttopainttheinsidewallsandceilingofmycloset.Howmanysquarefeet

willIneedtopaint?

5) Howmanycubicfeetofwaterdoesasemi-cylindrical(halfacylinder)troughholdthatis10feetlongby1footdeep?Howmanycubicinchesisthat?

6) Iused1500cubicinchesofheliumtofillmyballoon.Assumingmyballoonisasphere,tothenearesttenthofaninch,whatisitsdiameter?Whatisitssurfacearea?

7) Amovietheatersellspopcorninaboxfor$2.75andpopcorninaconefor$2.00.Thedimensionsoftheboxandtheconearegiven.Whichisthebetterbuy?Explain.

8) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade

5TeachersGuide.Spend10-15minuteslookingthroughUnit6Module3Session4.Howdoesthisactivityfurtherstudents’understandingofvolume?

Page 106: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

106

ClassActivity17: VolumeChallengeIfpeopledonotbelievethatmathematicsissimple,itisonlybecausetheydonot

realizehowcomplicatedlifeis.JohnLouisvonNeumann

1) Yourgroupshouldworktogethertobuildpapermodelsofeachofthefollowingobjects

insuchawaythatthevolumeofeachis60cm3.(Otherthanthat,youmayuseanydimensionsyoulike.)

a) Cylinderb) Rectangularprismthatisnotacubec) Pyramidwithasquarebased) Prismwithanequilateraltrianglebase

2) Findthesurfaceareaofeachoftheobjectsyoubuiltin1)above.

B U I L D I N G M O D E L S T O S P E C I F I C A T I O N

Page 107: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

107

ReadandStudyandConnectionstoTeaching

It'snotthatI'msosmart;it'sjustthatIstaywithproblemslonger. AlbertEinstein

Bythetimetheyreachupperelementaryschool,studentscansolvemanypracticalproblemsingeometry.Howeverthesestudentsarenotreadytosimplyapplyformulastosolveproblems;insteadtheyneedtousemodelsinordertomakesenseofproblems.Astheirteacher,yourjobwillbetomakesurethatchildreninyourclassesbuildandhandleappropriatemodels.NoticethattheCommonCoreStateStandardsforgrade6explicitlyrequirethatstudentsusehands-onmodelstoexploreideas.Studentsareaskedtocuttrianglesandothershapesapart,todrawpictures,topackspaceswithunitcubes,tousethecoordinateplane,andtobuildandusenets.Readthesestandards.Havewedoneofthesethingsinthisbooksofarthisterm?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

CCSSGrade6:Solvereal-worldandmathematicalproblemsinvolvingarea,surfacearea,andvolume.

1. Findtheareaofrighttriangles,othertriangles,specialquadrilaterals,andpolygonsbycomposingintorectanglesordecomposingintotrianglesandothershapes;applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

2. Findthevolumeofarightrectangularprismwithfractionaledgelengthsbypackingitwithunitcubesoftheappropriateunitfractionedgelengths,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengthsoftheprism.ApplytheformulasV=lwhandV=bhtofindvolumesofrightrectangularprismswithfractionaledgelengthsinthecontextofsolvingreal-worldandmathematicalproblems.

3. Drawpolygonsinthecoordinateplanegivencoordinatesforthevertices;usecoordinatestofindthelengthofasidejoiningpointswiththesamefirstcoordinateorthesamesecondcoordinate.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

4. Representthree-dimensionalfiguresusingnetsmadeupofrectanglesandtriangles,andusethenetstofindthesurfaceareaofthesefigures.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

Page 108: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

108

Homework

Theelevatortosuccessisnotrunning;youmustclimbthestairs.ZigZiglar

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Atriangleonacoordinateplanehasverticesat(2,0),(7,0)and(7,8).

a) Sketchthepolygononacoordinateplane.b) Whatisthelengthofthehypotenuse?c) Whatistheareaofthepolygon?d) WhatCommonCoreStateStandardisaddressedbythisproblem?

3) AreplicaoftheGreatPyramidstands2feettallandis3.15feetlongonaside(ithasa

squarebase).a) Approximatelyhowmuchvolumedoesthisreplicatakeup?Usethemodelyoubuilt

intheClassActivitytohelpyoutothinkaboutthisproblem.b) Whatisthesurfaceareaofthereplica?c) Supposethescaleofthereplicatotherealthingisinis1footto240feet.Whatis

thevolumeofGreatPyramid?Whatisitssurfacearea?d) WhichoftheCommonCoreStateStandardsaremetbythisseriesofproblems?

Page 109: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

109

SummaryofBigIdeas

Man’smind,oncestretchedbyanewidea,neverregainsitsoriginaldimensions. OliverWendellHolmes

• Thereareexactlyfiveregularpolyhedra–andchildrencanunderstandwhythisisso.

• Surfaceareaisameasureofthesumofareasofthefacesofathree-dimensionobject.

Itisthenumberofsquareunitsittakestocoverthefacesoftheobject.Aunitofsurfaceareaisflatlikethis:

• Volumeisameasureofthenumberofcubicunitsittakestofillathreedimensionalobject.Aunitofvolumeisthree-dimensionalandlookslikethis:

• Volumecanalsobemeasuredbytheamountofliquid(orsand)ittakestofillathreedimensionalobject.

• Thevolumeofaprismorcylindercanbefoundbycomputingtheareaofthebaseandmultiplyingthatbyitsheight(thenumberoflayersofthebase).Thisideaworksforbothrightandobliqueobjects.

• Ittakesthevolumeofthreepyramidstofillaprismwiththesamebaseandheight,andittakesthevolumeofthreeconestofillacylinderwiththesamebaseandheight.

• Childrenneedtohavemanyyearsofexperiencesbuildingandusingavarietyofmodels.

Page 110: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

110

ChapterFour

Transformations,Tessellations,andSymmetries

Page 111: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

111

ClassActivity18: Slides

Forthethingsofthisworldcannotbemadeknownwithoutaknowledgeofmathematics.

RogerBacon

Informally,thinkofatranslationasamotionwhich“slides”theentireplaneinonedirectionaparticulardistance.Inordertotranslateanobjectwemustknowhowfartoslideitandwemustknowthedirectiontouse.Thesetwopiecesofinformationareusuallygiventousintheformofatranslationvector(alsocalledatranslationarrow).

1) OnthesquaregridbelowyouaregiventranslationvectorRSandseveralgeometricobjectsontheplane.ShowwhereeachobjectendsupaftertheplaneistranslatedbyvectorRS.

2) Hereisadefinitiontostudy:AtranslationAA’isarigidmotionoftheplanethattakesAtoA’,andforallotherpointsPontheplane,PgoestoP’wherevectorPP’andvectorAA’havethesamelengthanddirection.Discuss,inyourgroups,howthisdefinitionfitswiththeaboveidea.

3) Whatrelationshipsdoyouseebetweentheoriginalfiguresandtheirtranslatedimages?

Betweentheobjects,theirimages,andthetranslationvector?Makeasmanyconjecturesasyoucanabouttranslations.

4) IfwetranslatetheplaneusingRSandthenperformasecondtranslation,say,ST,whatistheresultingrigidmotion?Explain.

H

K

JC

IF G

S

D E

A RB

Page 112: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

112

ReadandStudy

Onlythecuriouswilllearnandonlytheresoluteovercometheobstaclestolearning.Thequestquotienthasalwaysexcitedmemorethantheintelligencequotient.

EugeneS.WilsonTransformationsareabigcategoryofmotionswecanapplytothepointsofaplanewhichcauseobjectsintheplanetochangetheirposition,ortheirsize,oreventheirshape.Sometransformations,likescaling,onlychangethesizeofanobject.Othertransformations,likeashearingcanchangeboththesizeandshapeofanobject.Theobjectthatistheresultofatransformationappliedtoanobjectiscalledtheimageoftheobjectunderthattransformation.Forexample,therectanglebelowisenlarged1½timestoproducethescaledimageandisshearedhorizontallytoproducetheshearedimage.

Inthisandthenexttwosections,wewillstudythreetransformationsthatchangethepositionofanobjectbutdonotchangeitssizeoritsshape.Thesetypesoftransformationsarecalledrigidmotions.R I G I D M O T I O N S

T R A N S L A T I O N S

Rigidmotionsarethetransformationsoftheplaneforwhichthedistancebetweenpointsispreserved.Inotherwords,iftwopointswereacertaindistanceapartbeforethemotion,thentheyarestillthatsamedistanceapartafterthemotion.(Whydoesthename“rigidmotion”makesense?)Usingtheideaofrigidmotions,wecanmorepreciselydefinecongruence:twoobjectsarecongruentifthereexistsaseriesofrigidmotionswhereoneobjectistheimageoftheother.Rigidmotionsincludetranslations,rotations,andreflections.Eachofthesetransformationswillmovetheplaneinauniqueway.Translationsslidetheplaneaparticulardistanceinaparticulardirection.Rotationsturntheplaneeitherclockwiseorcounterclockwisearoundafixedcenter.Reflectionsmovetheplanebyflippingitacrossaline.Itturnsoutthatallrigidmotionsoftheplanearecombinationsofjustthesemoves.Asyoudiscoveredintheclassactivity,atranslationvectorisusedtodescribethedistanceanddirectioneachpointismovedinatranslation.Iftheendpointsofthevectoraregivenascoordinatesonasquaregrid,wecandescribethedistanceanddirectioneachpointismovedassomanyunitsupordownandsomanyunitsrightorleft.UsethislanguagetodescribethetranslationvectorRSonthepreviouspage.

sheared image

scaled imageoriginalrectangle

Page 113: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

113

Weuseastandardnotationtolabeltheverticesoftheimageofanobjectunderatranslation.Forexample,iftheoriginalobjectistherectangleABCD,thenitsimageislabeled DCBA .Herevertex A oftheimagecorrespondingtovertexAoftheoriginalrectangle,vertex B tovertexB,etc.ThepointsAand A arecalledcorrespondingpoints.ThesidesABand BA arecalledcorrespondingsides.

ConnectionstoTeaching

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstoapplytransformationsandusesymmetrytoanalyzemathematical

situations. NCTMPrinciplesandStandardsforSchoolMathematics,2000

Studentsintheelementarygradescanpredictanddescribetheresultsofsliding,flipping,andturningtwo-dimensionalshapes.Variouselementarycurriculausedifferentapproaches.Somemakeuseofmanipulativesandothershavestudentscutoutshapesinordertophysicallyperformtheslide,flip,orturntheshapes.

Homework

Youmaybedisappointedifyoufail,butyouaredoomedifyoudon’ttry.BeverlySills

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Decideifeachofthestatementsabouttranslationsistrueorfalse.Iftrue,givea

mathematicalexplanation;iffalse,explainwhyorgiveacounterexample.a) Correspondingsidesofanobjectanditstranslatedimagearealwaysparallel.b) If DCBA istheimageofABCDunderatranslation,thenthelinesegment

joiningvertexAtovertex A isthetranslationvector.c) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafteratranslation.d) IfAand A andBand B arecorrespondingpointsunderatranslation,itis

possibleforthelines AA and BB tointersect.e) Everypointintheplanemovestoanewpositionunderatranslation,i.e.,there

arenofixedpointsinatranslation.f) Underarotation,linesegmentsthatjoinpointstotheirimagesareallcongruent.

Page 114: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

114

3) Belowyouwillfindacoordinategrid.Applythefollowingthreetranslationstoatrianglewithverticesinitiallylocatedat(0,0),(-2,-3),and(3,-3).Whatisashortcutwayofdoingpartc)?

a) up5,left3 b)down2,right4 c)up5,left3followedbydown2,right4

Page 115: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

115

ClassActivity19: Turn,Turn,Turn

Theessenceofmathematicsisnottomakesimplethingscomplicated,buttomakecomplicatedthingssimple.

S.GudderInformally,arotationinvolves“turning”theplaneaboutafixedpoint.Inordertospecifyarotation,weneedanangle(withdirection,clockwiseorcounterclockwise)andafixedpoint(calledthecenteroftherotation).Ineachcaseyourgroupshouldusetracingpaperandacompassandprotractortofigureoutwhereeachshapeendsupafterthegivenrotation.(Therearequestionsonthenextpagetoo.)

1) Rotatetheplane60degreescounterclockwiseaboutpointA. A

2) Rotatetheplane140degreesclockwiseaboutpointP.

P.

(Thisactivityiscontinuedonthenextpage.)

Page 116: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

116

3) Rotatetheplane90degreesclockwiseaboutapointQintheexactcenterofthesquare.

4) Studythethreerotationsinthisactivity.Whatrelationshipsdoyouseebetweenthe

originalfiguresandtheirrotatedimages?BetweencorrespondingpointsandthepointP?Makeasmanyconjecturesasyoucanaboutrotations.

5) Hereisthedefinition.Studyittoseehowitfitswiththeideaofrotation.ArotationaboutapointPthroughanangleqisatransformationoftheplaneinwhichtheimageofPisPand,iftheimageofAis 'A ,then PA @ 'PA and 'm APA =q.PointPiscalledthecenteroftherotation.

Page 117: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

117

ReadandStudy

Wedon’tseethingsastheyare.Weseethingsasweare. AnaisNin

Arotationisa“turn”aboutagivenpointcalledthecenterthroughagivenangleofturn.(Theturncanbemadeclockwiseorcounterclockwise.Thisistypicallyindicatedintheproblem.)R O T A T I O N S

Formally,arotation(aboutapointPthroughanangleq)isatransformationoftheplaneinwhichtheimageofPisPand,iftheimageofAis 'A ,thenPA @ 'PA and 'm APA =q.PointPiscalledthecenteroftherotation.HavealookatthefollowingillustrationofthemotionofturningtriangleABCclockwise240°aroundpointP.

NoticehoweachvertexofthetrianglemovesalongacirclewhosecenterisP.Whatpartofthedefinitionsaysthatthismusthappen?Howcanweseethe240°angleinthepictureabove?HowarethesegmentsAPand PA related?ThesegmentsBPand PB ?ThesegmentsCPandPC ?

C'

A'B'

B

A

C

P

Page 118: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

118

Homework

Courageandperseverancehaveamagicaltalisman,beforewhichdifficultiesdisappearandobstaclesvanishintoair.

JohnQuincyAdams

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Usethegridtorotatetheplane90degreescounterclockwiseaboutpointP.Showtheimageofthefiguresaftertherotation.

K

PJ

H

IG F

AD E

C

B

Page 119: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

119

3) Decideifeachofthestatementsaboutrotationsistrueorfalse.Iftrue,giveamathematicalexplanation;iffalse,explainwhyorgiveacounterexample.

a) Correspondingsidesofanobjectanditsrotatedimagearealwaysparallel.b) If DCBA istheimageofABCDunderarotation,thenthelinesegmentjoining

vertexAtovertex A goesthroughthecenteroftherotation.c) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafterarotation.d) IfAand A andBand B arecorrespondingpointsunderarotation,itispossible

forthelines AA and BB tointersect.e) Everypointintheplanemovestoanewpositionunderarotation,i.e.,thereare

nofixedpointsinarotation.f) Underarotation,linesegmentsthatjoinpointstotheirimagesareallcongruent.

Page 120: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

120

ClassActivity20: ReflectingonReflecting

Mathematics,rightlyviewed,possessesnotonlytruth,butsupremebeauty–abeautycoldandaustere,likethatofsculpture.

BertrandRussellInformally,areflectionflipstheentireplaneaboutagivenlineresultinginitsmirrorimage.OfficiallyareflectioninalinelisarigidmotionoftheplaneinwhichtheimageofapointPonlisP,andifAisapointnotonlandiftheimageofAis 'A ,thenlistheperpendicularbisectorof

'AA .

1) Studythatdefinition.Makesureeveryoneinyourgroupunderstandshowitfitswiththeideaofareflection.SeeifyoucanusethedefinitiontohelpyoutosketchthereflectionoftriangleABCinlinel.

l

(Thisactivityiscontinuedonthenextpage.)

Page 121: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

121

2) Carefullyusethedefinitionofareflectiontosketchthereflectionofthetrapezoidshown.Firstyouwillreflectitinlinemandthenyouwillreflectwhatyougetinlinen(thatisparalleltolinem).

m n

Whatisthesinglerigidmotionthatwouldtaketheinitialfiguredirectlytothefinalfigure?Explain.

3) Whatwouldhappenifthelinesintersected?Tryitandthenuseyourobservationstomakeaconjecture.

Page 122: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

122

ReadandStudy

WecoulduseuptwoEternitiesinlearningallthatistobelearnedaboutourownworldandthethousandsofnationsthathavearisenandflourishedandvanished

fromit.Mathematicsalonewouldoccupymeeightmillionyears. MarkTwain

Thereareseveralwaystohelpchildrenpicturetheresultsofareflection.Thinkaboutthereflectionoftheparallelograminlineshownbelow.

Onewaytoseewheretheimageshouldbelocatedistotracetheparallelogramandthelineofreflectiononasheetofthinpaperandthenphysicallyflipthepaperoverandplaceitbackontopoftheoriginalpapersothatthetwolinescoincide.Thecopyoftheparallelogramonthetracingpaperisnowpositionedastheimageofthereflection.Useasheetofpaperandtrythismethod.R E F L E C T I O N S

Anotherwaytovisualizeareflectionimageistophysicallyfoldtheoriginalsheetofpaperalongthelineofreflection.Theoriginalobjectanditsimageunderreflectionshouldnowcoincide,asinan“ink-blot”drawing.Trythis.Reallydoit.RecallthatareflectioninalinelisatransformationoftheplaneinwhichtheimageofapointPonlisP,andifAisapointnotonlandiftheimageofAis 'A ,thenlistheperpendicularbisectorof 'AA .Thisdefinitionofareflectionprovidesinsightintohowwecansketchtheimageofareflection.Eachpointmusttravelalongalineperpendiculartothelineofreflectionsothatthatlineisthemidpointbetweenofthelinesegmentconnectingcorrespondingpoints.Usethatmethodtosketchtheimageoftheparallelogramabove.

Page 123: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

123

Therearemanyinstancesofreflectioninphysicalphenomena.Commonexamplesincludethereflectionoflight,sound,andwaterwaves.Weareallfamiliarwiththephenomenaoflightreflection–takealookinamirror.

Homework

Weallhaveafewfailuresunderourbelt.It’swhatmakesusreadyforthesuccesses. RandyK.Milholland,Webcomicpioneer

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Onthesquaregridbelow,uselinenasthelineofreflectiontoreflectthegivenobjects.

Labeleachimageappropriately.

3) Whatrelationshipsdoyouseebetweenoriginalfiguresandtheirreflectedimages?Betweentheobjects,theirimagesandthegivenlineofreflection?Makeasmanyconjecturesasyoucanaboutreflections.

nH

K

J

IF G

AC

D E

B

Page 124: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

124

4) Usethedefinitionofareflectiontoreflectthebelowobjectinline.

5) Decideifeachofthestatementsaboutreflectionsistrueorfalse.Iftrue,giveamathematicalexplanation;iffalse,explainwhyorgiveacounterexample.

a) Correspondingsidesofanobjectanditsreflectedimagearealwaysparallel.b) If DCBA istheimageofABCDunderareflection,thenthelinesegment

joiningvertexAtovertex A isperpendiculartothelineofreflection.c) If DCBA istheimageofABCDunderareflection,thenthelinesegment

joiningvertexAtovertex A isbisectedbythelineofreflection.d) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafterareflection.e) IfAand A andBand B arecorrespondingpointsunderareflection,itispossible

forthelines AA and BB tointersect.f) Everypointintheplanemovestoanewpositionunderareflection,i.e.,there

arenofixedpointsinareflection.g) Underareflection,linesegmentsthatjoinpointstotheirimagesareall

congruent.

Page 125: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

125

ClassActivity21: Part1ASimilarTask

Onecanstate,withoutexaggeration,thattheobservationofandthesearchforsimilaritiesanddifferencesarethebasisofallhumanknowledge.

AlfredNobel

Hereisthedefinitionofanewtypeoftransformation:

Adilation(withcenterPandscalefactork>0)isamotionoftheplaneinwhichtheimageofPisPandtheimageA’ofanyotherpointAisontherayPAsothatthedistancePA’isktimesthedistancePA.

Studythisdefinitionanduseittodothefollowing:

1. DrawtheimageoftheseobjectsunderadilationwithcenterPandscalefactor2

2. DrawtheimageoftheseobjectsunderadilationwithcenterCandscalefactor½

3. Writedownsomeconjecturesthatyouhaveaboutdilationsandtheeffecttheyhaveonobjects.

Page 126: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

126

ClassActivity21: Part2Zoom

Inthepictureabove,westartedbydrawingthesmallertriangleonacomputerscreen,andthenwezoomedin.Thetrianglegotbiggerandmovedtothenewposition.Onepointonourscreenremainedfixedwhenwedidthiszoom.Findthatpoint.Whatwasthescalefactorofthezoom?Inasmanywaysasyoucan,findevidenceforyouranswer.

Page 127: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

127

ReadandStudy

Oursimilaritiesbringustoacommonground;ourdifferencesallowustobefascinatedbyeachother.

