bibliography - springer978-94-007-5766-0/1.pdf · bibliography arfken, ... k. j. (1996). finite...

22
Bibliography Arfken, G. B. & Weber, H. J. (1995). Mathematical Methods for Physi- cists, Fourth Edition, Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto. Bathe, K. J. (1996). Finite Element Procedures, Prentice-Hall, Upper Saddle River, New Jersey. 1037 pages. Belytschko, T., Stolarski, H., W K. Liu, W., Carpenter, N. & Ong, J. S. J. (1985). Stress projection for membrane and shear locking in shell finite elements, Computer Methods in Applied Mechanics and Engineering 51: 221–258. Brazier, L. G. (1927). On the flexure of thin cylindrical shells and other “thin” sections, Technical report, Proc. Royal Society Series A. Brush, D. O. & Almroth, B. O. (1975). Buckling of Bars, Plates, and Shells, McGraw-Hill. xiii + 379 pages. Budiansky, B. (1966). Dynamic buckling of elastic structures: Criteria and estimates, Dynamic Stability of Structures, Pergamon Press, Oxford, New York, pp. 83–106. Budiansky, B. (1974). Theory of buckling and post-buckling behavior of elastic structures, Advances in Applied Mechanics 14: 1–65. Budiansky, B. & Hutchinson, J. W. (1964). Dynamic buckling of imper- fection-sensitive structures, in H. G¨ ortler (ed.), Proceedings of the 11th International Congress on Applied Mechanics, Springer–Verlag, Berlin, pp. 636–651. Budiansky, B. & Hutchinson, J. W. (1979). Buckling: Progress and chal- lenge, Trends in Solid Mechanics 1979, Delft University Press, Sijthoff and Noordhoff International Publishers, pp. 93–116. Byskov, E. (1979). Applicability of an asymptotic expansion for elastic buckling problems with mode interaction, AIAA Journal 17(6): 630– 633. Byskov, E. (1982). Imperfection sensitivity of elastic-plastic truss columns, AIAA Journal 20(2): 263–267. Byskov, E. (1982–83). Plastic symmetry of Roorda’s frame, J. Struct. Mech. 10(3): 311–328. Byskov, E. (1983). An asymptotic expansion applied to van der Neut’s column, in J. M. T. Thompson & G. W. Hunt (eds), Collapse—the buckling of structures in theory and practice, Cambridge University 571 E. Byskov, Elementary Continuum Mechanics for Everyone, Solid Mechanics and Its Applications 194, DOI: 10.1007/978-94-007-5766-0, Ó Springer Science+Business Media Dordrecht 2013

Upload: vuongquynh

Post on 10-Aug-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

BibliographyArfken, G. B. & Weber, H. J. (1995). Mathematical Methods for Physi-

cists, Fourth Edition, Academic Press, San Diego, New York, Boston,London, Sydney, Tokyo, Toronto.

Bathe, K. J. (1996). Finite Element Procedures, Prentice-Hall, Upper SaddleRiver, New Jersey. 1037 pages.

Belytschko, T., Stolarski, H., W K. Liu, W., Carpenter, N. & Ong, J. S. J.(1985). Stress projection for membrane and shear locking in shell finiteelements, Computer Methods in Applied Mechanics and Engineering51: 221–258.

Brazier, L. G. (1927). On the flexure of thin cylindrical shells and other“thin” sections, Technical report, Proc. Royal Society Series A.

Brush, D. O. & Almroth, B. O. (1975). Buckling of Bars, Plates, and Shells,McGraw-Hill. xiii + 379 pages.

Budiansky, B. (1966). Dynamic buckling of elastic structures: Criteria andestimates, Dynamic Stability of Structures, Pergamon Press, Oxford,New York, pp. 83–106.

Budiansky, B. (1974). Theory of buckling and post-buckling behavior ofelastic structures, Advances in Applied Mechanics 14: 1–65.

Budiansky, B. & Hutchinson, J. W. (1964). Dynamic buckling of imper-fection-sensitive structures, in H. Gortler (ed.), Proceedings of the 11thInternational Congress on Applied Mechanics, Springer–Verlag, Berlin,pp. 636–651.

Budiansky, B. & Hutchinson, J. W. (1979). Buckling: Progress and chal-lenge, Trends in Solid Mechanics 1979, Delft University Press, Sijthoffand Noordhoff International Publishers, pp. 93–116.

Byskov, E. (1979). Applicability of an asymptotic expansion for elasticbuckling problems with mode interaction, AIAA Journal 17(6): 630–633.

Byskov, E. (1982). Imperfection sensitivity of elastic-plastic truss columns,AIAA Journal 20(2): 263–267.

Byskov, E. (1982–83). Plastic symmetry of Roorda’s frame, J. Struct. Mech.10(3): 311–328.

Byskov, E. (1983). An asymptotic expansion applied to van der Neut’scolumn, in J. M. T. Thompson & G. W. Hunt (eds), Collapse—thebuckling of structures in theory and practice, Cambridge University

571

E. Byskov, Elementary Continuum Mechanics for Everyone,Solid Mechanics and Its Applications 194, DOI: 10.1007/978-94-007-5766-0,Ó Springer Science+Business Media Dordrecht 2013

Bibliography

Press.

Byskov, E. (1987–88). Elastic buckling with infinitely many local modes,Mechanics of Structures and Machines 15(4): 413–435.