TomRobbinsWehavedifferentnotionsof“sameness”ingeometry.Inthestrongestsense,ifwesaytwoobjectsarethesame,wemeantheyarecongruent.Butwemightalsorefertotwoobjectshavingthesameshapeeveniftheyaren’tcongruent.Forinstance,thetwotrianglesinourClassActivityhavethesameshape,buttheyarenotthesamesize.Observethattheircorrespondinganglesarecongruent,andthattheircorrespondingsidesareproportional.Makesurethatyouunderstandwhatthismeans.Thesetwotrianglesaren’tcongruent,buttheyarewhatwecall“similar”.S I M I L A R P O L Y G O N S

Formally,wesaythattwoobjectsintheplanearesimilarifonecanbeobtainedfromtheotherbycomposingarigidmotion(tochangetheobject’spositionifnecessary)witha“dilation”.Adilation(withcenterPandscalefactork>0)isamotionoftheplaneinwhichtheimageofPisPandtheimageA’ofanyotherpointAisontherayPAsothatthedistancePA’isktimesthedistancePA.Inotherwords,PisafixedpointandallotherpointsarepushedradiallyoutwardfromPorpulledradiallyinwardtowardP,sothateachpoint’sdistancefromPhasbeenmultipliedbythescalefactor.Itcanbeshownthattwopolygonsaresimilarifandonlyiftheircorrespondingvertexanglesarecongruent,andtheircorrespondingsidesareproportional.Euclidprovedatheoremaboutsimilartriangles:

2) Angle-AngleTriangleSimilarityTheorem(AA):Iftwoanglesofonetriangleare

congruenttotwoanglesofanothertriangle,thenthetrianglesaresimilar.ThistheoremappearedinhisBookVI(aboutsimilargeometricfiguresandproportionalreasoning)ratherthanhisBookIthatwehavestudiedpreviously.

Homework

Therearenosecretstosuccess.Itistheresultofpreparation,hardwork,andlearningfromfailure.

ColinPowel

1) Usingyourcompass,drawacircle.PlaceapointCattheexactcenterofyourcircle,andapointPsomewhereoutsideofthecircle.Thenbeginningwiththatcircle,

a) drawthesimilarshapethatistheresultofadilationoftheplanewithfixedpointCandscalefactor2.

Page 128: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

128

b) Instead,drawthesimilarshapethatistheresultofadilationoftheplanewithfixedpointPandscalefactor2.

c) Whatcommonalitiesanddifferencesdoyouobserveaboutthethreeshapesyouhavedrawn?

2) Beginningwiththetrianglepicturedbelow,drawthesimilartrianglethatistheresultofadilationoftheplanewithfixedpointPandscalefactor1/2.

3) Decideifeachofthesestatementsaboutdilationsistrueorfalse.Iftrue,giveamathematicalexplanation;iffalse,explainwhyorgiveacounterexample.

a) Correspondingsidesofanobjectanditsdilatedimagearealwaysparallel.b) Dilationspreserveangles(i.e.anyangleanditsdilatedimagearealways

congruent).c) IfA’andB’aretheimagesoftwopointsAandBunderadilationwithscale

factork,thenthedistanceA’B’isktimesthedistanceAB.d) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafteradilation.e) IfAand A andBand B arecorrespondingpointsunderadilation,itispossible

forthelines AA and BB tointersect.f) Everypointintheplanemovestoanewpositionunderadilation,i.e.,thereare

nofixedpointsinadilation.g) IfA’istheimageofAunderadilationwithfixedpointPandscalefactork,then

thedistanceAA’isktimesthedistancePA.

4) Onenight,a6-foottallmanstood10feetfromalamppost.Thelightfromthelamppostcasta12footshadowoftheman.Howtallwasthelamppost?

P

Page 129: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

129

5) Supposetwoobjectsaresimilarandthescalefactorofthedilationis1.Whatelsecanyousayabouttherelationshipbetweenthosetwoobjects?

6) LookagainatEuclid’strianglesimilaritytheorem(AA).Giventheotherthingsyouhavealreadylearnedabouttriangles,itisequivalenttosaying:ifallthreeanglesofonetrianglearecongruenttothecorrespondinganglesofanothertriangle,thenthetrianglesaresimilar.Considerthefollowingconjectureaboutquadrilaterals:ifallfouranglesofonequadrilateralarecongruenttothecorrespondinganglesofanotherquadrilateral,thenthequadrilateralsaresimilar.Isthisconjecturetrueorfalse?Giveanargumenttosupportyouranswer.

Page 130: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

130

ClassActivity22: SearchingforSymmetry

Themathematicalsciencesparticularlyexhibitorder,symmetry,andlimitation;andthesearethegreatestformsofthebeautiful.

AristotleAsymmetryofanobjectisarigidmotionoftheplaneinwhichtheimagecoincideswiththeoriginalobject.Therearetwoprimarytypesofsymmetry.Intuitively,anobjecthasreflectionsymmetryifitcanbecutbyalineofreflectionintotwopartsthataremirrorimagesofeachother.Thisbutterflyhasreflectionsymmetryandsodoesthisarrow.Sketchthelineofreflectionineachcase.

Anobjecthasrotationsymmetryifitcanberotatedaroundacenterpointthroughacertainangleandendupwiththeimagecoincidingwiththeoriginal.Wewouldsaythattherecyclingsignbelowhas120,240and360degreerotationalsymmetry.

1) Findallthesymmetriesofthecapitallettersinthefollowingtypeface:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

2) Ineachcase,sketchapolygonwiththegivensymmetries,orexplainwhysuchapolygoncannotexist.

a) nolinesofreflectionsymmetry,but180°(and360°)rotationsymmetriesb) 90°(and360°)rotationsymmetriesandnoothersymmetries.c) 2linesofreflectionsymmetry,360°rotationsymmetry,andnoother

symmetriesd) 6linesofreflectionsymmetrye) nolinesofreflectionsymmetry,but90°,180°,270°(and360°)rotational

symmetryf) anytranslationsymmetry

Page 131: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

131

ReadandStudy

Mathematicsisthesciencewhichuseseasywordsforhardideas. E.KasnerandJ.Newman

Afigure,picture,orpatternissaidtobesymmetricifthereisatleastonerigidmotionoftheplanethatleavesthefigureunchanged.Forexample,thisleafis(prettymuch)symmetricbecausethereisalineofreflectionsymmetry.

Manyobjectsinnaturedisplaythiskindofbilateralsymmetry.ThelettersinATOYOTAalsoformasymmetricpattern:ifyoudrawaverticallinethroughthecenterofthe“Y”andthenreflecttheentirephraseacrosstheline,theleftsidebecomestherightsideandviceversa.Thepicturedoesn’tchange.S Y M M E T R I E S I N T H E P L A N E

Theorderofarotationsymmetryisdeterminedbycountingthenumberofturnstheobjectcanmakeandcoincidewithitselfbeforereturningtoitsoriginalposition.Theanglemeasureofthesmallestturnisdeterminedbydividing360°bythatnumberofturns.Whydoesthismakesense?Forexample,anequilateraltrianglehas“order3rotationsymmetry.”B A CTheturnof120°takesvertexAtovertexB;theturnof240°takesvertexAtovertexC;andtheturnof360°takesvertexAbacktovertexA.Whataretherotationsymmetriesofthesquare?Oftheregularhexagon?Oftheregularoctagon?Oftheregularn-gon?

Page 132: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

132

Onlyrepeatinginfinitepatternshavetranslationsymmetry.Theyaretheonlytypeofobjectthatcanbeslidandstillfallbackonthemselves.Imaginethatthispatternstripcontinuesforeverinbothdirectionssoifyouslideitonepatterntotheright(ortwoorthree…)itlooksjustthesame.

… …

ConnectionstoTeaching

Itouchthefuture.Iteach. ChristaMcAuliffe

TheCommonCoreStateStandardsformathematicsmakeinformalideasofsymmetryatopicforgrade4.Whiletheymentiononlyreflectionsymmetry,childrenatthisage(andevenyounger)arecapableofexploringandrecognizing“turn”symmetryaswell.Readthisstandard.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module2.CarefullyexaminetheMosaicGame.Playthegameonetimeandrecordyourresult.Explainhowyouknowthatyourarrangementproducesthemostlinesofsymmetry.Whatmightstudentslearnaboutsymmetryfromcompletingthisactivity?Playthegameagain,butthistime,trytoproduceafigurewiththelargestorderofrotationalsymmetry.Again,explainyourreasoning.

CCSSGrade4:

1. Recognizealineofsymmetryforatwo-dimensionalfigureasalineacrossthefiguresuchthatthefigurecanbefoldedalongthelineintomatchingparts.Identifyline-symmetricfiguresanddrawlinesofsymmetry.

Page 133: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

133

Homework

Byperseverancethesnailreachedtheark. CharlesHaddonSpurgeon

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Classifythesymmetriesforthefollowingtrafficsigns–(considertheentiresign–not

justtheinteriordesign).

3) Isitpossibleforanobjecttohaverotationsymmetrieswithouthavingreflection

symmetries?Ifitis,giveanexampleofsuchanobject.Ifitisnot,giveanargumenttosupportthatconclusion.

4) Isitpossibleforanobjecttohavetworeflectionsymmetrieswithouthaving180°rotationsymmetry?Ifitis,giveanexampleofsuchanobject.Ifitisnot,giveanargumenttosupportthatconclusion.

5) Onlineatbridges.mathlearningcenter.org,findtheBridgesinMathematicsGrade1

TeachersGuide.Unit5Module3Session1introducesNinePatchInventions,whichSession2usestocreateNinePatchMini-quilts.Spend10-15minutesstudyingthesesessions.Whatideasaboutrotationalsymmetryareemphasizedinthesesections?

Page 134: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

134

SummaryofBigIdeas

Ifanidea’sworthhavingonce,it’sworthhavingtwice. TomStoppard

• Therearethreedistinctwaysto“move”theplanewithoutchangingtheshapeorsizeof

objects:thetranslation,therotation,andthereflection.• Atranslationslidestheplaneagivendistanceinagivendirection.

• Arotationturnstheplanearoundagivenpointthroughagivenamountofrotation

(usuallygivenindegrees).• Areflectionflipsanobjecttoitsmirrorimageacrossalineofreflection.

• Oneofthegoalsofelementaryschoolgeometryinstructionisthatstudentslearnto

visualizeandapplytransformations.

• Twoobjectsaresimilarifonecanbeobtainedfromtheotherbyarigidmotionandadilation.

• Symmetryisaphenomenonofthenaturalandartisticworldsthatcanbeexplained

withthelanguageofrigidmotions.

• Mathematiciansmostoftentalkabouttwotypesofsymmetry:reflectionsymmetry,inwhichanobjectisdividedbyalineofreflectionintotwopartsthataremirrorimagesofeachother,androtationsymmetry,whereanobjectisrotatedaroundacenterpointthroughacertainangleandendsupoccupyingthesamepositionintheplane.

Page 135: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

135

ChapterFive

Probability

Page 136: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

136

ClassActivity23: DiceSums

Theexcitementthatagamblerfeelswhenmakingabetisequaltotheamounthemightwintimestheprobabilityofwinningit.

BlaisePascalRolltwodiceatonceandifthesumis2,3,4,5,10,11or12,yourgroupwins.Ifthesumis6,7,8,or9,theinstructorwins.Isthisafairgame?Dothisproblemtwoways.First,actuallyplaythegamelotsoftimesandcollectdatatodecide.Then,doatheoreticalanalysisoftheproblemtodecide.(Youwillneedtobeginbydecidingwhatitmeansthatagameofchanceis“fair.”)

Page 137: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

137

ReadandStudy

Areasonableprobabilityistheonlycertainty.E.W.Howe

Gamesofchancehavebeenaroundforatleastaslongaspeoplehaverecordedhistory,butitwasn’tuntilthe16thcenturythatmathematiciansfirstbegantostudytherulesthatmighthelpanswerquestionssuchas“Isthisgamefair?”or“HowlikelyamItodrawaroyalflushinagameofpoker?”Wecalltheareaofmathematicsthatcontainstheserulesprobabilitytheory.Simplyput,probabilityisthestudyofchanceorrandomevents.Supposewerollastandardsix-sideddieonce.Wedon’tknowtheresultoftherollinadvance,sowesaythattheoutcomeisrandom.However,theoutcomeisnotcompletelyunpredictable.Ourdiehassixsidesandsoweknowtheoutcomewillbeoneofsixnumbers:1,2,3,4,5,or6.Wealsoknow(assumingwehaveafairdie)thatanyoneoftheseoutcomesisequallylikely;thatis,ifwerollthediemany,many,manytimesandrecordalltheoutcomes,wewillgetapproximatelythesamepercentageof‘1’saswedo‘2’saswedo‘3’sandsoforth.Supposewewouldliketobeabletoassignanumbertoexpresshowlikelyitisthatwegeta5ononeroll.Inotherwords,wewanttoknowtheprobabilityofgettinga5ononerollofastandard6-sideddie.Bytheway,theuseofgoodmathematicallanguageisahabit.Ifyouwanttousemathematicallanguagecorrectlywithyourelementarystudents,youmustpracticedoingsonow.Youwillfindunderlinedvocabularyandideasdefinedforyouintheglossary.Gothereandhavealookatthedefinitionof“probability”now.L A N G U A G E O F P R O B A B I L I T Y

Inordertotalkabouttheanswertothisquestion,wemustagreeonawaytomeasureprobability.Fourmainruleshavebeenadopted:

1) Theprobabilityofanoutcomeisanumberfrom0to1.Ifanoutcomeiscertaintooccur(suchas,attheequatorthesunwillrisetomorrow),thenitsprobabilityis1.Ifanoutcomecannothappen(suchas,themoonwillfallintothePacificOceantonight),thenitsprobabilityis0.Ifanoutcomeisneithercertainnorimpossible,thentheprobabilitywillbesomenumberbetween0and1.

2) Thesumoftheprobabilitiesofallpossibleoutcomesofarandomexperimentis1.

3) Theprobabilitythataneventwilloccuris1minustheprobabilitythatitwillnotoccur.Thatis,aneventwilleitheroccuroritwillnotoccur,andthesumofthosetwoprobabilitiesmustbe1.

4) Iftwoeventsaredisjoint(theyhavenooutcomesincommon),theprobabilitythatoneortheotherwilloccuristhesumoftheprobabilitiesthateachwilloccurbyitself.

Sowemustthinkabouthowwecanassignanumberfrom0to1totheoutcome“obtaininga5whenrollingonedie”thatwewillcallitsprobability.Todosomathematiciansusethelanguageofsets.Herecometheofficialdefinitionsofrandomexperiment,outcome,event,andsample

Page 138: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

138

space.Arandomexperimentisanactivity(suchasrollingour6-sideddie)wheretheoutcome(1,2,3,4,5,or6)cannotbeknowninadvance.Asetofallpossibleoutcomes,{1,2,3,4,5,6},isasamplespaceforthatexperimentandaneventisanysubsetofthesamplespace(suchas“rollinga5”or“rollinganevennumber”).Noteasubtledistinctionherebetweenanoutcomeandanevent:anoutcomeisanelementofthesamplespace,whereasaneventisasubsetofthesamplespace.Soifthesamplespaceis{1,2,3,4,5,6}then‘3’iscalledanoutcome,whereas{3}iscalledanevent.{1,3,5}isanotherevent.Listafewmoreeventsforthissamplespaceusinggoodcurly-bracketsetnotation.Doestheemptysetmeetthedefinitionofan“event?”Whyorwhynot?Okay,nowbyrulenumber1,theprobabilityofeachoutcomeinthesamplespacewillbeanumberbetweenzeroandone,andbyrulenumber2,thesumofalltheprobabilitiesoftheoutcomesinthesamplespacemustequalone.Sohowdowedeterminetheprobabilityof“rollinga5?”Wellthatturnsouttobeprettyeasyinthecasewherealltheoutcomesareequallylikelytooccur.(Wewillassumethatourdieisevenlybalancedandaperfectcube-wecallsuchadiefair–andsowearejustaslikelytoobtainanyoneofthenumbersfrom1to6.)Whenoutcomesareequallylikely,theprobabilitythatanyoneoccursisjusttheratioof1tothetotalnumberofoutcomes.Inthecaseofrollingonefairdie,theprobabilityofrollinga‘5’is .Whenaneventismorecomplicated(suchasobtainingasumof3whenrollingtwodice),wecanusethesameapproachbutweneedtochooseoursamplespacewisely.Supposeweareinterestedinthesumobtainedwhenrollingtwofairdice.Ifwelistthepossibleoutcomesforthesum,wegetthesamplespaceof{2,3,4,5,6,7,8,9,10,11,12},whichcontainselevenoutcomes.Unliketheearlierexampleofrollingonediehowever,theseoutcomesarenotequallylikely.Forexample,thereareseveralwayswecouldobtainasumof7(1+6,2+5,etc.),butonlyonewaywecouldobtainasumof12(6+6).Whentheoutcomesarenotequallylikely,weneedadifferentwaytodeterminetheprobabilityofeachoutcome.Inthisexample,theprobabilityofeachsumisnot .Onewaytodeterminetheprobabilitiesofeachsumistoconsiderasamplespaceoftherandomexperimentofrollingtwodicewheretheoutcomesareequallylikely.Forexample,wecanthinkoftheoutcomesinthissamplespaceasorderedpairs(x,y),wherexisthenumberon

61

111

Page 139: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

139

thefirstdieandyisthenumberontheseconddielikeyoumayhavedonewhenyouworkedontheclassactivity.Thissamplespaceisshowninthetablebelow.Theadvantageofusingthissamplespaceisthatalloutcomeshereareequallylikely.

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Apossiblesamplespaceforarolloftwodice

Noticethatthereare36equallylikelyoutcomesinthissamplespaceandsotheprobabilityof

eachoutcomeis .Wecanusethissamplespacetocomputetheprobabilityoftheevent“obtainingasumof3”(that’stheevent{(1,2),(2,1)})bycountingthenumberofpossibleoutcomesthathaveasumof3.Wemustbecarefultomakecertainthatweactuallydocountallpossibleoutcomesthathaveasumof3.Forexample,inthesamplespace,theoutcome(1,2)whichgives1+2=3andtheoutcome(2,1)whichgives2+1=3aretwoseparateelements.Thatis,therearetwowaystogeneratethesumof3:1)wecanrolla1onthefirstdieandthena2ontheseconddieor2)wecanrolla2onthefirstdieandthena1ontheseconddie.Tohelpyourstudentsthinkaboutthiswesuggesttwothings.First,havethemdoanexperimentwhereeveryonerollsapairofdiceforfiveminutesandtalliesthenumberoftimestheyrollasumof2andseparatelythenumberoftimestheyrollasumof3.Inthisway,theywillseethatthesumof3istwiceaslikelytooccur.Second,havethemeachholdonereddieandonegreendie.Askthattheymakeasumof3.Thenaskthattheymakeasumofthreeadifferentwaysotheycanseethattheoutcome(1,2)giving1+2=3andtheoutcome(2,1)giving2+1=3aretwoseparateelementsinthesamplespace.Trythisyourself.Nowmakeasumof2andnoticethatthereisnootherwaytodothis.

361

Page 140: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

140

Rollinga1onthereddieanda2onthegreendieisadifferentoutcomefromrollinga2onthereddieanda1onthegreendie,butthereisonlyonewaytohavea1oneachdie.Okay,backtooursamplespacewith36outcomes.Usingprobabilityrule4,theprobabilityofrollingtwodicewithasumof3,writtenP(Sum=3),isthesumoftheprobabilitiesofeach

outcomewhichequals + = = .WecanalsocomputeP(Sum=3)astheratioofthenumberofoutcomesthathaveasumof3tothenumberoftotaloutcomessinceallthe

outcomesareequallylikely.SoP(Sum=3)= .

Thisprobabilitycanbeexpressedasafraction( ),asadecimal(0.056),asapercent(5.6%)orasodds(2:34,thechancesofhavingasumofthreetothechancesofhavingasumotherthanthree).Checkallthistobesureitmakessensetoyou.Let’sconsideranotherexample:Whataremychancesofdrawingafacecardfromastandarddeckof52playingcards?Beforeyoureadfurther,takeaminutetoseeifyoucanfigureitout.

Hereisourthinking.Payattentiontothelanguageweuseaswellastothewaywesolvetheproblem.Astandarddeckofcardscontains52cards,13ofeachoffoursuits.Eachsuitcontains3facecards,thejack,thequeen,andtheking,soIhave4×3=12waysofdrawingafacecardand52waysofdrawinganycard.Sotheprobabilityofdrawingafacecardfromadeckofcards

is .Thisprobabilitycanbeexpressedasafraction( ),asadecimal(0.231),asapercent(23.1%)orasodds(12:40,thechancesofdrawingafacecardtothechancesofnotdrawingafacecard).Inthisexample,theexperimentis“drawingacardfromadeckofcards,”theeventis“drawingafacecard,”andthesamplespacecontains52equallylikelyoutcomes(the52cardsinthedeck).Let’slookatonemoreexample:Whatistheprobabilityofspinningredoneachofthespinnersbelow?Takeamomenttothinkthisthrough.

361

361

362

181

362

181

5212

133

Page 141: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

141

Whatisthesamplespaceforeachspinner?Arealltheeventsinthesamplespaceequallylikely?Inbothofthesepictures,wehaveasamplespaceof{red,blue,green,yellow}.However,inthespinnerontheright,theeventsarenotequallylikely.Tocalculatetheprobabilityofspinningredoneitherspinner,wearereallylookingattheareaofthecirclethatisreddividedbytheentireareaofthecircle.Inotherwords,thefractionofthecirclethatisshadedredortheratiooftheareaofredtotheareaoftheentirecircle.Areaisonewaywecanthinkaboutprobabilitiesgeometrically.Dependinguponthesituation,wemightwanttothinkaboutafractionallength,area,orvolume.

ConnectionstoTeaching

Ingrades3–5,allstudentsshouldunderstandthatthemeasureofthelikelihoodofaneventcanberepresentedbyanumberfrom0to1.

NCTMPrinciplesandStandards,p.176InbothoftheReadandStudyscenarioswehavebeendiscussingwhatwecalltheoreticalprobabilities,thatisprobabilitiesthatareassignedbasedonassumptionsaboutthephysicaluniformityandsymmetryofanobject(suchasadieoradeckofcards).Thismayhaveleftyouwiththeimpressionthatallrandomexperimentscanbeanalyzedinatheoreticalmanner.Notso.Considertheexperimentof“flipping”alargemarshmallow.Nowitcouldlandonaflatcircularendoronitsside(thecurvedpartofthecylinder),sowe’llidentifythesamplespaceastheset:{end,side}.Childrenmaythinkthatthesetwooutcomeseachhaveaprobabilityof½sincetherearetwochoices,butsomeexperimentingwithactualmarshmallowswillshowthatthesearenotequallylikelyoutcomes.Furthermore,atheoreticalanalysisoftheprobabilitiesofeachoutcomewouldrequireknowledgeofphysicsandgeometry,andmightdependonthesurface,thetemperature,orotherfactors.Incaseslikethat,itisbettertoperformanexperimenttodeterminetheprobability.Inotherwords,itisbesttohavethechildrenflipthemarshmallowalargenumberoftimesandtousethedatatoestimatetheprobabilityofeachoutcome.Probabilitiesthatarebasedondatacollectedbyconductingexperiments,playinggames,orresearchingstatisticsarecalledexperimentalprobabilities.Asateacher,itisimportantthatyougiveyourstudentsplentyofexperiencecalculatingnotjusttheoreticalprobabilities,butalsoexperimentalprobabilities.E X P E R I M E N T A L A N D T H E O R E T I C A L A N A L Y S I S

Page 142: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

142

Homework

You'llalwaysmiss100%oftheshotsyoudon'ttake.WayneGretzky

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Ifyoudecidedthatthegame“DiceSums”wasunfair,changetherulessothatthegame

isfair.Istheremorethanonesetofrulesthatwouldgiveafairgame?Ifso,howmanydifferentsetsofrulescanyoumake?

3) Consideranewgamecalled“DiceDifferences.”Twodicearetossedandthesmallernumberissubtractedfromthelargernumber.PlayerIscoresonepointifthedifferenceisodd.PlayerIIscoresonepointifthedifferenceiseven.(Note:Zeroisanevennumber.)Isthisafairgame?Ifso,makeanargumentthatitis.Ifthegameisunfair,changetherulessothatthegameisfair.

4) Readthe“TheseBeansHaveGottoGo!”activityfromUnit2Module1Session1oftheBridgesinMathematicsGrade2HomeConnections,onpage29-34.

a. Howwouldyouplaceyourbeansifyouwereplayingthisgame(andwantedtowin).

b. Howwouldyouexpectatypical2ndgradertoplacetheirbeans?c. Whatanswerswouldyouexpectthatyourfuture2ndgradestudentsmightwrite

toquestions3,4and5onpage34.

5) Abagcontainstwowhitemarbles,fourgreenmarbles,andsixredmarbles.Therandomexperimentistodrawamarblefromthebag.

a) Writeareasonablesamplespaceforthisexperiment.Usesetnotation.b) Whatistheprobabilityofdrawingawhitemarble?Aredmarble?Agreen

marble?Explainyouranswers.c) Whatistheprobabilityofdrawingablackmarble?Explain.d) Whatistheprobabilityofnotdrawingagreenmarble?Explain.e) Howmanymarblesofwhatcolorsmustbeaddedtothebagtomakethe

probabilityofdrawingagreenmarbleequalto0.5?

Page 143: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

143

6) Abagcontainsseveralmarbles.Somearered,somearewhite,andtherestaregreen.

Theprobabilityofdrawingaredmarbleis andtheprobabilityofdrawingawhite

marbleis .

a) Whatistheprobabilityofdrawingagreenmarble?Explain.b) Whatisthesmallestnumberofmarblesthatcouldbeinthebag?Explain.c) Couldthebagcontain48marbles?Ifso,howmanyofeachcolor?Explain.d) Ifthebagcontainsfourredmarblesandeightwhitemarbles,howmany

greenmarblesdoesitcontain?Explain.

7) Decidewhetherthefollowinggameisfairorunfair:Playershavethreeyellowchips,eachwithanAsideandaBside,andonegreenchipwithanAsideandaBside.Flipallfourchips.PlayerIwinsifallthreeyellowchipsshowA,ifthegreenchipshowsA,orifallchipsshowA.Otherwise,PlayerIIwins.Ifthegameisfair,makeanargumentthatitis.Ifthegameisunfair,changetherulessothatthegameisfair.

8) The6outcomesofrollingafairdieareequallylikely;soarethe52outcomesofa

randomdrawofonecardfromadeckofcards.Nameatleastthreemorerandomexperimentsthatgenerateequallylikelyoutcomes.Nameatleastthreethatproduceoutcomesthatarenotequallylikely.

9) Supposeyoubreaka25cmlongspaghettinoodlerandomly.Whatistheprobabilitythatoneofthetwopiecesislessthan5cmlong?

10) Supposeapointwasrandomlychosenwithintheinteriorofthelargestsquarebelow,whatistheprobabilitythatthepointisonwhite?Now,supposeapointwasrandomlychosenwithintheinteriorofthelargestcircle.Whatistheprobabilitythatthepointisonblack?

11) Considertherandomexperimentoftossingthreecoinsatonce.Writeasamplespaceforthisexperimentthathasequallylikelyoutcomes.Nowwriteanothersamplespaceforthissameexperimentthatdoesnothaveequallylikelyoutcomes.

61

31

Page 144: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

144

ClassActivity24: RatMazesThetroublewiththeratraceisthatevenifyouwin,you'restillarat.

LilyTomlin

1) Supposethataratissentintoeachofthebelowmazesatthe‘start.’Iftheratcannotgobackwards,butotherwisemakesallthedecisionsatrandom,whatistheprobabilitythatshefindsacheeseineachcase?Explainyouranswersasyouwouldtoanupperelementaryschoolstudent.

2) Makearatmazetoillustrateeachoftheseproblems:a) Youflipacoinandthenrolladie.WhatistheprobabilitythatyougetaHead

andthenamultipleofthree?b) Youflipacointhreetimes,whatistheprobabilitythatyougetexactlytwo

Heads?

Start

Start

Start

Page 145: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

145

ReadandStudy

Chancefavorsonlythepreparedmind. LouisPasteur

Manysituationsrequiresuccessivechoices–likeintheratmazeproblemswheretherathadtomakeatleasttwodecisionsaboutwhichpathtotaketogettothecheese.Hereisanotherexample:gettingdressedforschoolinthemorningrequiresseveraldecisions.Imustchooseoneoftwopairsofjeans(onlytwoareclean,abluepairandablackone),oneofthreesweaters(red,purple,blue),andoneoffourpairsofshoes(let’sjustcallthemA,B,C,&D)Let’ssaythatshoepairsBandDdon’tcoordinatewiththeblackjeans,butshoepairsA&Ccanbewornwitheitherpairofjeans.1)WhatistheprobabilitythatIwearbluejeans,aredsweater,andCshoes?2)Whatistheprobabilitythatmyoutfitcontainsthecolorblue?3)WhatistheprobabilitythatIweartheBpairsofshoes?T R E E D I A G R A M S

Treediagrams(orratmazes)areusefulinfindinganswerstoquestionslikethese.Belowwehavemadeatreethatcountsallthepossibleoutfits(orpathsinthemaze).Inotherwords,thechoicesforgettingdressedlooklikethis.

Nowassumingthatallchoicesaremadeatrandom,thereareacouplewaystocomputetheprobabilitiesinquestions1-3above.Takeaminutetodosobeforereadingfurther.Mypersonalfavoriteisthesending-rats-into-the-mazetechnique.I’llsend,say,24ratsintothetopofthemaze.ThenIexpect12togoleftdownthebluejeanchoice,4ofthosetogodowneachsweatercolor,and1tocomeoutofeachoftheshoechoicesA,B,CandD.Ofthe12thatwillgorightdowntheblackjeanchoice,4willgodowneachsweaterrouteand2willemergefromeachshoetypeAandC.Nowwecanusethisinformationtoanswertheabovequestions.1)Since1outof24comeoutofthebluejeans,redsweater,Cshoespath,theprobabilityof

C

C

A

A

A

D

C B

D

C B

C

B A

A

D

A

blue sweater

blue sweater

red sweater red sweater

black jeans blue jeans

Page 146: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

146

thatis .2)Sincealltheblue-jeansratsandalsotheblue-sweaterratscontainblue(that’s12+

4), or istheprobabilitythatmyoutfitcontainsblue.3)Since3ratsendupwithBshoes,

theprobabilitythatIwearthoseshoesis or .C O M P O U N D E V E N T S

Okay,nowyoumightbethinking,buthowdidsheknowtosend24ratsintothemaze?Doesthatnumbermatter?Tosee,youtryit.Firstuse48rats.Thentry100toseewhathappens.Reallydoit.Whatdidyoulearn?Anothersolutionistousetheprobabilityequivalentofthemultiplicationcountingprincipletofindtheprobabilitythatwereachtheendofeachbranch.Forexample,theprobabilitythatIwearbluejeans,aredsweater,andshoepairAis!

"×!

%× !&= !

"&.Whydowesayweareusing

themultiplicationcountingprinciplehere?FindtheprobabilitiesofeachoftheoutfitsIcouldchoose.Doyouneedtocalculateeachprobabilityindividually?Orcanyoumakeanargumentthatalloftheoutfitswithbluejeansareequallylikely?Whatabouttheoutfitswithblackjeans?Finally,let’sthinkaboutthelasttwoquestionsweposedinthefirstparagraphusingthissecondapproach:Whatistheprobabilitythatmyoutfitcontainsthecolorblue?MyoutfitwillcontainblueifIwearbluejeansorifIwearthebluesweater.Halfofthepossibleoutfitsincludethebluejeansandonethirdoftheremaininghalfoftheoutfitsusethebluesweater.Soatotalof!

"+ !

%× !"= !

"+ !

*= "

%oftheoutfitscontainblue;theprobabilitythatIwearblueis66 "

%%.

UsethisideatofindtheprobabilitythatIweartheBpairofshoes.

241

2416

32

243

81

Page 147: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

147

ConnectionstoTeaching

Ingrades6–8allstudentsshouldcomputeprobabilitiesforsimplecompoundevents,usingsuchmethodsasorganizedlists,treediagrams,andareamodels.

NCTMPrinciplesandStandards,p.248Treediagramsarepartoftheelementarygradescurriculumbecausetheygivechildrenawayto“see”allofthepossibleoutcomesandtokeeptrackoftheprobabilitiesofeachchoicethatmightbemadeinacompoundevent.Bytheway,itisnotenoughtoknowjustonewaytodothingsanymore.Ifyouaregoingtobeateacher,youwillneedtomakesenseofthethinkingofyourstudentseveniftheirmethodsaredifferentfromyours.Practicingdifferentwaysofthinkingaboutandexplainingproblemswillmakeyouabetterandmoreflexibleteacher.Homework

Onceyoulearntoquit,itbecomesahabit.VinceLombardi

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Decideifeachofthefollowingstatementsistrueorfalse.Ifitistrue,explainwhy.Ifitis

false,rewritethestatementsothatitistrue.

a) Iftheprobabilityofaneventhappeningis ,thentheprobabilitythatitdoesnothappenis .

b) Theprobabilitythatanoutcomeinthesamplespaceoccursis1.c) Ifaneventcontainsmorethanoneoutcome,thentheprobabilityofthe

eventisthesumoftheprobabilitiesofeachoutcome.d) IfIhavea60%chanceofmakingafirstfreethrowanda75%chanceof

makingasecond,thentheprobabilitythatImissbothshotsis10%.

3) Makearatmazetomodeleachoftherandomexperiments.a) Ihaveabagcontainingthreechips.TheredchiphasasideAandasideB.

TheyellowchiphasasideBandasideC.ThebluechiphasbothsidesmarkedA.Idrawonechipatrandomfromthebagandtossit.

b) Threechipsaretossed.TheredchiphasasideAandasideB.TheyellowchiphasasideBandasideC.ThebluechiphasbothsidesmarkedA.

4) Supposethechipsin#3abovearealltossed.Useyoursecondratmazetodetermine

theprobabilityofgettingexactlya)oneC b)oneB c)oneAd)twoCs e)twoBs f)twoAs

83

38

Page 148: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

148

5) Supposethatthreechipsaretossedasin#3.PlayerIscoresapointifapairofAsturnup,andplayerIIscoresapointifapairofBsoraCturnsup.Isthisafairgame?Ifso,explainwhy.Ifnot,changetherulestomakeitfair.

6) Abasketballplayerhasa70%freethrowshootingaverage.Theplayergoesupforaone-and-onefreethrowsituation(thismeansthattheplayershootsonefreethrow,andonlyifshemakesit,shegetstoattemptasecondshot).Whatistheprobabilitytheplayerwillmake0shots?1shot?2shots?

7) SupposethatItossafaircoinuptofourtimesoruntilIgetaHead(whichevercomesfirst).

a) Makeamazetomodelthisrandomexperiment.b) Writeoutthesamplespaceusinggoodnotation.c) WhatistheprobabilitythatyougetTTH?

8) Place2blackcountersand1whitecounterintoapaperbagandshakethebag.Without

looking,draw1counter.Thendrawasecondcounterwithoutputtingthefirstcounterbackintothebag.Ifthe2countersdrawnarethesamecolor,youwin.Otherwise,youlose.Whatistheprobabilityofwinning?Doestheprobabilityofwinningchangeifyoureplacethefirstcounterbeforedrawingthesecondcounter?Whyorwhynot?Whatistheprobabilityofwinningifyoureplace?

9) Supposeyouspinbothspinnersbelow.Whatistheprobabilityyouspinred-red?Whataboutayellowononeandgreenontheother?

10) Here’showyouplayourlottery:youwritedownanysixnumbersfromtheset{1,2,3,…35,36}.Thensixwinningnumbersaredrawnfromthatsetatrandom(withoutreplacement–soallofthemwillbedifferentnumbers).

a) Ifyoumatchallthewinnersinorder,youwin$5,000,000.00.Whatistheprobabilityofthat?

b) Ifyoumatchallthewinnersbutnotnecessarilyinorder,youwin$1,000,000.00.Whatistheprobabilityofthat?

c) HowaretheseproblemsrelatedtoourPhotographandCommitteeproblems?Explain.Bespecific.Howwouldyouexplainthistosomeone?

Page 149: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

149

ClassActivity25: TheMaternityWard

WhenIwasakid,Iwassurroundedbygirls:oldersisters,oldergirlcousinsjustdownthestreet….EachyearIwouldwishforababybrother.Itneverhappened.

WallyLamb

Isitmorelikelythat70%ormoreofthebabiesbornonagivendayareboysinasmallhospitalorinalargehospital(ordoesn’titmatter)?Yourclassshoulddecideonasimulationtodoinordertohelpyoutoanswerthisquestion.

Page 150: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

150

ReadandStudy

“Ithinkyou’rebeggingthequestion,”saidHaydock,“andIcanseeloomingaheadoneofthoseterribleexercisesinprobabilitywheresixmenhavewhitehatsandsixmenhaveblackhatsandyouhavetoworkitoutbymathematicshowlikelyitisthatthehatswillgetmixedupandinwhatproportion.Ifyoustartthinkingaboutthings

likethat,youwouldgoroundthebend.Letmeassureyouofthat!”AgathaChristieinTheMirrorCrack’d

Ourintuitionoftenmisleadsuswhenwethinkaboutprobabilities.Initially,youmayhavethoughtthatthechancesofhaving70%ormoreofthebabiesbornbeboyswouldbebetterinalargehospitalbecauseitismorelikelythatmorebabiesareborninalargehospitalononedayandthereforemorelikelytohavemoreboys.Itismorelikelythatthenumberofbabiesbornonagivendayislargerinalargehospitalthanitisinasmallone,butthisdoesnotmeanthatitismorelikelythatthepercentageofboybabieswillbe70%ormoreinthelargehospital.L A W O F L A R G E N U M B E R S

Infact,thelargerthehospital(andthereforethelargerthenumberofbabiesbornonagivenday),themorelikelyitisthatthepercentageofboysbornwillbe50%(theapproximateprobabilityofhavingababyboyinasinglebirth).Mathematically,wecallthisresultthelawoflargenumbers,whichstatesthatinrepeated,independenttrialsofarandomexperiment,(suchasbabiesbeingborninahospital),asnumberoftrials(births)increases,theexperimentalprobabilitiesobserved(theprobabilitythatababybornisaboy)willconvergetothetheoreticalprobability(inthiscase,50%).Inotherwords,thelargerthesample,themorelikelyyouaretogetclosetothetheoreticalresult.Sothemorebirthsthereareonagivenday(thelargerthehospital),themorelikelyitisthatthepercentageofboysbornisnear50%.Thefactthatthetrialsshouldbeindependentisimportant.(Besuretousetheglossaryfornewmathematicalterms;don’tassumethatthemathematicalmeaningofawordisthesameasthemeaningthewordmighthaveincommonusage.)Forourpurposesconsidertwoeventstobeindependentiftheoccurrenceornon-occurrenceofoneeventhasnoeffectontheprobabilityoftheothereventhappening.Inthehospitalproblem,thebirthofababyboytoonemotherhasnoeffectontheboy/girloutcomeofthenextbirthinthehospital.Theoutcomesofthetwobirthsareindependentofoneanother.Whatabouttherolloftwodice?Aretheoutcomesoneachdieindependent?Whataboutthreeflipsofacoin?Isthehead/tailoutcomeoneachflipindependent?I N D E P E N D E N T E V E N T S

Notalleventsareindependent.Considertheevent“itwillraintomorrow”andtheevent“theweddingwillbeheldoutsidetomorrow.”Theprobabilitythattheweddingwillbeheldoutsideisaffectedbywhetheritrains.Writedownanotherexampleoftwoeventsthatarenotindependent.Onewaytoteachchildrenaboutthelawoflargenumbersistorunlotsofsimulationslikeyoudidinclasswiththehospitalproblem.Thatis,wemodeledthenumberofboyandgirlbirthsonagivendayinvarioussizehospitals,calculatedtheaveragepercentageofboybirthsforeach

Page 151: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

151

sizehospitalandthencomparedtheresults.Inordertohavethissimulationworkweneededamodel(acoinperhaps)thathastheapproximatelythesameprobabilityofsuccessasdoestheeventweareinvestigating.Andweneedtobecertainthatthenumberof‘births’weconsiderlargeislargeenoughforthelawoflargenumberstoapply.Apracticalwaytodesigncollectingdataonalargenumberoftrialsinyourclassroomistopooleveryone’sdata.Youwereaskedtorunasimulationintheclassactivity.Howdidyoudesignyoursimulation?Howmightyouhaveusedtherollofonefairdie?Howdidyoudecidethenumberofbirthsthatwouldrepresentasmallhospitalandthenumberofbirthsthatwouldrepresentalargehospital?Whatwastheeffectofpoolingalltheclasses’data?

Homework

IamalwaysdoingthatwhichIcannotdo,inorderthatImaylearnhowtodoit.PabloPicasso

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Acoinhasbeentossedfivetimesandhascomeupheadseachtime.Whichofthe

followingstatementsaretrue?a) Thereisanequalchanceofcomingupheadsortailsonthenexttoss.b) Thecoinismorelikelytocomeupheadsonthenexttoss.c) Thecoinismorelikelytocomeuptailsonthenexttoss.d) Iquestionwhetherthecoinisfair.

3) Acoinhasbeentossedfivehundredtimesandhascomeupheadseachtime.Whichof

thefollowingstatementsaretrue?a) Thereisanequalchanceofcomingupheadsortailsonthenexttoss.b) Thecoinismorelikelytocomeupheadsonthenexttoss.c) Thecoinismorelikelytocomeuptailsonthenexttoss.d) Iquestionwhetherthecoinisfair.

4) Explainhowthelawoflargenumbersisrelatedtoyouranswerstothequestioninproblems2)and3)above.

5) Explainhowthelawoflargenumbersisrelatedtothedeterminationofexperimentalprobabilities.Whatdoesthislawtellyouaboutsimulationsyouwilldoinyourelementaryclassrooms?

Page 152: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

152

6) Afaircoinhasbeentossedathousandtimesandthenumberofheadsandtailsrecorded.Whichofthefollowingstatementsismostlikelytrue?

a) Thenumberoftailsis601andthenumberofheadsis399.b) 47%ofthetosseswereheads.c) Therewere20moreheadstossedthantails.

7) Supposeweflipacoin10,000,000,000times(justsuppose)andnoticethat

5,801,595,601areheads.Whatcanyousayaboutthecoin?Explain.

8) Designasimulationtodeterminetheexperimentalprobabilityofdrawingaspadefromastandarddeckofcards.Howcanyoubereasonablycertainyourresultisclosetothetheoreticalprobability?Carryoutyoursimulationandcompareyourresulttothetheoreticalprobabilityofdrawingaspadefromadeckofcards.

Page 153: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

153

SummaryofBigIdeas

Anideaisalwaysageneralization,andgeneralizationisapropertyofthinking.Togeneralizemeanstothink.

GeorgHegel

• Arandomexperimentisanactivitywheretheoutcomecannotbeknownin

advance.

• Theprobabilityofaneventhappeningistheproportionoftimesthateventwouldoccuriftherandomexperimentwasperformedaverylargenumberoftimes.

• Itisimportantforyoutogiveyourstudentsexperiencescalculatingprobabilities

experimentallyaswellastheoretically.• Treediagramshelpstudentsthinkthroughprobabilityideas.• Thelawoflargenumberstellsusthatthelargerthesample,themorelikelyweare

togetclosetothetheoreticalresult.

Page 154: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

154

ChapterSix StatisticsandDealingwithData

Page 155: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

155

ClassActivity26: StudentWeightsandRectangles

Themathematicsisnotthere‘tilweputitthere. SirArthurEddington(MQS)

Whatistheaverageweightofallthestudentsregisteredforclassesatyourschoolthissemester?Inyourgroups,makeaplanforsomewaytogatherinformationtoanswerthisquestion.Bespecificaboutwhatyouwilldoandwhenyouwilldoit.Atthispoint,timeandcostisnoobject.(Waittodiscussthisquestionasaclassbeforeyouturnthepage.)

Page 156: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

156

Now,havealookatthepopulationof100rectanglesonthenextpage.Noticethateachonehasanarea(asize).Forexample,rectanglenumber74hassize6squareunitsbecauseitiscomposedof6smallsquares.Carefullyselectasampleoftenrectanglesthatyouthinkwillhaveanaveragesizethatisclosetoaveragesizeofalltherectanglesonthepage.Makesuretopersonallychooseeachoftheten.Thenfindtheaveragesizeofyourself-selectedten.Yourclasswillthenmakeafrequencygraphshowingeveryone’saverages.Next,eachpersonshouldselect10rectanglesatrandom.(Yourinstructorwillhaveaplanfordoingthis.)Thenfindtheaveragesizeofyourrandomly-selectedten.Yourclassshouldmakeanotherfrequencygraphshowingeveryone’saverages.Finally,estimate,basedonthefrequencygraphs,whatistheaveragesizeofall100rectanglesonthepage?Explainyouranswer.Whatdoesallthishavetodowiththestudent-weightproblem?

Page 157: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

157

A Population of Rectangles

Page 158: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

158

ReadandStudy

Heusesstatisticsasadrunkenmanuseslampposts–forsupportratherthanillumination.

AndrewLang Thisrectanglesizeproblemcontainsahugelessoninstatistics.Huge.Itisthis:humansarenogoodatselectingsamples.Ifyouwantunbiasedinformation,randomsamplesarethewaytogo.Inordertotalkmoreaboutthis,wearegoingtointroducethelanguageofsampling.Rememberthatwewantyoutolearnthesedefinitionsandtousethem.First,asamplereferstoasubsetofapopulation.Inourstudentweightproblem,thepopulationofinterestwasallstudentsregisteredforclassesatyourschoolthissemester.Inanidealworld,wejustwouldhaveeverysinglememberofthepopulationcometogetweighedandwewouldcalculatetheaverageweight.Unfortunately,thiswouldlikelyproveimpossible.Lots(most?)ofthestudentswouldnotshowuptobeweighed,andforcingthemtodosowouldbeunethical.Worse,thosewhowouldbewillingtoshowupmightbedifferentthanthosewhowouldrefuse.Peoplewhowereweight-consciousoroverweightmightbemorelikelytoavoidsteppingonyourscale.Sointheend,youwouldendupwithabiasedsample.Anothersolutionmightbetosendoutanonymoussurveystotheentirepopulationaskingeachpersontorecordhisorherweight.Butwouldyoureturnthatsurvey?Mostpeoplewouldnot(masssurveysmailedoutlikethattendtohaveverylowresponserates)andthosepeoplewhoreturnthemareagaindifferentfromthepopulation.Additionally,whenasurveyreliesonparticipantstoself-reporttheirowndata(likeweight),sometimesthatdataisn’taccurate.Okay,wellwemighttrytocalleveryoneorgodoor-to-doortocollectinformationonstudentweights.Thattypeofsamplingyieldsmuchhigherresponseratesbutcouldproveveryexpensiveandtakealotoftime(particularlyifyouhappentohavethousandsofstudentsinthepopulation). T H E L A G U A G E O F S A M P L I N G

So,whatarewetodo?Hereisthestatistician’ssolution.Forgetaboutgatheringdata(information)fromeachandeverymemberofthepopulationandfocusyourtime,energyandresourcesinsteadongettinginformationfromjustarandomsampleofthepopulation.Thatwayyoucanaffordtogodoor-to-doorandgetdatafrommostmembersofthesample.Itstillwon’tbeperfect.Butitturnsoutthatthisistheverybestyoucandoinafreesociety.Whyshouldthesampleberandom?Whynotsimplycollectdataontheweightsofyourfriends,ormaybeeveryoneinyourdorm,orwhynotstandinfrontofthecampuslibraryandaskeveryonewhowalksbyfortheirweights?Becauseofthethreatof…samplingbias.Asamplingprocedureisbiasedifittendstoover-sample(orunder-sample)populationmemberswithcertaincharacteristics.Thiswillmostsurelyhappenifyouself-selectyour

Page 159: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

159

sample–afterall,thestudentsyouknowhavedifferentcharacteristicsthanthepopulationofyourcampus.Whataresomeofthosedifferences?Stopandwritedownatleastthree.Butyoursamplewillalsobebiased,inamoresubtleway,ifyoustandinfrontofthelibraryandaskpeople“atrandom.”Thisisbecauseyouarenotreallyaskingrandompeople.Youareaskingthepeoplewhowalkbythelibraryatthattimeofday(maybeoversamplingpeoplewhostudyoftenorunder-samplingthosewhohaveaclassatthattime).Youareaskingpeoplewhohavealookatyouanddecidetheywanttoansweryourquestion(unwittinglyoversamplingpeoplelikeyourself).Giveanotherreasonwhythelibrarysamplemightbebiased.Samplingbiasissneaky.Itcreepsinbasedonwhenyousampleandwhereyousampleandhowyousample(aswellaswhoyousample).Watchforitasyouanalyzestudies.Sothesolutionistogeneratearandomsampleandthentouseyourresourcestogetthebestpossibleresponseratefromthem.Herearetwotypesofrandomsamplingthatareconsideredacceptable.Thefirstisthebest.Itiscalledsimplerandomsamplinganditismathematicallyequivalenttopullingnamesoutofahat.Everymemberofthepopulationhasthesamechanceofbeinginthesampleasanyothermemberofthepopulationandanysubsetofthepopulationhasthesamechanceofbeinginthesampleasanyothersubsetofthesamesize.Stop.Readthatlastsentenceagainandthinkaboutit.Ifyouhadyourregistrargeneratealistofallstudentsenrolledinclassesthissemesterandyouassignedeachstudentanumberandthenhadyourcalculatorgenerate100randomnumbersandusedthosenumberstogetnames,thenthatwouldbesimplerandomsampling.IfIlinedupyourclassinarowandthentookeverythirdpersontomakemysample,wouldthatbesimplerandomsampling?Explain.R A N D O M S A M P L E S

Thereareotherformsofacceptablesampling.Forexample,clustersamplingisrandomsamplinginstages.Forexample,ifyourandomlychosetenpagenumbersfromtheregistrar’slistofstudentsandthenrandomlychose10peoplefromeachofthosepages,thenthatwouldbeclustersampling.TheU.S.Censushasmadeuseofclustersamplingwhenithasattemptedtofindthosepeoplewhodidnotreturntheircensusforms.We’lltellthatstoryinalatersection,fornowletussaythatacensusmeansthatyougatherinformationfromeachandeverymemberofapopulation.TheU.S.Censusisbutoneexampleofanattemptatacensus.Ifyoutriedtogetweightinformationfromeverystudentregisteredatyourcampus,thenyoutoowouldbeattemptingacensus.Itisprettymuchimpossibletoconductacensuswithalargepopulationbecauseyounevergetdatafromeveryone.Ifyoucollectdatafromasubsetofthepopulation,youarereallyconductingasurvey.Okay,herearetwomoretermstoknow:thenumericinformationthatyouwanttoknowaboutapopulation(ifyoucouldgetit)iscalledaparameter;thenumericinformationyougetfromasampleiscalledastatistic.Inourexample,theparameterwewereafterwastheaverage

Page 160: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

160

weightofallthestudentsregisteredforclassesatyourschool.Ifwecoulddoacensusofthatpopulation,wecouldfindthatparameter.However,wehavediscussedsomeofreasonswhywe’renotlikelytogetthatparameter.Instead,wewillsettleforperformingasurveyofasampleofthepopulation,andwhatwewillgetisastatistic.Hereisourilluminatingpicture:

Population Sample(fromthepopulation)

Askeveryone,it’scalledacensus. Askasubset,it’scalledasurvey.#computedfromthepopulation↔parameter. #computedfromthesample↔statistic.Thedifferencebetweentheparameterandthestatisticiscalledsamplingerror.Samplingerrorisanidea.Inpractice,whenconductingasurvey,youaren’tgoingtoknowwhatitisbecauseallyouwillhaveisastatistic.You’llprobablyneverknowtheexactparameter.Butwestillusethesewordstotalkabouttheideas.Onesourceofsamplingerrorwehavealreadydiscussed:samplebias.Anothersourceofsamplingerrorischanceerror.Chanceerroriserrorduetothediversityofthemembersofthepopulationandthefactthatyouarejustcollectingdatafromasubsetofthem.Ifthepopulationisdiverse(different)intheirweights,forexample,thenifyoupickarandomsampleofthem,youmayendupwithanaverageweightthatisabitdifferentfromthepopulationweight.Youmayeven,duetochancealone,getsomepeoplewhoareverythinorveryheavyinthesample.ThinkbacktoyourrandomsampleoftenrectanglesfromtheClassActivity.Theaveragesizeofyourrandomrectangleswaslikelycloseto,butnotexactly,theaveragesizeofall100rectanglesonthesheet.Thedifferencewasduetochanceerror.Nowthinkbacktotheaveragesizeofyourtenself-selectedrectangles.Thedifferencebetweenthatnumberandtheaveragesizeofall100rectanglesonthesheetisduetobothchanceerrorandsamplebias.Howdoyoureducesamplebias?Makeyoursamplerandom.

Page 161: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

161

Howdoyoureducechanceerror?Makeyoursamplebigger.Sojusthowbigdoesasamplehavetobe?Itseemslikeyouwouldneedsomesignificantsamplingrate(likemaybe25%ofthepopulation),butitturnsoutthatgoodsurveyscanbedonewithquitesmallsamples.Forexample,nationalpollingtopredicttheoutcomeofthepresidentialelectionisoftendonewithonlyafewthousandpeople.That’safewthousandoutofmorethan100millionlikelyvoters.Samplingrate[(#inthesample)÷(#inthepopulation)]canbesosmallbecausepeoplearenotallthatdiversefromasamplingperspective.Thinkofitthisway:supposeyouaregoingtosampleabigpotofsouptoseehowittastes.Aslongasthatsoupisstirredupreallywell,andthechunksofmeatsandvegetablesintherearen’ttoobigortoodifferent,allyouneedisasmallbitetoknowtheflavor.Bytheway,whatwasthesamplingrateofyourrandomsamplefromtherectanglesheet?Figureitout.

ConnectionstoTeachingIngrades3-5allstudentsshould–proposeandjustifyconclusionsandpredictionsthatarebasedondataanddesignstudiestofurtherinvestigatetheconclusionsand

predictions. NationalCouncilofTeachersofMathematics

PrinciplesandStandardsforSchoolMathematic,p.176Ideasofsamplingaresurprisinglycomplex–butgroundworkforthemcanbelaidintheelementaryschool.TheNCTMStandardsadvocatesthatstudentsingrades3-5should

“…begintounderstandthatmanydatasetsaresamplesoflargerpopulations.Theycanlookatseveralsamplesdrawnfromthesamepopulation,suchasdifferentclassroomsintheirschool,orcomparestatisticsabouttheirownsampletoknownparametersforalargerpopulation…theycanthinkabouttheissuesthataffecttherepresentativenessofasample–howwellitrepresentsthepopulationfromwhichitisdrawn–andbegintonoticehowsamplesfromthepopulationcanvary(p.181).”

Noticetheuseofthetechnicallanguage.Whatdotheymeanby“knownparametersforalargerpopulation?”Givesomeexamples.Supposethatyourthirdgradershavecollecteddatafromtheirclassonthenumberoftimeslastweekthattheyeathotlunchatschoolandfoundthefollowingdatadisplayedbelowasafrequencyplot(eachXrepresents1childintheclass):

Page 162: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

162

X X X X X X X X X X X X X X X X X X X X 0 1 2 3 4 5 #ofHotLunchDayslastweekOfcourse,therearemanyquestionsyoumightaskyourstudentsaboutthesedata–buttherearesomequestionsparticularlyrelatedtosamplingthatshouldbeaskedanddiscussed.Questions1:Wasthereanythingspecialaboutlastweekthatmighthavemadethesedatadifferentthanifwe’daskedthesamequestionnextweekordoyouthinklastweekwasatypicalweek?Inwhatwaysmighttheyrespondtothatquestion?Whatpointsaboutsamplingcouldyoumakeineachcase?Question2:Howdoyouthinkthedatamighthavebeendifferentifwe’daskedthefifthgradersthesamequestion?

Inwhatwaysmighttheyrespondtothatquestion?Whatpointsaboutsamplingcouldyoumakeineachcase?Questions3:Woulditbeokaytolabelthisgraph“NumberofDaysEachWeekthatChildrenEatHotLunchatOurSchool?”Whyorwhynot?Inwhatwaysmighttheyrespondtothatquestion?Whatpointsaboutsamplingcouldyoumakeineachcase?Noticethatthesequestionshelpchildrenthinkaboutwhetherthedataisrepresentativeofapopulationlargerthanthesampleof20third-gradersshownonthegraph,andithelpsthemto

Page 163: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

163

begintothinkcriticallyaboutwhatthedatasaysandwhatitdoesnotsay.Samplingbecomesanexplicittopicinthemiddlegrades.

Homework

Weknowthatpollsarejustacollectionofstatisticsthatreflectwhatpeoplearethinkingin‘reality.’Andrealityhasawellknownliberalbias.

StephenColbert

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.2) Explainthedifferencebetweenacensusandasurvey.

3) Explainthedifferencebetweenaparameterandastatistic.

4) TrueorFalse?Thebiggerthesamplethesmallerthesamplebias.Explainyourthinking.

5) Sometimesawebsiteorpublicationwilladvertiseapollaskingitsviewersto‘callin’or

‘clicktorespond’toquestionsonatopic.Inthiscasewesaythatthesampleisself-selected.Whattypesofbiasesarelikelyinthistypeofsurvey?Explain.

6) Itispossibletobiasresultsofasurveybyaskingquestionsusing“charged”language.ConsiderthesequestionsfromtheRepublicanNationalCommittee’s2010ObamaAgendaSurvey,andfromaDemocraticStateSenator’sdistrictsurvey.(Canyoutellwhichiswhich?)Explainhoweachquestionmightbeaskedinalessleadingmanner.

a) “Doyoubelievethatthebestwaytoincreasethequalityandeffectivenessof

publiceducationintheU.S.istorapidlyexpandfederalfundingwhileeliminatingperformancestandardsandaccountability?”

b) “DoyousupportthecreationofanationalhealthinsuranceplanthatwouldbeadministeredbybureaucratsinWashington,D.C.?”

c) “DoyoubelievethatBarackObama’snomineesforfederalcourtsshouldbeimmediatelyandunquestionablyapprovedfortheirlifetimeappointmentsbytheU.S.Senate?”

d) “Doyousupportoropposelegislationtorestoreindexingofthehomesteadtaxcredit,whichwouldboostoureconomyandhelppeopletostayintheirhomes?”

e) “DoyousupportoropposelimitinglocalcontrolandweakeningenvironmentalstandardstoencourageironoremininginWisconsin?”

7) TheColumbusCityCouncilwantedtoknowwhetherthe65,000citizensofthecityapprovedofaproposaltospend$1,000,000torevitalizethedowntown.Thefollowingstudywasconductedforthispurpose.Asurveywasmailedtoevery10thpersononthe

Page 164: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

164

listofregisteredvotersinthecity(itwasmailedto3500people)askingabouttheproposal.CitizenswereaskedtocompletethesurveyandreturnittotheCouncilbymailinaself-addressed,stampedenvelope.3100peopleresponded;ofthese,75%supportedtheexpenditureand25%didnot.

a) Thepopulationforthisstudyis

A)allregisteredvotersinthecity B)allcitizensofthecityofColumbus C)the3500peoplewhoweresentasurvey D)the3100peoplewhoreturnedasurvey E)noneoftheabove

b) Whatwasthesamplingrateforthissurvey?

c) The"75%"reportedaboveisa A)parameter B)population C)sample D)statistic E)noneoftheabove

d) Thissurveysuffersprimarilyfrom A)samplingbias B)chanceerror C)havingasamplesizethatistoosmall D)non-responsebias

e) TrueorFalse?Theresultsofthissurveymaybeunreliablebecauseregisteredvotersmaynotberepresentativeofallthecitizens.Explainyourthinking.

f) TrueorFalse?Themethodofsamplinginthissurveycouldbestbedescribedas

simplerandomsampling.Explainyourthinking.

g) TrueorFalse?Samplebiascouldbereducedbytakingalargersampleofregisteredvoters.Explainyourthinking.

Page 165: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

165

ClassActivity27: SnowRemoval

Errorsusinginadequatedataaremuchlessthanthoseusingnodataatall.CharlesBabbage

Inordertostudyhowsatisfiedthe120,000citizensofGreenBay,WIarewithsnowremovalfromcitystreets,Iconductedthefollowingstudy.IstoodinfrontoftheGreenBayWalmartonaMondaymorninginFebruaryfrom9:00untilnoonandIaskedeverythirdpersonwhowalkedinwhethertheyweresatisfiedwithsnowremovalfromstreetsinGreenBay.Onehundredandeightpeoplesaidtheyweresatisfied.Twenty-fivepeoplesaidtheywerenot,and18refusedtoanswermyquestion.Answerthebelowquestioninyourgroups.

1) Describethepopulationforthestudy.

2) DidIconductacensusorasurvey?Explain.

3) Whatwasthesamplingrate?(Writethisinseveraldifferentways.)

4) Whatwastheresponserate?(Writethisinseveraldifferentways.)

5) TrueorFalse?Thisstudysuffersprimarilyfromnon-responsebias.Explain.

6) TrueorFalse?Thisstudysuffersprimarilyfromsamplingbias.Explain.

7) TrueorFalse?Theresultsofmystudymaynotbevalidbecausecityemployeesmayhavebeenpartofthesample.Explain.

8) TrueorFalse?Amainproblemwithmystudyisthatmysamplesizeistoosmall.Explain.

9) TrueorFalse?PeopleshouldconcludefrommystudythatGreenBaycitizensare

generallyhappywithsnowremovalfromcitystreets.

10) Describeatleastthreewaystoimprovemystudy.

Page 166: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

166

ReadandStudy

Youcanuseallthequantitativedatayoucanget,butyoustillhavetodistrustitanduseyourownintelligenceandjudgment.

AlvinToffler

“Fouroutoffivedentistssurveyedrecommendsugarlessgumfortheirpatientswhochewgum.”You’veheardthatclaim.Itisperhapsthemostwellrememberedstatistical‘fact’inthehistoryofmarketingresearch.Butwhatdoesittellyou?Themakersofsugarlessgumhopethisstatisticconvincesyoutopurchasetheirproduct.Butbeforeyourunoutforapackofsugarlessgum,youshouldaskafewquestionsaboutthis‘fact.’Howwerethedentistsinthesamplechosen?Whatwastheresponserate?Whatwasthesamplesize?Whatwastheexactquestiontowhichthedentistswereaskedtorespond?Andevenifitturnsoutthatthesurveyusedexemplarymethodology,notethattheresultdoesnotsuggestyouthatyoushouldtakeupchewingsugarlessgum.Itonlysuggeststhatifyoualreadychewgum,thesedentistssuggestyouchewsugarlessgum.Allsurveysarenotcreatedequal.Infact,somearedownrightmisleading.Itisimportantforyoutothinkcriticallyaboutinformationbasedonsurveydata.A N A L Y Z I N G A S U R V E Y

Surveysaremeanttoprovideinformationaboutapopulation.Theycanhelpcompaniesunderstandhowtomarketproducts;theycanhelpgovernmentalagenciesunderstandconstituents;theycanhelpcampaignspredictpublicreactionstoideasorevents;theycanhelpsecondgradeteachersunderstandwhichmoviestheirstudentsprefer.Hereisanexampleofonerealsurvey.TheUnitedStateCensusBureauusessurveystounderstandthepopulationofourcountry.(Bytheway,asteachersyoucangetgooddataforyourstudentstoanalyzefromtheU.S.CensusBureauwebsite.Keepthatinmind.)Forexample,theyconductasurveyofU.S.housingunitseveryotheryearinordertomakedecisionsaboutfederalhousingprojects.Intheirwords,theiraimisto“[p]rovideacurrentandongoingseriesofdataonthesize,composition,andstateofhousingintheUnitedStatesandchangesinthehousingstockovertime.”Hereisafigureshowingsomeoftheresultsofthe2007AmericanHousingSurvey(AHS).Takeafewminutestostudyit.

Page 167: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

167

U.S.CensusBureau,CurrentHousingReports,SeriesH150/07AmericanHousingSurveyfortheUnitedStates:2007.U.S.GovernmentPrintingOffice,Washington,DC.

Page 168: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

168

Theseresultsdrivenationalpolicy,sowehopethattheAHSiswelldesigned.Let’shavealookatthemethodology.ReadthefollowingparagraphbasedontheinformationfromtheUSCensusBureauwebsite:TheAHShassampledthesame53,000addressesineachodd-numberedyearsince1985.Thoseaddresseswerechoseninthefollowingmanner.

“FirsttheUnitedStateswasdividedintoareasmadeupofcountiesorgroupsofcountiesandindependentcitiesknownasprimarysamplingunits(PSUs).AsampleofthesePSUswasselected.ThenasampleofhousingunitswasselectedwithinthesePSUs”(U.S.CensusBureau,2007,p.B-1).

TheAHSincludesbothoccupiedandvacanthousingunitsandallpeopleinthosehousingunits.Dataiscollectedusingcomputer-assistedtelephoneandpersonal-visitinterviews.Whenahousingunitwasvacant,informationwasgatheredfromneighbors,rentalagents,orlandlords.TheAHSisavoluntarysurveymeaningthathouseholdscandeclinetoanswerquestions.Interviewsforthedatapresentedabovewereconductedfrommid-ApriltoSeptember2007.

Okay,shouldwebelievetheAHSresults?Let’stalkthroughananalysisofthesurveydesign.First,whatisthepopulationforthissurveyandwhatisthesample?Accordingtothe2001census,thereareabout200,000,000housingunitstotalintheUnitedStates–thatistheapproximatepopulation.Thesamplecontainedabout53,000ofthesehomes.Thatgivesasamplingrateofabout0.0027%.Thismightseemsmall,butthesamplewascarefullyselectedusingclustersamplingandsothesamplingerrorwillbefairlysmalltoo.(Whywasthisclustersampling?Explainwhybasedonthedefinition.)Inotherwords,thereisreasontobelievethatthehouseholdsinthesamplearerepresentativeofhouseholdsintheUnitedStates.Let’sgoonestepfurtherinthinkingaboutthequalityofthedata.Itcouldbethatthesamplewaswell-chosen,butthatmanyhouseholdsgavefaultyinformation(orsimplyrefusedtogiveinformationatall).LuckilytheCensusBureauusedthebestpossiblemethodforcollectingdata–theycalledfirst,andiftheycouldnotreachahouseholdbyphone,theysentsomeonetotheaddresstoconductaninterviewwitheithertheoccupants,orinthecaseofanemptyunit,aneighbororlandlordorrealestateagent.Thislikelyproducedafairlyhighresponserate.(Infact,theBureaureportsan89%responserate.Intheothercaseseithernoonewasathomeevenafterrepeatedvisits,theoccupantsrefusedtobeinterviewed,ortheaddresscouldnotbelocated.)So,ourtakeisthatthemethodologyfortheAHSissoundandtheresultsarebelievable.Wewantyoutolearntothinklikethiswheneveryouneedtojudgethebelievabilityofaclaimbasedondata.

Page 169: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

169

ConnectionstoTeaching

Mathematicsisasmuchasaspectofcultureasitisacollectionofalgorithms.CarlBoyer

The Common Core standards in grades 6 and 7 for surveys are listed below. Read them carefully and then determine which standards we have addressed so far.

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

CCSSGrade6:Developunderstandingofstatisticalvariability.1. Recognizeastatisticalquestionasonethatanticipatesvariabilityinthedata

relatedtothequestionandaccountsforitintheanswers.Forexample,"HowoldamI?"isnotastatisticalquestion,but"Howoldarethestudentsinmyschool?"isastatisticalquestionbecauseoneanticipatesvariabilityinstudents'ages.

CCSSGrade6:Summarizeanddescribedistributions.

5.Summarizenumericaldatasetsinrelationtotheircontext,suchasby:A.Reportingthenumberofobservations.B.Describingthenatureoftheattributeunderinvestigation,includinghowitwasmeasuredanditsunitsofmeasurement.

CCSSGrade7:Userandomsamplingtodrawinferencesaboutapopulation.

1. Understandthatstatisticscanbeusedtogaininformationaboutapopulationbyexaminingasampleofthepopulation;generalizationsaboutapopulationfromasamplearevalidonlyifthesampleisrepresentativeofthatpopulation.Understandthatrandomsamplingtendstoproducerepresentativesamplesandsupportvalidinferences.

2. Usedatafromarandomsampletodrawinferencesaboutapopulationwithanunknowncharacteristicofinterest.Generatemultiplesamples(orsimulatedsamples)ofthesamesizetogaugethevariationinestimatesorpredictions.Forexample,estimatethemeanwordlengthinabookbyrandomlysamplingwordsfromthebook;predictthewinnerofaschoolelectionbasedonrandomlysampledsurveydata.Gaugehowfarofftheestimateorpredictionmightbe.

Page 170: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

170

Homework

USATodayhascomeoutwithanewsurvey--apparently3outofevery4peoplemakeup75%ofthepopulation.

DavidLetterman

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.3) Spendafewminuteslookingatthefigureonoccupiedhomesfromthe2007AHS.Write

aparagraphhighlightingthethingsthatyoufindmostinterestingornotableabouttheseresults.

4) Inordertofindouthowitsreadersfeltaboutitscoverageofthe2008Presidential

Election,alocalnewspaper(withacirculationofabout10,000)ranafront-pagerequestintheSundaypaperthatreadersgototheirwebsiteandcompleteanonlineanonymoussurveythatcontainedthefollowingtwoquestions:

I. Whatisyourpoliticalaffiliation?____Democrat____Republican____Independent____Other

II. Howwouldyourateourcoverageofthe2008presidentialelection?____slantedleft____slantedright____unbiased____noopinion

Sixhundredreadersresponded.Ofthose,70%ofDemocrats,40%ofRepublicans,66%ofIndependents,and20%of“Other”saidthatthecoveragewasunbiased.

a) Analyzethesamplingmethod.Isthesampleofrespondentslikelytoberepresentativeofthepopulationthepaperwantstorepresent?Givespecificreasonswhyorwhynot.

b) Whatdoesthedatatellusaboutthepaper’scoverageofthe2008PresidentialElection?Explain.

c) Describesomewaystoimprovethissurvey.

Page 171: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

171

5) GototheUnitedStatesCensusBureauwebsite(http://www.census.gov/schools/)andfindtheTeachersandStudentslink.Spend15minutesbrowsingtheactivitiesthere.ThendesignamathematicslessonforGrade3usingtheStateFactsforStudentslink.

6) AresearcherwantstopredicttheoutcomeoftheFrostbiteFallsmayoralelection.In

ordertodothis,shemailedasurveytoeverytenthpersononalistofall40,980registeredvotersinthecity.Onethousandfifty-sixpeoplereturnedthesurvey.34%ofrespondentssaidtheysupportedSnidelyWhiplash;48%saidtheysupportedDudleyDoRight;theremaining18%wereundecided.

I. Thepopulationforthisstudyis

A)allmayoral-racevotersinthecityofFrostbiteFalls B)allcitizensofthecityofFrostbiteFalls C)thepeoplewhoweresentasurvey D)thepeoplewhoreturnedasurvey E)noneoftheabove

II. Theresponseratewas___________.III. Thesamplingratewas___________.

IV. The"48%"reportedaboveisa

A)parameter B)population C)sample D)statistic E)noneoftheabove

V. Thissurveysuffersprimarilyfrom

A)selectionbias B)nonresponsebias C)chanceerror D)havingasamplesizethatistoosmall

VI. TrueorFalse?Theresultsofthissurveymaybeunreliablebecausemembersofthecitygovernmentmayhavebeenincludedinthesample.Explainyourthinking.

VII. TrueorFalse?Themethodofsamplinginthissurveycouldbestbedescribed

assimplerandomsampling.Explainyourthinking.

VIII. TrueorFalse?Biascouldbereducedbytakingevery5thpersononthelistofregisteredvotersratherthanevery10th.Explainyourthinking.

Page 172: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

172

ClassActivity28: Part1NameGames

Ifeellikeafugitivefromthelawofaverages. WilliamH.Mauldin

1) Eachpersonintheclassshouldwritehisorherfirstnameonstickynotessothatthere

isoneletteroneachoftheperson’snotes.(Soforexample,IwouldwriteJononenote,Eonanother,andNonthethird.)Putyournamesinstacksontheboardlikewedidintheexamplebelow.Nowyourclassneedstorearrangeyourclasses’stickynotes(orevenpartsofstickynotes)sothateverystackendsupwiththesamenumberofletters.Dothatnow.

AmiJen Mo Omar…

Themean(oraverage)ofasetofnumericalobservationsisthesumofalltheirvaluesdividedbythenumberofobservations.Explainwhyitmakessensethatyourmethodjustcomputedthemeannamelengthforyourclass.

2) Nowwewillmakeadifferenttypeofgraph,abargraph.Eachpersonshouldgetonestickynotetoplaceonthegraphbasedonthelengthofhisorherfirstname.ForexampleiftherewereeightpeopleintheclasswithnamesMo,Ami,Jen,Omar,Karen,Steve,Sienna,andJuanitathebargraphwouldlooksomethinglikethis:

frequencies

____________________________________ 234567 NameLengths

Figureoutawaytorearrangethenotestohelpyoutofindthemeannamelengthonagraphlikethis.Whydoesitmakesensethatyourmethodjustcomputedthemeannamelengthforyourclass?Howisthismethoddifferentfromthemethodyouusedinquestion1?Discussthis.

(Thisactivitycontinuesonthenextpage.)

Page 173: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

173

3) Themedianofasetofnumericalobservationsisthemiddleobservationwhenthedataisplacedinnumericalorder.Inthecasewheretherearetwo“middle”observations,themedianistheaverageofthem.Decidehowyoucoulduseeachtypeofgraphabovetohelpyoufindthemediannamelength.

4) Whichislikelytobelargerforyourclass?Themeannumberofsiblingsorthemediannumber?Explain.Then,collectthedataandseeifyouarecorrect.

Page 174: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

174

ClassActivity28: Part2IntheBalance

Sodivinelyistheworldorganizedthateveryoneofus,inourplaceandtime,isinbalancewitheverythingelse.

JohannWolfgangvonGoethe

Yourtaskistoputweightsonthenumberedpegsofabalancescaletokeepthesystembalanced.

1) Findseveraldifferentarrangementsof3weightssothatthesystemwillbalance.Makeageneralconjectureaboutallthearrangementsthatwillbalancethesystem.

2) Ifyouhadoneweight1totherightandtwoweights2totheleft,predictwhereyouwouldneedtoplaceafourthweighttobalancethesystem.

3) Findseveralwaystobalancefourweightswhereonlyoneweightisontheleftside.Makeageneralconjectureaboutallthearrangementsofthistypethatwillbalancethesystem.

4) Predictsomearrangementsthatwillbalancefor5weights.Makeageneralconjecture

aboutallthearrangementsof5weightsthatwillbalancethesystem.

5) Supposethereare4catswithmeanweightof10pounds.Youknowtheweightsof3ofthecats.Thoseweightsare:4pounds,7pounds,and15pounds.Howcanyouusethebalancetofigureouttheweightofthe4thcat?(Don’tdoacalculation.Figureitoutwiththebalanceonly.)

6) Usethebalancetofigureoutthisproblem:Youhavetakenfourmathquizzes.Your

scoreswere82,67,85,and72.Whatdoyouneedtoscoreonthe5thquizforyouraveragequizscoretobe75?(Don’tdoacalculation.Figureitoutwiththebalanceonly.)

Page 175: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

175

ReadandStudy

Theaverageadultlaughs15timesaday;theaveragechild,morethan400times. MarthaBeck

Therearethreestatisticsthatarecommonlyusedtodescribethecenterofadistributionofnumericaldata:mean,medianandmode.Themeaniscomputedbysummingthevaluesanddividingbythenumberofthem.Butabetterwayforchildrentothinkaboutmeanisusingtheideaof“eveningoff.”Themeanistheaveragevalue,thevalueeachpersonwouldgetifallthedatawassharedevenly.Forexample,supposethepicturebelowshowsthecookiesthatbelongtoeachchild.

Keesha’scookies:

Andi’scookies:

Tim’scookies:

Myosia’scookie:

Carlos’cookie: Asyousawintheclassactivity,inordertofindthemeannumberofcookies,thechildrencouldimaginesharingcookies(orevenpartsofcookies)sothattheyeachchildhasexactlythesamenumber.Bytheway,isthisdatadisplayliketheoneinproblem1)ortheoneinproblem2)fromtheClassActivity?Explain.

Page 176: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

176

Keesha’scookies:

Andi’scookies:

Tim’scookies:

Myosia’scookies:

Carlos’cookies: Sothechildrenseethatthemeannumberofcookiesis3.Inthiscasewedidn’tneedtobreakupcookiesinordertosharethem,butyoucertainlyshoulddoexampleslikethatwithyourstudents.R E D I S T R I B U T I O N C O N C E P T O F T H E M E A N

Whatwehaveillustratedhereistheredistributionconceptofthemean:thatthemeanvalueofasetofnumbersiswhateachobservationwouldgetifthedatawasredistributedtothateachobservationhadthesameamount.Thisconceptisessentiallythesameasthepartitiveconceptofdivision:takingatotalamountandsharingitequallyintoanumberofgroups,andseeinghowmucheachgroupgets.B A L A N C E C O N C E P T O F T H E M E A N

Inclassactivity12b,wealsodiscoveredthebalancepointconceptofthemean,namely,thatthemeanisthepointinadistributionwherethesumofthedistancesthatthedataisabovethemeanbalanceswiththesumofthedistancesthatthedataisbelowthemean.Themodeofasetofdataisthevaluethatoccursmostfrequently.Whatisthemodeforthecookiedata?Sometimesadatasetwillhavemanymodesbecauselotsofvalueswilloccurwiththesamemaximumfrequency.M E D I A N A N D M O D E

Theideaofmedianistheideaofmiddleorcentervalue.Sowesawthatthenumberofcookiesheldbythefivepeopleis4,3,7,1,and1.Ifweputthesevaluesinnumericalorder,weget: 1 1 3 4 8

Page 177: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

177

Whydoweneedtoputtheminnumericalorderfirst?Howwouldyouexplainthistoachild?Weseethatthemiddlevalueis3(we’llwriteM=3.)Inthecaseofanevennumberofvalues,wehavenoonemiddlevalue,andsothemedianistheaverageofthetwomiddlevalues.Findthemean,mode,andmedianofmybowlingscores:

112 114 120 123 127 127 130 167 220Whydoesitmakesensethatthemeanislargerthanthemedianforthesedata?Explain.F I V E N U M B E R S U M M A R Y

WewilldefineQ1(thefirstquartile)asthemedianofthedatapositionedstrictlybeforethemedianwhenthedataisplacedinnumericalorder.Forexampleusingmybowlingscores,127isthemedian.

112 114 120 123|127| 127 130 167 220Sothescores112,114,120and123arepositionedbeforethemedian.Themedianofthosescoresis(114+120)/2=117.SoQ1=117.Q3(thethirdquartile)isthemedianofthedatapositionedstrictlyafterthemedianwhenthedataisplacedinnumericalorder:127,130,167and220.Q3=148.5.Nowwecanreportsomethingwecallafive-numbersummaryforthesescores:Minimum=112, Q1=117, M=127, Q3=148.5, andMaximum=220Bythewaychildrenmaywanttoknowifduplicatesinthedatacanbethrownout.Whatwouldyousaytothem?Why?Whataboutvaluesofzero–couldtheybediscarded?Whatwouldyousaytothechildrenaboutthat?

Page 178: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

178

Weusedasmalldatasetforthepurposeofillustratingtheseideas.Wenotethatforlargedatasets,thesestatistics(mean,median,mode,quartiles,andpercentiles)aretypicallycomputedusingacalculatororcomputer.We’llgiveyoutheopportunitytousetechnology-ifyouhaveit-andworkwithalargerdatasetinalaterclassactivity.Asateacher,youwillneedtodiscusswithparentsthemeaningoftheirchild’sscoreonastandardizedexam,solet’sspendafewminutesontheideasthatyoumightfindusefulinthatcontext.Typicallythesescoresarereportedaspercentiles.Ifachildinyourclassscoresinthenthpercentilethismeansthat“npercent”ofthechildrenwhotookthetestscoredatorbelowthatscore.Forexample,ifachildscoresinthe80thpercentileonatest,thatmeansthat80%ofthechildrenwhotookthetestscoredatorbelowherscore.Anotherwaytothinkaboutthisistoimagineliningup100childrenaccordingtotheirtestscores,thischildwouldbenumber80fromthebottomintheline(ornumber20fromthetop).Inthiscontextthemedianisthe50thpercentile.WhatpercentileisQ3?P E R C E N T I L E S

ConnectionstoTeaching

Ingrades3-5allstudentsshouldusemeasuresofcenter,focusingonthemedian,andunderstandwhateachdoesanddoesnotindicateaboutthedataset.

NationalCouncilofTeachersofMathematics

PrinciplesandStandardsforSchoolMathematics,p.176Childreningrades3-5caneasilyunderstandandcomputemedianandmode,buttypicallytheideaofmeanisamoredifficulttopic.Thisisnotbecauseitishardtocalculateamean;ratheritisbecauseitismoredifficulttounderstandtheideaofamean.Belowisanexampleofanactivityappropriateforchildreningrade4thatrepresentsanopportunityfortheteachertodiscussmeanasaredistributionprocessratherthanasacomputation.Explainhowyoucouldusestickynotestohavechildrenuseevening-offtofindthemeanofthebelowdatawithouteverdoingthestandardcomputation.Reallydoit.

Thefamilysizesforchildreninourclassareshownbelow.Makeabargraphforthesedataandthenfindthemeannumberoffamilymembers.

Page 179: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

179

Family sizeJenson 8Lewis 3McDuff 7EarlesSeaman

45

Ortiz 4PetersToddMiene

653

Weknowthatthestandardcomputation(addthevalues,thendividebythenumberofvalues)isquickerand‘easier’todo.Butasanelementarymathematicsteacher,yourjobistohelpyourchildrenunderstandbigideas–andnottogivethemshortcutsthatallowthemtogetrightanswerswithoutunderstandingtheideas.Childrenmustlearnthatmathematicsmakessense,andthatthinking(insteadofmemorizing)isthewaywedomathematics. Infifthgrade,studentsarefirstexposedtotheideaofthemean.Whatconceptofthemeanisusedhere?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Homework

Wecannotteachpeopleanything;wecanonlyhelpthemdiscoveritwithinthemselves.

GalileoGalilei

1) DoalltheitalicizedthingsintheReadandStudysection.2) DoalltheitalicizedthingsintheConnectionssection.

CCSSGrade5:Representandinterpretdata.1. Makealineplottodisplayadatasetofmeasurementsinfractionsofaunit(1/2,

1/4,1/8).Useoperationsonfractionsforthisgradetosolveproblemsinvolvinginformationpresentedinlineplots.Forexample,givendifferentmeasurementsofliquidinidenticalbeakers,findtheamountofliquideachbeakerwouldcontainifthetotalamountinallthebeakerswereredistributedequally.

Page 180: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

180

3) Lookatthe“FulcrumInvestigation”inUnit8,Module1,Session3ofthe4thgradeBridgesinMathematicscurriculum.Inthisactivity,studentsaregivenapencil,a12-inchrulerandseveral“tiles”(weightsorpennies)allofthesameweight.Byplacing6tileson“0”ontheruler,theycansimulatea60-poundfourthgradestudent(Sarah)sittingontheendofaseesaw.Anotherweightisplacedontheotherendoftheseesaw(at12inches).Ifthefulcrumisinthemiddleofthepencil(at6”),thenitwouldtake6tiles(representing60pounds)attheotherendto“lift”orbalanceSara.Usinganactualpencil,ruler,andweights(suchaspennies),predictthenexperimenthowmuchweightittakestobalanceSarahifthefulcrumisplacedatthe4-inchmark,the5-inchmark,the7-inchmark,andthe8-inchmark.

a. Answerquestions1-6inthe“FulcrumInvestigation”.b. HowcanyouusetheconceptoftheMeantoanswerquestions5and6inthis

investigation?c. A“ChallengeQuestion”inthenextsessionasks“IfSarahcan’tmovethefulcrum

fromthemiddleoftheseesaw,whatcanshedotobalancewiththe40-poundfirstgrader?Whydoesthismethodwork?”Answerthisquestion.Howdoyouthinkfourthgraderswouldbeabletothisout?Howcanyouusetheconceptofthemeantofigurethisout?

d. Repeatpartc,butnowsupposeshewastobalancewiththe100-pound7thgraderwithoutmovingthefulcrum.

4) Hereisadatasetofthenumberofyearsmembersofthemathdepartmenthavebeen

employedatmyschool:7,25,7,15,8,23,27,6,1,3,28,22,24,9,15,14,18,8.Computethemean,medianandmodeforthesedata.Whatdothesedatatellyouaboutthegroupofmathematicsfacultyatthisschool?

5) DecidewhethereachofthefollowingisTrueorFalse.Ineachcase,arguethatyouare

right.

a) T F Iftenpeopletookanexamthenitispossiblethatallbut oneofthemscoredlessthanthemean.

b) T F Iftenpeopletookanexamthenitispossiblethatallbut oneofthemscoredlessthanthemedian.c) T F Iftenpeopletooka100-pointexam,itispossiblethatthe meanandmedianare90pointsapart.d) T F Iftenpeopletookathousand-pointexam,itispossiblethe themeanandthemedianare90pointsapart.

e) T F Themeanincomeofyourtownislargerthanthemedian income.

Page 181: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

181

6) Supposethattenpeoplegraduatedwithadegreeincomputersciencefromyourschool

andnowtheirmeanannualincomeis$75,000.Ifmoneyisyouronlyconcern,doesthisconvinceyoutomajorincomputerscience?Explain.

7) Supposethattenpeoplegraduatedwithadegreeincomputersciencefromyourschool

andnowtheirmedianannualincomeis$75,000.Ifmoneyisyouronlyconcern,doesthisconvinceyoutomajorincomputerscience?Isitmoreconvincingorlessconvincingthanthescenariointhepreviousproblem?Explain.

8) Supposethatonehundredpeoplegraduatedwithadegreeincomputersciencefrom

yourschoolandnowtheirmeanannualincomeis$75,000.Ifmoneyisyouronlyconcern,doesthisconvinceyoutomajorincomputerscience?Explain.Isthismoreorlessconvincingthanthescenariosintheprevioustwoproblems?Explain.

9) Annneedsameanof80onherfiveexamsinordertoearnaBinherclass.Herexam

scoressofarare78,90,64and83.WhatdoessheneedtogetonherfifthexamtoearntheB?Dothisprobleminatleasttwodifferentways.Onewayshouldusetheredistributionconceptofthemean.Anothershouldusethebalancepointconceptofthemean.

10) Awaytothinkaboutthemedianofasetofnumbersisthatitisthevaluethatsplitsthe

distributionintotwoequal‘counts.’Considerthisfrequencygraphof18scoresonaquiz:

X X

X X X X X X X

X X X X X X X X X 1 2 3 4 5 6 7 8 9 10

ScoreonaQuiz(outoftenpossiblepoints)

a) Findthemedianscoreandexplain,asyouwouldtoastudent,whyitmakessense.b) Wesaythatthisdistributionisskewedleftbecauseithasanasymmetrictail(or

evenoutliers)totheleft.Inskewedleftdata,doyouexpectthemeantobehigherorlowerthanthemedian?Explainyourthinking.

c) Nowimaginethatthedistributionaboveshows18equalweightsarrangedonaseesaw.Ifyouwantedtheseesawtobalance,youwouldneedtoplacethefulcrumatthemean.Inotherwords,youcanthinkaboutmeanasthebalancingpointofthedistribution.Findthemeanandseeifitlookslikethebalancingpoint.Whydoesitmakesensethatthemeanissmallerthanthemedianforthesedata?

Page 182: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

182

11) Achildinyourfourth-gradeclassscoreda200outof500onastandardizedmathematicsassessmentinwhichtheaveragescorewas240.Thisstudentisreportedasscoringinthe35thpercentile.Youneedtoexplaintotheparentsexactlywhatthismeans.Whatdoyoutellthem?Areyouconcernedaboutthischild’sperformance?Explainyourthinking.

Page 183: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

183

ClassActivity29: MeasuringtheSpreadIt’snotthatGooddoesn’ttriumphoverEvil,it’sthatthepointspreadistoosmall.

BobThavesHerearetheexamscoresfortwostudents,AndreasandBelle:Andreas:45,57,69,69,80,94 Belle: 54,70,71,72,72,77Whichofthesestudentshadbetterscores?Explainhowyoudecidedbeforeyoureadfurther.Noticethatthesestudents’scoresareverysimilarbasedonthemeasuresofcenter(meanandmedian)–buttheyarenotsosimilarbasedonthespreadoftheirscores.Spreadisanideathatiscapturedbydifferentstatistics.Herearethreecommonmeasuresofspread:

1) Range=maximum-minimum.Computetherangeforeachstudent’sscores.Whatisitthatrangemeasures?Beasspecificasyoucan.

2) Inter-QuartileRange(IQR)=Q3–Q1.ComputetheIQRofeachstudent’sscores.What

isitthattheIQRmeasures?Beasspecificasyoucan.

3) MeanAbsoluteDeviation(MAD)=!-

𝑥! − 𝑥 + 𝑥" − 𝑥 + 𝑥% − 𝑥 +⋯+ 𝑥- − 𝑥 Inthisformulanisthenumberofvalues,𝑥isthemean,andeach“x”isaspecificvalue.Recallthat,forexample|-3|means“theabsolutevalueof-3.”ComputethemeanabsolutedeviationofAndreas’scoresandthenBelle’sasagroup.Whatisitthatthemeanabsolutedeviationmeasures?Beasspecificasyoucan.

(Thisactivitycontinuesonthenextpage.)

Page 184: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

184

Nowwehavethemachineryweneedtoidentifyanoutlierinthedata.First,adefinition:Anoutlierisaspecificobservationthatlieswelloutsidetheoverallpatternofthedata.Youmightask,whatdoesitmeantobe“welloutside”theoverallpatternofthedata?Gladyouasked.Wehaveacriterionforthat.Itiscalledthe1.5×IQRcriterion:avalueisconsideredanoutlierifitfallsmorethan1.5×IQRaboveQ3orifitfallsmorethan1.5×IQRbelowQ1.Let’susethiscriteriontotestAndreas’scoresforoutliers:45,57,69|69,80,94M=(69+69)/2=69andsitsinthepositionheldbythebarintheabovedataset,sothescores45,57and69arepositionedbelowthemedian(M).Q1=57andlikewise,69,80and94arepositionedabovethemediansoQ3=80.

IQR=Q3-Q1=80–57=23 1.5×IQR=34.5 Soavalueisanoutlierifitismorethan34.5pointsaboveQ3ormorethan34.5pointsbelowQ1.Inotherwords,outliersinAndreas’dataarebiggerthan80+34.5=114.5orsmallerthan57–34.5=22.5.Sincetherearenoscoresthatbigorthatsmallinhisdata,hehasnooutliersbasedonthecriterion.CheckBelle’sscoresforoutliersusingourcriterion.HowcanitbethatBellehasanoutlieramongherscoreswhenAndreasdoesnot?Explain.

Page 185: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

185

ReadandStudy

Americaisanoutlierintheworldofdemocracieswhenitcomestothestructureandconductofelections.

ThomasMann

IntheClassActivityyouworkedwiththreedifferentstatisticsthatdescribethespreadofthedata.Therangeshowsyoutheentirespreadofthedataset.TheIQRisameasureofthespreadofthemiddlehalfofthedata.Themeanabsolutedeviationmeasureshowspreadoutthedatais(onaverage)arounditsmean.Wewillusetwoprimarystatisticsfordeterminingthecenterofadistributionofdata:meanandmedian,andtwoprimarymeasuresofspreadofthedata:meanabsolutedeviationandinterquartilerange(IQR).So,howdotheyfittogetherandwhywouldwechoosetoreportoneoveranother?Ourfirstconsiderationisthis:doesthedatacontainoutliers?See,weknowthatanoutliercanhaveabigeffectonthemean(butnotonthemedian).Forexample,considerthesetestscoreswithmean75.44andmedian78:

67,68,68,71,78,79,80,83,85Beforeyougoanyfarther,checkthesescoresforoutliersusingthe1.5×IQRcriterion.R A N G E , I Q R , A N D M E A N A B S O L U T E D E V I A T I O N

A C R I T E R I O N F O R F I N D I N G S U S P E C T E D O U T L I E R S

Now,supposethatthescoreof67wasreplacedbyascoreof12.(Noticethat’sanoutlier.)Thischangehasnoeffectonthemedian(whichisstill78)butitdoesaffectthevalueofthemean.Computethenewmeantocheck.Wesaythatthemedianis“resistanttooutliers”andthatthemeanis“affectedbyoutliers.”Ifyourdatacontainsanoutlier(orseveraloutliers)thataffectthemean,thenthemedianisoftenthebetter(morehonest?)measureofcenterforyoutoreportforthosedata.Whichofthemeasuresofspreadisresistanttooutliersandwhichisaffectedbythem?Takeafewminutestofigureitout.

Page 186: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

186

Nowwearegoingtointroduceadisplayofthefive-number-summaryofadataset:theboxplot.Recallthatthefive-number-summaryconsistsoftheminimum,Q1,themedian,Q3,andthemaximumvaluewhenthedataisarrangedinnumericorder.Hereissomefictitiousdataonthenumberofyearsmathematicsfacultymembershavebeeninourdepartment.Takeaminutetofindthemedianandthequartilesforthesedata. 1,3,6,7,7,8,8,9,14,15,15,18,22,23,24,25,27,28B O X P L O T S

Hereisanexampleofaboxplotdisplayofthedataonnumberofyearsmathematicsfacultymembershavebeeninourdepartment.

NumberofYearsofService

Noticethataboxplotisnothingmorethanapictureofthefive-numbersummary.The“box”partshowsQ1,M,andQ3,andthe“arms”stretchoutthereachtheminandmaxoneitherside.Whenmakingaboxplot,besurethatyournumberlinehasaconsistentscale,thatyoulabelyourdisplay,andthatyouprovideinformationaboutthenumberofvalues(inthiscaseN=18)shownontheplot.

Page 187: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

187

ConnectionstoTeaching

Realistsdonotfeartheresultsoftheirstudy.FyodorDostoevsky

The Common Core expects students to analyze and interpret data. Read the standards below. Which questions or activities have you done so far address each of these standards?

©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

Homework

Ohwhocantelltherangeofjoyorsettheboundsofbeauty? SaraTeasdale

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Answerallofthequestionsinthe“Mean,Mode&Range”probleminUnit4,Module4,

Session2intheBridgesinMathematicsGrade4StudentBook.Then,asafutureteacher,considerthefollowingquestions:Whymightachildanswer17inchesonquestion6?Whyachildanswer36inches?Whymightachildanswer42inches?Whymightachildanswer52inches?

CCSSGrade6:Developunderstandingofstatisticalvariability.2.Understandthatasetofdatacollectedtoanswerastatisticalquestionhasadistributionwhichcanbedescribedbyitscenter,spread,andoverallshape.3.Recognizethatameasureofcenterforanumericaldatasetsummarizesallofitsvalueswithasinglenumber,whileameasureofvariationdescribeshowitsvaluesvarywithasinglenumber.

CCSSGrade6:Summarizeanddescribedistributions.

4.Displaynumericaldatainplotsonanumberline,includingdotplots,histograms,andboxplots.5.Summarizenumericaldatasetsinrelationtotheircontext,suchasby:

C.Givingquantitativemeasuresofcenter(medianand/ormean)andvariability(interquartilerangeand/ormeanabsolutedeviation),aswellasdescribinganyoverallpatternandanystrikingdeviationsfromtheoverallpatternwithreferencetothecontextinwhichthedataweregathered.D.Relatingthechoiceofmeasuresofcenterandvariabilitytotheshapeofthedatadistributionandthecontextinwhichthedataweregathered.

Page 188: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

188

3) Consideragainthislinegraphof18scoresonaquiz:

X X

X X X X X X X

X X X X X X X X X 1 2 3 4 5 6 7 8 9 10

ScoreonaQuiz(outoften)

a) Whatistherangeofthesedata?b) WhatistheIQR?c) TrueorFalse?(Dothiswithoutperformingacalculation.)Themeanabsolute

deviationofthesedataisabout5.Explainyourthinking.d) Areeitherofthescores1or2anoutlier?Useourcriteriontocheck.e) Whatmeasureofcenterandwhatmeasureofspreadwouldyoureportforthese

dataandwhy?f) Makeaboxplotofthesedata.g) Howcouldyouusetheboxplottoquicklyspotoutliersinthedata?Explain.

4) Herearethosebowlingscoresonceagain:

112 114 120 123 127 127 130 167 220

a) Which(ifany)ofthesescoresareoutliersbasedonourcriterion?b) NowgototheintroductiontothistextandreadtheCommonCoreState

StandardsforGrade6.Noticethattheyaskthatchildren“summarizenumericaldatasetsinrelationtotheircontext.”Dothethingstheysuggestforthesetofbowlingscores.

i. Reportingthenumberofobservations.ii. Describingthenatureoftheattributeunderinvestigation,includinghow

itwasmeasuredanditsunitsofmeasurement.iii. Givingquantitativemeasuresofcenter(medianand/ormean)and

variability(interquartilerangeand/ormeanabsolutedeviation),aswellasdescribinganyoverallpatternandanystrikingdeviationsfromtheoverallpatternwithreferencetothecontextinwhichthedataweregathered.

iv. Relatingthechoiceofmeasuresofcenterandvariabilitytotheshapeofthedatadistributionandthecontextinwhichthedataweregathered.”

Page 189: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

189

5) EditorsofEntertainmentWeeklyrankedeverysingleepisodeevermadeofStarTrek:TheNextGenerationfrombest(ranked#1)toworst(ranked#178).Thentheycompiledtherankingsbasedontheseasoninwhichtheepisodeaired.Belowareboxplotsshowingtherankingsofepisodesineachofthesevenseasons(fromWorkshopStatistics,p.89):

StarTrekRankingsplottedbySeason

a) Whichwasthebestoverallseasonandwhichwastheworstbasedontheserankings?Makeanargumentineachcase.

b) Doanyoftheseseasonshaverankingsthatareoutliers(forthatseason)?Explain.

c) Whichseason(s)hasadistributionofrankingsthatisskewedleft?Explain.d) Createaseriesofgoodquestionsyoucouldaskupperelementarystudents

abouttheseboxplots;thenanswerthemyourself.

6) Thisisameanabsolutedeviationcontest.Youmayuseonlynumbersintheset{1,2,3,4,5}(Youcanusethesamenumberasmanytimesasyoulike).

a) Selectfournumberswiththelowestmeanabsolutedeviation.(Actuallycompute

it).Arethosetheonlyfournumbersthatgivethelowestmeanabsolutedeviation?

b) Selectfournumberswiththehighestmeanabsolutedeviation.(Actuallycomputeit).Arethosetheonlyfournumbersthatgivethehighestmeanabsolutedeviation?

7) Whichislikelybigger?

Page 190: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

190

a) Themeannew-housecostinSeattle,WAorthemediannew-housecost?Explain.

b) Themeanorthemedianinaskewed-leftdistribution?Explain.c) Therangeofasetofnumbersorthemeanabsolutedeviationoftheset?

Explain.d) Thesecondquartileorthemedian?Explain.e) Now,giveanexampleofasetof8numberswhosemeanis1000biggerthanits

medianorexplainwhyitisimpossibletodoso.

Page 191: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

191

ClassActivity30: TheMatchingGame

Letthepunishmentmatchtheoffense. Cicero

Onthefollowingpageyouwillfindbargraphsdisplayingdistributionsforeightdifferentsetsofexamscores.Thenumericalsummariesforthosedatasetsarelistedbelow.

DataSet Mean Median Mean

AbsoluteDeviation

A

44.5 44.0 7.7

B

37.0 36.0 4.0

C

32.5 31.5 12.0

D

40.0 41.5 25.5

E

11.5 3.0 20.0

F

40.0 38.5 11.0

G

33.5 34.5 10.0

H

20.5 20.5 10.0

1) Thesamenumberofstudentstookeachexam.Howmanywasthat?Explainhowyouknow.

2) Matcheachsummarywithadistribution.Makesuretowriteexplanationsforyourchoices.

3) Oneofthebargraphsismissing.Figureoutwhichdatasethasthemissingbargraph,thencreateapossiblebargraphforthatdataset.

4) Whatarethingsthatanupperelementarystudentcouldlearnbyworkingonthisactivity?Bespecific.

Page 192: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

192

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80

Frequency

Graph6

0123456789

0 10 20 30 40 50 60 70 80

Frequency

Graph7

0123456789

0 10 20 30 40 50 60 70 80

Frequency

Graph2

0123456789

0 10 20 30 40 50 60 70 80

Frequency

Graph1

0123456789

0 10 20 30 40 50 60 70 80

Frequency

Graph3

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80

Frequency

Graph4

0123456789

0 10 20 30 40 50 60 70 80

Frequency

Graph5

Page 193: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

193

ReadandStudy

Anapprenticecarpentermaywantonlyahammerandsaw,butamastercraftsmanemploysmanyprecisiontools.

RobertL.KruseInthissectionwearegoingtotalkspecificallyaboutsomewaystodisplaydataandaboutfeaturesofdatadistributions.First,adistributionofdataissimplyadisplaythatshowsthevaluesofthevaluesandtheirfrequencies(orrelativefrequencies).Oftenwhenwerefertoadistribution,wemeanthepatternofthedatawhenitismadeintoabargraphoralinegraphshowingvaluesofthedatasetonthehorizontalaxis,andeitherfrequencyofvaluesorrelativefrequency(percentsofvalues)ontheverticalaxis.D I S T R I B U T I O N S , S K E W N E S S , A N D S Y M M E T R Y

AllthreeofthedistributionsyouareabouttoseewerefoundattheQuantitativeEnvironmentalLearningProjectwebsite(http://www.seattlecentral.edu/qelp/Data_MathTopics.html).ForexamplethebargraphbelowshowsthedistributionofozoneconcentrationinSanDiegointhesummerof1998asmeasuredbytheCaliforniaAirResourcesBoard.TheEPAhasestablishedthestandardthatozonelevelsover0.12partspermillimeter(ppm)areunsafe.

Approximatelyhowmanydaysaredisplayedalltogether?InhowmanydayswastheozonelevelinSanDiegoclassifiedasunsafebytheEPA?Istheozonedistributionskewedrightorskewedleftorneither?Explain.

0

5

10

15

20

25

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 >0.13

Freq

uenceyinDays

Ozone(ppm)

Summer1998SanDiegoOzone

Page 194: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

194

Nowtakeaminutetomakesenseofthereservoirdatabelow.

Abouthowmanyreservoirsareshownonthisbargraph?Whatpercentofreservoirsarefilledtoatleast90%capacity?Doyouexpectthemeanofthereservoirdatatobehigherthanthemedianortheotherwayaround?Explain.ThegraphsincludesreservoirsinbothOregonandArizona.WheredoyouthinkArizona’sreservoirsarelikelyappearingonthebargraph?Why?

0510152025303540

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

>100

>105

Freq

uency

PercentofCapacity

ReservoirLevels12/31/98

Page 195: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

195

Finally,belowwehaveonemoregraphshowingafairlysymmetricdistributionofthenumberofhurricanesoccurringineachtwo-weekperiodbeginningJune1.

Onwhichdatesarehurricanesmostlikelybasedonthesedata?Inabargraphtheverticalaxisrepresentsacount(frequency)orapercent(relativefrequency)andthehorizontalaxiscouldrepresentvaluesofacategoricalvariable(likecolors),valuesofanumericdiscretevariable(likeshoesize),orvaluesofacontinuousvariable(likeheights).Ifyouhavecollecteddataonthenumberofseatswonbyvariouspartiesinparliamentaryelections,youcouldmakeabargraphofthatdatabylistingpartiesalongthehorizontalaxisandmakingthebar-heightsrepresenteitherfrequencyorrelativefrequencyofyoursamples’responses.Thisbargraph(datafromwikipedia.org)showsboththeresultsofa2004election,andthoseof1999election.Takeamomenttomakesenseofthesedata.

020406080100120140160

2 4 6 8 10 12 14 16 18 20 22 24 26

Num

berofH

urric

ane

WeeksBeginningJune1

USAtlanticHurricanes:1851-2000

0

50

100

150

200

250

300

EUL PES EFA EDD ELDR EPP UEN Other

#ofSeats

Group

EuropeanParliamentElections

1999

2004

Page 196: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

196

ConnectionstoTeaching

Instructionalprogramsfromprekindergartenthroughgrade12shouldenablestudentstoformulatequestionsthatcanbeaddressedwithdataandcollect,organize,anddisplayrelevantdatatoanswerthem.

NationalCouncilofTeachersofMathematicsPrinciplesandStandardsforSchoolMathematics,p.176

Childreninelementaryschoollearntomakeandinterpretpictograms,frequencyplots(sometimescalledlinegraphs),bargraphs,andpiecharts.Onordertohelpyoudistinguishamongthesetypesofdisplays,let’sbeginwithanexampleofeach.ThedatabelowshowhowchildreninMr.Jensen’sclasstraveltoschool.

Student Transportation Student Transportation Student TransportationAbby Bus Sasha Foot Xia FootWinton Bicycle Lucy Bus Kim FootDexter Car Joe Car Ben CarTrevor Car Aiden Bus Leah CarAudrey Car Justin Foot Jeffery FootMavis Foot Campbell Car Queztal CarKate Foot Sonja Car Cheyenne BicycleLim Bicycle Jen Bus Steve Bicycle

First,hereisapictogramofthedata. TransportationPictogramforMr.Jensen’sClass

Bus

Bike

Car

Foot

=1childonfoot =1childdriventoschool =1biker =1busrider

Page 197: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

197

Apictogramrepresentseachvalueasameaningfulicon.Thedisplaycanbeorientedeitherverticallyorhorizontally(ascanlineplotsandbargraphs).Noticehowthegraphiscarefullylabeledandthatakeyisprovidedfortheicons.Makesuretohelpchildrengetinthehabitoflabelinganddefiningtheirsymbols.Alsostressthatitisimportantthatalltheiconsbethesamesizeorthegraphcouldbemisleading.Apictogramcanbeunderstoodbychildrenasyoungasthoseinkindergarten.Afrequencyplot(sometimescalledalineplotifthehorizontalaxisisanumberline)ofthesamedataisshownbelow.Notethatthisplotisaprecursortothebargraphinthesensethatitdisplaysfrequencyofresponseinamoreabstractmannerthandoesthepictogram. TransportationFrequencyPlotforMr.Jensen’sClass X X X X X X X X X X X X X X X X X X X X X X X X Bus Bike Car FootCreateabargraphforthedatafromMr.Jensen’sclass.CreateapiegraphforthedatafromMr.Jensen’sclass.Explainhowyoudecidedhowbigtomakeeachsector.Itisimportantnotonlythatchildrenlearntodisplaydatabutalsothattheylearntomakesenseofchartsandgraphstheyfindinbooksandothermedia,andtobecriticalofmisleadingdisplays.Considertheexamplesbelow:

Page 198: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

198

Amyclaimsthatthechildreninherkindergartenclasslikecatsmorethandogs.Shehasmadethefollowinggraphofherclassmates’petpreferencestosupportherclaim.Whyisthispictogrammisleading?Explain.Whatwouldyousaytothischild?

Childrenwholikecats

Childrenwholikedogs TuffTruckCompanyclaimsthattheirtrucksarethemostreliableandshowsthebelowgraphtomaketheircase.Whyisthisbargraphmisleading?Explain.(Bytheway,thisisareal-lifeexample.Onlythenameshavebeenchanged.)

Infact,criticalanalysisofdatadisplaysispartofthecurriculumforchildreninupperelementaryschool.

Perc entoftruc ks s tillontheroad,fiveyears afterpurc has e

93%

94%

95%

96%

97%

98%

99%

TuffTruck B randB B randC

Page 199: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

199

Homework

Thedifferencebetweenasuccessfulpersonandothersisnotalackofstrength,notalackofknowledge,butalackofwill. VinceLombardi

1) DoalloftheitalicizedthingsintheReadandStudysection.2) DoalltheproblemsintheConnectionssection.Whataretheexactpercentagesforthe

piechart?Howcanyoucomputetheanglestothenearestdegree?Doitandthenexplainyourwork.

3) HereisatableofdatashowingthepetsownedbychildreninMs.Green’sthirdgrade

class.

Student PetsintheHouseAnna NoneJames 1catand1dogCleo 3dogsViolet 1catAndre 6fishJose 7fish,1dog,2catsAidos NoneYvonne NoneTyrise 1hamsterEllen 2dogsTomas 1dogYani 3fishand2catsOwen NoneAudrey 1cat

a) Makeafrequencyplotofthesedatawithchildren’snamesonthehorizontalaxis.b) Makealineplotwith‘numberofpets’onthehorizontalaxis.c) Makeabargraphofthesedatawith‘numberofpets’onthehorizontalaxis.d) Makeapiechartofthesedata.e) Whatproblemsmightchildrenencounterintryingtorepresentthesedatainthe

aboveways?4) Answerthequestionsinthe“FavoriteBooks”probleminUnit2Module4Session1in

theGrade3BridgesinMathematicscurriculum.Howcanyouusethisproblemtodiscussthesimilaritiesanddifferencesbetweenpicturegraphsandbargraphs?

Page 200: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

200

5) Answerthequestionsinthe“GiftWrapFundraiser”probleminUnit2Module4Session2intheGrade3BridgesinMathematicscurriculum.Here’ssomeadditionalquestionstothinkaboutasafutureteacher:

a) Explainwhyachildmightgivetheanswerof“5”toquestion2abouthowmanystudentssold7rollsofgiftwrap.

b) Explainwhyachildmightgivetheanswerof“7”toquestion4abouthowmanyrollsofgiftwrapSarahsold.

c) Whyistheanswertoquestion5NOTthetotalnumberofXsonthelineplot?d) MakeafrequencyplotforthesamedatawhereeachXrepresentsarollofgift

wrap.Thenexplaintousethegraphtoanswerquestions1-5.

6) ThisgraphshowslengthsofthewingsofhousefliesfromtheQuantitativeEnvironmentalLearningProject.(OriginaldatafromSokal,R.R.andP.E.Hunter.1955.AmorphometricanalysisofDDT-resistantandnon-resistanthouseflystrainsAnn.Entomol.Soc.Amer.48:499-507)

a) Howwouldyoudescribetheshapeofthisdistributionintermsofskewnessand

symmetry?b) Approximatelyhowmanyfliesweremeasuredforthisstudy?Explain.c) TrueorFalse?Themeanofthesedataisequaltothemedian.Explain.d) TrueorFalse?About90%offlieshavewingssmallerthan51.5(×0.1mm).

Explain.e) Makeupagoodquestiontoaskanelementaryschoolchildaboutthisdataset.

7) Hereisagraphshowing100yearsofdataonWorldwideEarthquakesbiggerthan7.0on

theRichterScalefromtheQuantitativeEnvironmentalLearningProject(datafromtheUSGeologicalSurvey)Soforexample,therewere4yearswhenthenumberofglobalquakes(above7.0)wasabout35.

02468101214161820

37.5 39.5 41.5 43.5 45.5 47.5 49.5 51.5 53.5 55.5

Freq

uency

Length(x.1mm)

HouseflyWingLengths

Page 201: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

201

a) Whatdoesthisgraphtellyou?Bespecific.b) Estimatethemedianannualnumberofquakesabove7.0.c) Howwouldyoudescribethisshapeofthedistributionintermsofskewnessor

symmetry?Whatdoesthatshapetellyouaboutearthquakes?

8) Considerthisgraphmakingthecasethatwearehavinganational‘crimewave!’Whatdoyouthink?Doesthegraphprovidecompellingevidence?Explain.

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45

freq

uency

AnnualNumberofQuakes>7.0

WorldwideEarthquakes1900-1999

Reportedburg laries intheUnitedS tates ,2001-2006

S ource: S tatis ticalAbs tractoftheUnitedS tates ,2008

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2001 2002 2003 2004 2005 2006

Millions

ofrep

ortedbu

rlaries

Page 202: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

202

9) Astemandleafplot(orsimplystemplot)isalistingofallthedatatypicallyarrangedsothetensplacemakesthestemandtheonesarethe‘leaves.’Forexample,herearescoresonaGeometryFinalExamarrangedasastemplot:

ExamsScoresinGeometry

2|03|2,74|5|6,8,9,96|2,4,5,5,7,87|0,0,2,4,5,6,78|0,1,1,2,4,49|2,4,510|0

Wewouldreadthescoresas20,32,37,56,58,59,59,62etc.

a) Describetheshapeofthedistributionofscoresintermsofskewnessandsymmetry.b) Whatisthemedianscore?c) Makeaboxplotofthesedata.d) Givesomeexamplesofdatasetsforwhichastemplotwouldbeimpractical.

Page 203: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

203

SummaryofBigIdeas

Hey!What’sthebigidea?BugsBunny

• Random sampling helps reduce sample bias.

• There are two ways we can conceptualize the mean – as a balancing point and as a

redistribution.

• The mean, median, and mode are statistics that describe the center of data.

• A five-number summary, the IQR, and the mean absolute deviation all describe the spread of a data set.

• There are many different representations for data displays such as pictograms, line plots, and pie charts. You should choose the chart that best displays the data without misrepresenting the data.

Page 204: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

204

References

Givecreditwherecreditisdue. Authorunknown

• Bauersfeld,H.(1995).Thestructuringofstructures:Developmentandfunctionof

mathematizingasasocialpractice.InL.Steffe&J.Gale(Eds.),ConstructivisminEducation(pp.137-158).Hillsdale,NJ:Erlbaum.

• BridgesinMathematicsusedthroughoutwithpermissionfromtheMathLearningCenter,http://www.mathlearningcenter.org/

• CommonCoreStateStandardsformathematicsasfoundin2012at©Copyright2010NationalGovernorsAssociationCenterforBestPracticesandCouncilofChiefStateSchoolOfficers.Allrightsreserved.

• Dawson,L.(2004).TheSalkpoliovaccinetrialof1954:risks,randomizationandpublicinvolvement,ClinicalTrials,1,pp.122-130.

• EducationalDevelopmentCenter.(2007)ThinkMath!Orlando,FL.HarcourtSchool

Publishers.

• Halmos,P.(1985).IWanttobeaMathematician,Washington:MAASpectrum,1985.

• Gottfried,W.L.,NewEssaysConcerningHumanUnderstanding,IV,XII.

• Ma,L.(1999).KnowingandTeachingElementaryMathematics:Teachers’UnderstandingofFundamentalMathematicsinChinaandtheUnitedStates.Mahwah,N.J.:LawrenceErlbaum.

• MathematicalQuotationsServer(MQS)atmath.furman.edu.

• NationalCouncilofTeachersofMathematics.(2000).PrinciplesandStandardsfor

SchoolMathematics.Reston,VA:NCTM.

• Shulman,L.S.(1985).Onteachingproblemsolvingandsolvingtheproblemsofteaching.InE.A.Silver(Ed.),TeachingandLearningMathematicalProblemSolving:multipleresearchperspectives(pp.439-450).Hillsdale,NJ:Erlbaum.

• Steen,L.A.andD.J.Albers(eds.).(1981).TeachingTeachers,TeachingStudents,Boston:

Birkhïser.

Page 205: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

205

• Theearlydevelopmentofmathematicalprobability.p.1293-1302ofCompanionEncyclopediaoftheHistoryandPhilosophyoftheMathematicalSciences,editedbyI.Grattan-Guinness.Routledge,London,1993.

Page 206: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

206

APPENDICES

Page 207: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

207

Euclid’sPostulatesandPropositions

Euclid'sElementsThispresentationofElementsistheworkofJ.T.Poole,

DepartmentofMathematics,FurmanUniversity,Greenville,SC.©2002J.T.Poole.Allrightsreserved.

BookI

POSTULATES

Letthefollowingbepostulated:1.Todrawastraightlinefromanypointtoanypoint.2.Toproduceafinitestraightlinecontinuouslyinastraightline.3.Todescribeacirclewithanycenteranddistance.4.Thatallrightanglesareequaltooneanother.5.That,ifastraightlinefallingontwostraightlinesmaketheinterioranglesonthesamesidelessthantworightangles,thetwostraightlines,ifproducedindefinitely,meetonthatsideonwhicharetheangleslessthanthetworightangles.

COMMONNOTIONS1.Thingswhichareequaltothesamethingarealsoequaltooneanother.2.Ifequalsbeaddedtoequals,thewholesareequal.3.Ifequalsbesubtractedfromequals,theremaindersareequal.4.Thingswhichcoincidewithoneanotherareequaltooneanother.5.Thewholeisgreaterthanthepart.

Page 208: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

208

BOOKIPROPOSITIONSProposition1.

Onagivenfinitestraightlinetoconstructanequilateraltriangle.Proposition2.

Toplaceatagivenpoint(asanextremity)astraightlineequaltoagivenstraightline.Proposition3.

Giventwounequalstraightlines,tocutofffromthegreaterastraightlineequaltotheless.

Proposition4.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,andhaveanglescontainedbytheequalstraightlinesequal,theywillalsohavethebaseequaltothebase,thetrianglewillbeequaltothetriangle,andtheremainingangleswillbeequaltotheremaininganglesrespectively,namelythosewhichtheequalsidessubtend.

Proposition5.Inisoscelestrianglestheanglesatthebaseareequaltooneanother,and,iftheequalstraightlinesbeproducedfurther,theanglesunderthebasewillbeequaltooneanother.

Proposition6.Ifinatriangletwoanglesbeequaltooneanother,thesideswhichsubtendtheequalangleswillalsobeequaltooneanother.

Proposition7.Giventwostraightlinesconstructedonastraightline(fromitsextremities)andmeetinginapoint,therecannotbeconstructedonthesamestraightline(fromitsextremities),andonthesamesideofit,twootherstraightlinesmeetinginanotherpointandequaltotheformertworespectively,namelyeachtothatwhichhasthesameextremitywithit.

Proposition8.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,andhavealsothebaseequaltothebase,theywillalsohavetheanglesequalwhicharecontainedbytheequalstraightlines.

Proposition9.Tobisectagivenrectilinealangle.

Proposition10.Tobisectagivenfinitestraightline.

Proposition11.Todrawastraightlineatrightanglestoagivenstraightlinefromagivenpointonit.

Proposition12.Toagiveninfinitestraightline,fromagivenpointwhichisnotonit,todrawaperpendicularstraightline.

Proposition13.Ifastraightlinesetuponastraightlinemakeangles,itwillmakeeithertworightanglesoranglesequaltotworightangles.

Page 209: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

209

Proposition14.Ifwithanystraightline,andatapointonit,twostraightlinesnotlyingonthesamesidemaketheadjacentanglesequaltotworightangles,thetwostraightlineswillbeinastraightlinewithoneanother.

Proposition15.Iftwostraightlinescutoneanother,theymaketheverticalanglesequaltooneanother.

Proposition16.Inanytriangle,ifoneofthesidesbeproduced,theexteriorangleisgreaterthaneitheroftheinteriorandoppositeangles.

Proposition17.Inatriangletwoanglestakentogetherinanymannerarelessthantworightangles.

Proposition18.Inanytrianglethegreatersidesubtendsthegreaterangle.

Proposition19.Inanytrianglethegreaterangleissubtendedbythegreaterside.

Proposition20.Inanytriangletwosidestakentogetherinanymanneraregreaterthantheremainingone.

Proposition21.Ifononeofthesidesofatriangle,fromitsextremities,therebeconstructedtwostraightlinesmeetingwithinthetriangle,thestraightlinessoconstructedwillbelessthantheremainingtwosidesofthetriangle,butwillcontainagreaterangle.

Proposition22.Outofthreestraightlines,whichareequaltothreegivenstraightlines,toconstructatriangle:thusitisnecessarythattwoofthestraightlinestakentogetherinanymannershouldbegreaterthantheremainingone.[I.20]

Proposition23.Onagivenstraightlineandatapointonittoconstructarectilinealangleequaltoagivenrectilinealangle.

Proposition24.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,buthavetheoneoftheanglescontainedbytheequalstraightlinesgreaterthantheother,theywillalsohavethebasegreaterthanthebase.

Proposition25.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,buthavethebasegreaterthanthebase,theywillalsohavetheoneoftheanglescontainedbytheequalstraightlinesgreaterthattheother.

Proposition26.Iftwotriangleshavethetwoanglesequaltotwoanglesrespectively,andonesideequaltooneside,namely,eitherthesideadjoiningtheequalangles,ofthatsubtendingoneoftheequalangles,theywillalsohavetheremainingsidesequaltotheremainingsidesandtheremainingangletotheremainingangle.

Page 210: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

210

Proposition27.Ifastraightlinefallingontwostraightlinesmakethealternateanglesequaltooneanother,thestraightlineswillbeparalleltooneanother.

Proposition28.Ifastraightlinefallingontwostraightlinesmaketheexteriorangleequaltotheinteriorandoppositeangleonthesameside,ortheinterioranglesonthesamesideequaltotworightangles,thestraightlineswillbeparalleltooneanother.

Proposition29.Astraightlinefallingonparallelstraightlinesmakesthealternateanglesequaltooneanother,theexteriorangleequaltotheinteriorandoppositeangle,andtheinterioranglesonthesamesideequaltotworightangles.

Proposition30.Straightlinesparalleltothesamestraightlinearealsoparalleltooneanother.

Proposition31.Throughagivenpointtodrawastraightlineparalleltoagivenstraightline.

Proposition32.Inanytriangle,ifoneofthesidesbeproduced,theexteriorangleisequaltothetwointeriorandoppositeangles,andthethreeinterioranglesofthetriangleareequaltotworightangles.

Proposition33.Thestraightlinesjoiningequalandparallelstraightlines(attheextremitieswhichare)inthesamedirections(respectively)arethemselvesalsoequalandparallel.

Proposition34.

Inparallelogrammicareastheoppositesidesandanglesareequaltooneanother,andthediameterbisectstheareas.

Proposition35.Parallelogramswhichareonthesamebaseandinthesameparallelsareequaltooneanother.

Proposition36.Parallelogramswhichareonequalbasesandinthesameparallelsareequaltooneanother.

Proposition37.Triangleswhichareonthesamebaseandinthesameparallelsareequaltooneanother.

Proposition38.Triangleswhichareonequalbasesandinthesameparallelsareequaltooneanother.

Proposition39.Equaltriangleswhichareonthesamebaseandonthesamesidearealsointhesameparallels.

Proposition40.Equaltriangleswhichareonequalbasesandonthesamesidearealsointhesameparallels.

Page 211: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

211

Proposition41.Ifaparallelogramhavethesamebasewithatriangleandbeinthesameparallels,theparallelogramisdoubleofthetriangle.

Proposition42.Toconstruct,inagivenrectilinealangle,aparallelogramequaltoagiventriangle.

Proposition43.Inanyparallelogramthecomplementsoftheparallelogramsaboutthediameterareequaltooneanother.

Proposition44.Toagivenstraightlinetoapply,inagivenrectilinealangle,aparallelogramequaltoagiventriangle.

Proposition45.Toconstruct,inagivenrectilinealangle,aparallelogramequaltoagivenrectilinealfigure.

Proposition46.Onagivenstraightlinetodescribeasquare.

Proposition47.Inright-angledtrianglesthesquareonthesidesubtendingtherightangleisequaltothesquaresonthesidescontainingtherightangle.

Proposition48.Ifinatrianglethesquareononeofthesidesbeequaltothesquaresontheremainingtwosidesofthetriangle,theanglecontainedbytheremainingtwosidesofthetriangleisright.

Page 212: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

212

Glossary"WhenIuseaword,"HumptyDumptysaid,inaratherscornfultone,"itmeansjust

whatIchooseittomean-neithermorenorless.""Thequestionis,"saidAlice,"whetheryoucanmakewordsmeansomanydifferent

things.""Thequestionis,"saidHumptyDumpty,"whichistobemaster-that'sall."

LewisCarroll,ThroughtheLookingGlass Acuteangle–ananglethatmeasureslessthan90degreesAcutetriangle–atrianglewiththreeacuteanglesAdjacentangles–twonon-overlappinganglesthatshareavertexandacommonrayAlternateexteriorangles–twonon-adjacentanglesformedbyatransversalofapairoflines

thatlieoutsidethelinesandonoppositesidesofthetransversalAlternateinteriorangles–twonon-adjacentanglesformedbyatransversalofapairoflines

thatliebetweenthelinesandonoppositesidesofthetransversalAngle–thefigureformedbytworayswithacommonendpointAnglebisector–thelinethroughthevertexofananglethatdividestheangleintotwo

congruentanglesApex(ofapyramid)–thecommonpointofthenon-basefacesofapyramidApex(ofacone)–thecommonpointofthelinesegmentsthatcreateaconeArc–thesetofpointsonacirclebetweentwogivenpointsofthecircle(Thereareactuallytwo

arcsbetweenanytwogivenpoints;theshorteroneiscalledtheminorarcandthelongeroneiscalledthemajorarc.)

Area–thequantityoftwo-dimensionalspaceenclosedbyaclosedplanefigureAttribute–apropertyofageometricobjectthatcanbemeasured(suchaslength)or

categorized(suchascolor)Axiom–astatementthatweagreetoacceptastruewithoutproofAxiomaticsystem–asetofundefinedterms,definitions,axioms,andtheoremsthatcreatea

mathematicalstructure

Page 213: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

213

Axis(ofacone)–thelinejoiningtheapextothecenterofthe(circle)baseAxisofsymmetry–alineinspacearoundwhichathree-dimensionalobjectisrotatedBargraph:adatadisplayinwhichtheverticalaxisrepresentsacount(frequency)orapercent(relativefrequency)andthehorizontalaxisrepresentsvaluesofacategoricalvariable(likecolors),valuesofanumericdiscretevariable(likeshoesize),orvaluesofacontinuousvariable(likeheights),groupedintointervals.Baseangles(ofanisoscelestriangle)–theanglesthatareoppositethecongruentsidesofan

isoscelestriangleBilateralsymmetry–anobjecthasbilateralsymmetrywhenithasexactlyonelineof

reflectionalsymmetryBisect–todivideageometricobjectsuchasalinesegmentoranangleintotwocongruent

piecesBoundary–thesetofpointsthatseparatetheinsideofaclosedplanarobjectfromtheoutsideCategoricalData:Dataforwhichitmakessensetoplaceanindividualobservationintooneofseveralgroups(orcategories).Census:Anydatacollectionmethodinwhichdataiscollectedfromeachandeverymemberofthepopulation.Center(ofacircle)–thepointthatisequidistantfromallpointsonthecircleCentralangle–ananglewhosevertexisacenterofageometricobjectChord–alinesegmentwhoseendpointsaredistinctpointsonagivencircleChanceError:Errorinsamplingduesimplytothefactthatasampleisnotexactlythesameasapopulationduetochancealone.Circle–thesetofallpointsintheplanethatarethesamedistancefromagivenpoint,called

thecenterCircumference–thecircumferenceofacircleisitperimeterCircumscribedcircle–thecirclethatcontainsalltheverticesofapolygonClosedcurve–acurvethatstartsandstopsatthesamepoint

Page 214: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

214

Clustersampling:Randomsamplinginstages.Coincide–twoobjectsaresaidtocoincideiftheycorrespondexactly(areidentical)Collinearpoints–pointsthatlieonthesamelineCompass–aninstrumentusedtoconstructacircleComplementaryangles–twoangleswhosemeasuressumto90degreesConcavepolygon–apolygonforwhichatleastonediagonalliesoutsidethepolygonConcurrentlines–threeormorelinesthatintersectinthesamepointCone(circular)-athree-dimensionalgeometricobjectconsistingofalllinesegmentsjoininga

singlepoint(calledtheapex)toeverypointofacircle(calledthebase)Congruentobjects–twogeometricobjectsthatcoincidewhensuperimposedConjecture–aguessorahypothesisContrapositive(of“IfA,thenB.”)–“IfnotB,thennotA,”whereAandBarestatementsConverse(of“IfA,thenB.”)–“IfB,thenA,”whereAandBarestatementsConvexpolygon–apolygonallofwhosediagonalslieinsidethepolygonCoordinateplane–aplaneonwhichpointsaredescribedbasedontheirhorizontalandvertical

distancesfromapointcalledtheoriginCoplanarlines–linesthatlieinthesameplaneCorrespondingangles-twoanglesformedbyatransversalofapairoflinesthatlieonthe

samesideofthetransversalandalsolieonthesamesideofthepairoflinesCorrespondingpoints–apairofpoints,oneofwhichistheoriginalpointandtheotherof

whichistheimageofthatpointunderatransformationCounterexample–anexamplethatdemonstratesthatastatement(conjecture)isfalseCurve–asetofpointsdrawnwithasinglecontinuousmotion

Page 215: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

215

Cylinder(circular)–athree-dimensionalgeometricobjectconsistingoftwoparallelandcongruentcircles(andtheirinteriors)andtheparallellinesegmentsthatjoincorrespondingpointsonthecircles

Data:AnyinformationcollectedfromasampleDecagon–apolygonwithexactlytensidesDeductivereasoning–theprocessofcomingtoaconclusionbasedonlogicDegree–aunitofanglemeasureforwhichafullturnaboutapointequals360degreesDiagonal–thelinesegmentjoiningtwonon-adjacentverticesofapolygonDiameter–alinesegmentthroughthecenterofacirclewhoseendpointslieonthecircleDilation(withcenterPandscalefactork>0)–amotionoftheplaneinwhichtheimageofPis

PandtheimageA’ofanyotherpointAisontherayPAsothatthedistancePA’isktimesthedistancePA.

Dimension(ofarealspace)–thenumberofmutuallyperpendiculardirectionsneededto

describethelocationofthesetofpointsinthatspaceDistance(onacoordinateplane)–thesizeoftheportionofastraightlinethatliesbetweenthe

twopointsonthecoordinateplaneasmeasuredbythedistanceformula:22 bad += ,whereaisthehorizontaldistancebetweenthepoints(asmeasuredon

thex-axis)andbistheverticaldistance(asmeasuredonthey-axis)Distinct(geometricobjects)-twoobjectsthatdonotsharealltheirpointsincommonDistributionofdata:adisplaythatshowsthevaluesthedatatakesalongwiththefrequency(orrelativefrequency)ofthosevaluesDisjoint(events):TwoeventsaredisjointiftheyhavenooutcomesincommonDodecagon–apolygonwithexactlytwelvesidesEdge–thelinesegment(side)thatissharedbytwofacesofapolyhedronEndpoint(ofalinesegment)–oneoftwopointsthatdeterminesalinesegmentEquiangularpolygon–apolygonallofwhosevertexanglesarecongruent

Page 216: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

216

Equallylikelyoutcomes:Alltheoutcomesofarandomexperimentaresaidtobeequallylikelyif,inthelongrun,theyalloccurwiththesamefrequency(theyallhavethesameprobabilityofoccurring)

Equilateralpolygon–apolygonallofwhosesidesarecongruentEvent:anysubsetofthesamplespaceofarandomexperiment Example(ofadefinition)–ageometricobjectthatsatisfiestheconditionsofthedefinitionExperimentalprobabilitiesareprobabilitiesthatarebasedondatacollectedbyconducting

experiments,playinggames,orresearchingstatisticsExteriorangle–theangleformedbyasideofapolygonandtheextensionofanadjacentsideFace–apolygon(withinterior)thatformsaportionofthetwo-dimensionalsurfaceofa

polyhedronFirstquartile(Q1):themedianofthedatapositionedstrictlybeforethemedianwhenthedataisplacedinnumericalorderFiveNumberSummary:ofnumericaldataconsistsofthefollowingfivestatistics:Minimumvalue,Q1,Median,Q3,MaximumvalueFixedpoint–apointwhoselocationremainsthesameunderatransformationGeneralization–theextensionofastatement(aboutapattern)thatistrueforspecificvalues

ofn(anaturalnumber)toastatement(aboutthatpattern)thatistrueforallvaluesofnGeoboard–amanipulativetypicallycomposedofaboardwith25pegsarrangedina5x5

squarearrayGeoboardpolygon–apolygonwhoseverticesareallpoints(pegs)onageoboardHeight(ofatriangle)–lengthofthelinesegmentfromavertexperpendiculartotheopposite

side.ThislinesegmentisoftencalledthealtitudeofthetriangleHeptagon–apolygonwithexactlysevensidesHexagon–apolygonwithexactlysixsidesHistogram:Adatadisplayinwhichtheverticalaxisrepresentsarateandthehorizontalaxisisactuallythex-axis-inotherwords,itisacontinuouspieceoftherealnumberlineandassuchitcontainsallrealnumbersinaninterval.Valuesofthevariablearebrokenintointerval

Page 217: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

217

‘classes.’(Note:manytextsusetermshistogramandbargraphinterchangeably.Wewillnotdosointhistext.)Homogeneous(verticesinatessellation)–verticesthathaveexactlythesamepolygons

meetinginexactlythesamearrangementHomogeneous(verticesinapolyhedron)–verticesthathaveexactlythesamepolygonfaces

meetinginexactlythesamearrangementHypotenuse–thesideofarighttriangleoppositetherightangleImage(ofatransformation)–thesetofpointsthatresultfromthemotionofanobjectbya

translation,arotation,orareflectionIndependent(events):Twoeventsaresaidtobeindependentifknowingthatoneoccurs(orknowingitdoesnotoccur)doesnotchangetheprobabilityoftheotheroccurringInductivereasoning–theinformalprocessofcomingtoaconclusionbasedonexamplesInscribedpolygon–thepolygoninsideacirclewhoseverticesalllieonthecircleInteriorangle–anyoneofthealternateinterioranglesformedbyatransversaltotwolinesInter-QuartileRange(IQR)=Q3–Q1.ItisthespreadofthemiddlehalfofthedataIntersection(oftwolines)–thepointthelineshaveincommonIntersection(oftwosets)–thesetofelementsthatarecommontobothsetsIsosceles–havingatleastonepairofcongruentsidesJustification–anargumentbasedonaxioms,definitions,andpreviouslyprovenresultstoshow

thataconjectureistrueLawoflargenumbers:Inrepeated,independenttrialsofarandomexperiment,asnumberoftrialsincreases,theexperimentalprobabilitiesobservedwillconvergetothetheoreticalprobability. Inotherwords,theaverageoftheresultsobtainedfromalargenumberoftrialsshouldbeclosetotheexpectedvalue,andwilltendtobecomecloserasmoretrialsareperformed.Leg–asideofarighttriangleoppositeanacuteangleLength–thedistancebetweentwopointsonaone-dimensionalcurve

Page 218: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

218

Line–anundefinedone-dimensionalsetofpointsunderstoodcovertheshortestdistanceandtoextendinoppositedirectionsindefinitely

Lineofreflection–thelineaboutwhichanobjectisreflectedtoformitsmirrorimageLinesegment–thesetofallpointsonalinebetweentwogivenpointscalledtheendpointsMass–aconceptofphysicsthatcorrespondstotheintuitiveideaof“howmuchmatterthereis

inanobject;”unlikeweight,themassofanobjectdoesnotdependupontheobject’slocationintheuniverse

Mean:Themean(oraverage)valueofasetofnumericdataisthesumofallthevaluesdividedbythenumberofvaluesMeanAbsoluteDeviation(MAD):MAD=!

-𝑥! − 𝑥 + 𝑥" − 𝑥 + 𝑥% − 𝑥 +⋯+ 𝑥- − 𝑥 ,

whichgivestheaveragedistancebetweenthemeanandeachofthendatapoints.Measure–todeterminethequantityofanattribute(orofafundamentalconceptsuchastime)

usingagivenunitMedian:Themedianofasetofnumericvaluesisthemiddlevaluewhenthedataisplacedinnumericalorder.Inthecasewheretherearetwo“middle”values,themedianistheaverageofthetwoMetricsystemofmeasurement–thesystemofmeasurementunitsinwhichthereisone

fundamentalunitdefinedforeachquantity(attribute)withmultiplesandfractionsoftheseunitsestablishedbyprefixesbasedonpowersoften

Midpoint–thepointonalinesegmentthatdividesitintotwocongruentlinesegmentsMode:thevaluethatoccursmostfrequentlyModel–arepresentationofanaxiomsysteminwhicheachundefinedtermisgivenaconcrete

interpretationinsuchawaythattheaxiomsallholdMultiplicationprinciple:IfyouhaveAdifferentwaysofdoingonethingandBdifferentwaysofdoinganother(andonechoicedoesnotaffecttheother)thenthetotalnumberofwaystodobothAandBisA×BNet–atwo-dimensionalfigurethatcanbefoldedintoathree-dimensionalobjectNonagon–apolygonwithexactlyninesides

Page 219: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

219

Noncollinear(points)–asetofpointsnotallofwhichlieonthesamelineNon-example(ofadefinition)–anexamplethatdemonstratemostoftheconditionsofa

definitionbutthatfailstosatisfyatleastoneconditionNonresponsebias:BiasedinformationthatresultsfromthefactthatsomegroupsinthesampleweremorelikelytorespondthanothersNon-standardunitofmeasure–aunitofmeasurewhosevalueisnotestablishedbyreference

toanacceptedstandard;forexample,ablockNumericalData:numberdataforwhichitmakessensetoperformarithmeticoperations(suchasaveraging).Obliqueprism(pyramid,cylinder)–aprism(pyramid,cylinder)thatisnotrightObtuseangle–ananglewithmeasuregreaterthan90degreesObtusetriangle–atrianglewithoneobtuseangleOctagon–apolygonwithexactlyeightsidesOrder(ofarotationalsymmetry)–thenumberofdifferentrotationsthatareasymmetryofan

objectOrientation–thedirection,clockwiseorcounterclockwise,ofthereadingoftheverticesofa

polygoninalphabeticalorderOutcome:Anyonethingthatcouldhappeninarandomexperiment.Outlier:aspecificvaluethatlieswelloutsidetheoverallpatternofthedata.Parallellines–coplanarlineswithnopointsincommonParallelogram–aquadrilateralinwhichbothpairsofoppositesidesareparallelParameter:Somenumericalinformationthatisdesiredfromanentirepopulation.Usuallyaparameterisanunknownvaluethatisestimatedbyastatistic.Partition–adivisionofageometricobjectintoasetofnon-overlappingobjectswhoseunionis

theoriginalobjectPentagon–apolygonwithexactlyfivesides

Page 220: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

220

Percentile:Ascoreinthenthpercentilemeansthat“npercent”ofthepeoplewhotookthetestscoredatorbelowthatscorePerimeter(ofaplaneobject)–thelengthoftheboundaryoftheobjectPerpendicularbisector–thelinethroughthemidpointofalinesegmentthatisalso

perpendiculartothelinesegmentPerpendicularlines–twolinesthatintersecttoformfourrightanglesPi(p)–theexactnumberoftimesthediameterofacirclefitsintoitscircumference(orthe

ratioofthecircumferenceofacircletoitsdiameter);thisratioisanirrationalnumberthatisconstantforallsizecirclesandisapproximatelyequalto3.14159

Planarcurve–acurvethatliesentirelywithinaplanePlane–anundefinedtwo-dimensionalsetofpointsunderstoodtobe“flat”andtoextendinall

directionsindefinitelyPlaneofsymmetry–aplaneinspaceaboutwhichathree-dimensionalobjectisreflectedPlatonicsolid–aregularpolyhedronplusitsinteriorPoint–anundefinedzero-dimensionalobject;alocationwithnosizePolygon–afinitesetoflinesegmentsthatformasimpleclosedplanarcurvePolyhedron(plural:polyhedra)–afinitesetofpolygon-shapedfacesjoinedpairwisealongthe

edgesofthepolygonstoencloseafiniteregionofspacewithinonechamberPopulation:thelargestgroupaboutwhichtheresearcherorsurveyorwouldlikeinformationPrism–apolyhedroninwhichtwoofthefaces(calledthebases)arecongruentandlie on parallel

(non-intersecting) planes andtheremainingfacesareparallelogramsProbability:referstotheproportionoftimesaneventwouldoccuriftherandomexperimentwasperformedaverylargenumberoftimesProof–adeductiveargumentthatestablishesthetruthofaclaimProtractor–aninstrumentusedtomeasureanglesPyramid–apolyhedroninwhichonefaceiscalledthebaseandalloftheremainingfacesare

trianglesthatshareacommonvertex(calledtheapex)

Page 221: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

221

Pythagoreantriple–threepositiveintegersthatsatisfythePythagoreantheoremQuadrilateral–apolygonwithexactlyfoursidesQuantifier(inlogic)–awordorphrase(suchas“all”or“atleastone”)thatindicatesthesizeof

thesettowhichthestatementappliesRadius(plural:radii)–thelinesegmentjoiningapointonacircletothecenterofthecircleRandomExperiment:anyexperimentwheretheoutcomedependsonchanceandcannotbeknownbeforehand.Whileinarandomexperiment,thespecificoutcomecannotbeknown,thereisnonethelessaregulardistributionofoutcomesafteraverylargenumberoftrials.Range=maximumvalue–minimumvalueRay–thesetofpointsonalinebeginningatagivenpoint(calledtheendpoint)andextending

inonedirectiononthelinefromthatpointRectangle–aquadrilateralwithfourrightanglesReflection–(inalinel)isatransformationoftheplaneinwhichtheimageofapointPonlisP,

andifAisapointnotonlandiftheimageofAis 'A ,thenlistheperpendicularbisectorof 'AA

Reflectionsymmetry(2-dimensional)–areflectioninalineinwhichtheimageoftheobject

coincideswiththeoriginalobjectReflectionsymmetry(3-dimensional)–areflectioninaplaneinwhichtheimageoftheobject

coincideswiththeoriginalobjectRegularpolygon–apolygonwithallsidescongruentandallvertexanglescongruentRegularpolyhedron–apolyhedronwhosefacesareeachthesameregularpolygonwiththe

samenumberoffacesmeetingateachvertexRegulartessellation–atessellationthatcontainsonlyoneregularpolygonResponseRate:Theratioofthenumberofrespondents(peoplewhoactuallytookpartinthestudy)tothenumberwhowereinvitedtoparticipate.Responsevariable:avariablewhosevariationisexplainedbyanothervariable(calledanexplanatoryvariable).

Page 222: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

222

Rhombus(plural:rhombi)–aquadrilateralwithfourcongruentsidesRightangle–ananglethatisexactlyonefourthofacompleteturnaboutapointRightprism(pyramid,cylinder)–aprism(pyramid,cylinder)inwhichthelinejoiningthe

centersofthebases(theapexofthepyramidtothecenterofitsbase)isperpendiculartothebase

Righttriangle–atrianglewithonerightangleRigidmotions-transformationsoftheplanethatpreservedistancesbetweenpoints(theydo

notdistorttheshapeorsizeofobjects)Rotation(aboutapointPthroughanangleq)–atransformationoftheplaneinwhichthe

imageofPisPand,iftheimageofAis 'A ,then PA@ 'PA and 'm APA =q.PointPiscalledthecenteroftherotation

Rotationsymmetry(2-dimensional)–arotationaboutapointinwhichtheimagecoincides

withtheoriginalobjectRotationsymmetry(3-dimensional)–arotationaboutanaxisofsymmetryinwhichtheimage

coincideswiththeoriginalobjectSample:asubsetofapopulationfromwhichdataiscollectedSamplebias:Biased(inaccurate)informationthatresultsfromapoorlychosensample.Samplingerror:thedifferencebetweenthevalueofaparameterandthevalueofthestatisticthatrepresentsit.Samplingerrorcanincludechanceerror,samplingbias,andnonresponsebias.Samplingrate:[(#inthesample)÷(#inthepopulation)]Samplespace:ThesamplespaceofarandomexperimentisthesetofallpossibleoutcomesScalefactor,avaluebywhichwemultiplyeachoriginaldimensiontofindthenewlengthsScalenetriangle–atrianglenoneofwhosesidesarecongruentScaling–atransformationoftheplanethatcauseseitheramagnificationorashrinkingofan

objectinwhichtheimageremainssimilartotheoriginalobjectScatterplot:Adisplaythatshowstherelationshipbetweentwonumericalvariablesmeasured

Page 223: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

223

onthesamesampleofindividuals.Thevaluesofonevariableareshownonthehorizontalaxis,andvaluesoftheothervariableareshownontheverticalaxis.Eachindividualisplottedasapointrepresentinganorderedpair(variable1,variable2).

Secant–alinethatintersectsacircleintwodistinctpointsSector–theportionofacircleanditsinteriorbetweentworadiiSelf-selectedsample:asampleinwhichrespondentsvolunteeredtoparticipate.Semiregularpolyhedron–apolyhedronthatcontainstwoormoreregularpolygonsasfaces

whicharearrangedsothatallverticesarehomogeneousSemiregulartessellation–atessellationthatcontainstwoormoreregularpolygonsarranged

sothattheverticesarehomogeneousShearing–atransformationoftheplanethatchangestheshapeofanobjectSide–oneofthelinesegmentsthatmakeupapolygonSimilarobjects–objectswhereonecanbeobtainedfromtheotherbycomposingarigid

motionwithadilationSimplecurve–acurvethatdoesnotintersectitselfSimpleRandomSample(SRS):AsampleinwhicheverysubsetofthepopulationhasthesamechanceofbeinginthesampleasanyothersubsetofthesamesizeSkewedleft:AdistributionofdataisskewedleftifithasanasymmetrictailtotheleftSkewedright:AdistributionofdataisskewedrightifithasanasymmetrictailtotherightSlope(ofaline)–theverticaldistancerequiredtostayonalineforaoneunitchangein

horizontaldistanceSpace–anundefinedtermthatdenotesthesetofpointsthatextendsindefinitelyinthree

dimensionsSphere–thesetofpointsin(three-dimensional)spacethatareequidistantfromagivenpoint,

calledthecenterSquare–aquadrilateralwithfourrightanglesandfourcongruentsides

Page 224: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

224

Standardunitofmeasure–aunitofmeasurewhosevalueisestablishedbyreferencetoanacceptedstandard;forexample,themeterisdefinedtobeoneten-millionthofthedistancefromtheequatortothenorthpole

Straightangle–ananglethatmeasureshalfaturn(ortworightangles)Straightedge–aninstrumentusedtoconstructlinesegmentsStatistic:Anynumericalinformationcomputedfromasample.(Forexample,ameancalculatedfromasampleisastatistic,whichcanbeusedasanestimateforthepopulationmean,whichwouldbeaparameterStemandleafplot(orsimplystemplot):alistingofallthedatatypicallyarrangedsothetensplacemakesthestemandtheonesarethe‘leaves.’Supplementaryangles–twoangleswhosemeasuressumto180degreesSurface–thesetofpointsthatformtheboundaryofasolidthree-dimensionalobjectSurfacearea–thesumoftheareasofthefacesofaclosed3-dimensionalobjectSurvey:Anydatacollectionmethodinwhichdataiscollectedfromjustasubsetofthe

populationSymmetricDistribution:Adistributionthatissymmetricaboutthemedian.Symmetry(ofanobject)–atransformationoftheobjectinwhichtheimagecoincideswiththe

originalTangent(toacircle)–alinethatintersectsacircleinexactlyonepoint Tessellation–anarrangementofpolygonsthatcanbeextendedinalldirectionstocoverthe

planewithnogapsandnooverlapsinsuchawaythatverticesonlymeetotherverticesTheorem–astatementthathasbeenproventrueTheoreticalProbabilities:probabilitiesassignedbasedonassumptionsaboutthephysicaluniformityandsymmetryofanobject(suchasadieorcoinorbagofcandies).Thirdquartile(Q3):themedianofthedatapositionedstrictlyafterthemedianwhenthedataisplacedinnumericalorder.Tiling–anarrangementofpolygonsthatcanbeextendedinalldirectionstocovertheplane

withnogapsandnooverlaps

Page 225: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

225

Time–ameasurablepartofthefundamentalstructureoftheuniverse,adimensioninwhicheventsoccurinsequence

Transformation–amovementofthepointsofaplanethatmaychangethepositionorthesize

andshapeofobjectsTranslation(byavectorAA’)–arigidmotionoftheplanethattakesAtoA’,andforallother

pointsPontheplane,PgoestoP’wherevectorPP’andvectorAA’havethesamelengthanddirection

Translationsymmetry–atranslationoftheplanesuchthattheimagecorrespondstothe

originalobjectTranslationvector–anarrowthatgivesthedirectionanddistance(itslength)thatapointis

movedduringatranslationTransversal–alinewhichintersectstwoormorelinesTrapezoid–aquadrilateralwithexactlyonepairofparallelsidesTriangle–apolygonwiththreesidesTrivialrotation–therotationof360°;itisarotationalsymmetryofeveryobjectUndefinedterm–atermwhichhasanintuitivemeaning,butnoformaldefinitionUnion(ofsets)–thesetcontainingeveryelementofeachsetUnitofmeasure–anobjectisusedforcomparisonwithanattributeUnitsquare–asquarethatisoneunitbyoneunitandthushasanareaofonesquareunitUnitcube–acubethatisoneunitbyoneunitbyoneunitandhasavolumeofonecubicunitVenndiagram–apictureinwhichtheobjectsbeingstudiedarerepresentedaspointsona

planeandsimpleclosedcurvesaredrawntogroupthepointsintodifferentclassifications.Venndiagramsareusedtovisualizerelationshipsamongsetsofobjects.

Vertex(plural:vertices)–thecommonendpointoftwoadjacentsidesofapolygonVertexangle–theangleformedbyadjacentsidesofapolygonVertex(ofapolyhedron)–theintersectionoftwoormoreedgesofapolyhedron

Page 226: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

226

Verticalangles–anonadjacentpairofanglesformedbytwointersectinglinesVolume–ameasureofthecapacityofa3-dimensionalobjector,alternatively,thequantityof

spaceenclosedbya3-dimensionalobjectWeight–ameasureoftheforceofgravityonanobject;oftenusedinterchangeablywithmass;

differencesinthemeasuresofweightandmassarenegligibleatsealevelonearth

Page 227: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

227

GraphPaper

Page 228: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

228

Page 229: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

229

Tangrams

Page 230: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

230

PatternBlocks

Page 231: Big Ideas Geometry and Data Analysis · We will be giving you other definitions of geometry as we go along. Watch for the variety of ways of thinking about geometry. WHAT IS GEOMETRY

231