Byskov, E. (1989). Smooth postbuckling stresses by a modified finite elementmethod, International Journal for Numerical Methods in Engineering28: 2877–2888.

Byskov, E. (2004). Mode interaction–an overview, in Z. H. Yao, M. W.Yuan & W. X. Zhong (eds), Computational Mechanics WCCM VI inconjunction with APCOM’04, Tsinghua University Press & Springer-Verlag, pp. 1–11. WCCMVI CDROM 1/MS PDF/M-63.htm.

Byskov, E., Christensen, C. D. & Jørgensen, K. (1996). Elastic postbucklingwith nonlinear constraints, Int. J. Solids. Structures 33(17): 2417–2436.

Byskov, E., Damkilde, L. & Jensen, K. J. (1988). Multimode interactionin axially stiffened cylindrical shells, Mechanics of Structures and Ma-chines 16(3): 387–405.

Byskov, E. & Hansen, J. C. (1980). Postbuckling and imperfection sensitiv-ity analysis of axially stiffened cylindrical shells with mode interaction,’,J. Struct. Mech. 8(2): 205–224.

Byskov, E. & Hutchinson, J. W. (1977). Mode interaction in axially stiffenedcylindrical shells, AIAA Journal 15(7): 941–948.

Cauchy, A. (1829). Exercises de mathematiques, Paris.

Christensen, C. D. & Byskov, E. (2008). Advanced postbuckling and im-perfection sensitivity of the elastic-plastic shanley–hutchinson modelcolumn, JoMMS 3(3): 459–492.

Christensen, D. D. & Byskov, E. (2010). An enhanced asymptotic expansionfor the stability of nonlinear elastic structures, JoMMS 5(6): 925–961.

Cook, R. D., Malkus, D. S. & Plesha, M. E. (1989). Concepts and Applica-tions of Finite Element Analysis, third edn, John Wiley & Sons, NewYork.

Cook, R. D., Malkus, D. S. & Plesha, M. E. (2002). Concepts and Applica-tions of Finite Element Analysis, fourth edn, John Wiley & Sons, NewYork. ISBN 0-471-35605-0.

Coulomb, C. A. (1787). Histoire de l’Academie, Paris, pp. 229–269.

Crawford, R. F. & Hedgepeth, J. M. (1975). Effects of initial waviness on thestrength and design built-up structures, AIAA Journal pp. 672–675.

Damkilde, L. & Byskov, E. (1979). Buckling of elastic plates under concen-trated loads, Proceedings of the Seventh Canadian Congress on AppliedMechanics, Sherbrooke, pp. 241–242.

Duberg, J. E. & Wilder, T. W. (1952). Inelastic column behavior, TechnicalReport 1072, National Advisory Committee for Aeronautics.

Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive pro-

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

572

Bibliography

prieta gaudentes, Bousquet, Lausanne and Geneva.

Fitch, J. R. (1968). The buckling and post-buckling behavior of sphericalcaps under concentrated load, Int. J. Solids. Structures 4: 421–446.

Flugge, W. (1972). Tensor Analysis and Continuum Mechanics, Springer-Verlag, Berlin, Heidelberg, New York.

Frandsen, P. M. (1946). Elasticitetsteori, Jul. Gjellerups Forlag, København.

Fung, Y. C. (1965). Foundations of Solid Mechanics, Prentice-Hall, Inc.,Englewood Cliffs, New Jersey.

Fung, Y. C. & Tong, P. (2001). Classical and Computational Solid Mechan-ics, World Scientific Publishing Co. Pte. Ltd., Suite 1B, 1060 MainStreet, River Edge, NJ 07661.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P.,Booth, M. & Rossi, F. (2009). GNU Scientific Library — ReferenceManual, 1.13 edn.

Green, A. E. & Zerna, W. (1960). Theoretical Elasticity, Oxford UniversityPress, Amen House, London E.C.4.

Hutchinson, J. W. (1972). On the postbuckling behavior of imperfection-sensitive structures in the plastic range, Journal of Applied Mechanics39: 155–162.

Hutchinson, J. W. (1973a). Imperfection-sensitivity in the plastic range,Journal of Mechanics and Physics in Solids 21: 191–204.

Hutchinson, J. W. (1973b). Post-bifurcation behavior in the plastic range,Journal of Mechanics and Physics in Solids 21: 163–190.

Hutchinson, J. W. (1974a). Notes on postbuckling and imperfection sensi-tivity. These notes were hand-outs at a course in Udine, Italy.

Hutchinson, J. W. (1974b). Plastic buckling, Advances in Applied Mechanics14: 67–144.

Hutchinson, J. W. & Amazigo, J. C. (1967). Imperfection-sensitivity ofeccentrically stiffened cylindrical shells, AIAA Journal 5(3): 392–401.

Hutchinson, J. W. & Koiter, W. T. (1970). Postbuckling theory, AppliedMechanics Reviews 23: 1353–1366.

Johansen, K. W. (1963). Yield Line Theory (in Danish), Dr.Techn. thesis,Copenhagen. Danish title: Brudlinieteorier. First edition 1943.

Johansen, K. W. (1972). Yield Line Formulas for Slabs, Cement and Con-crete Association.

Kachanov, L. M. (1974). Fundamentals of the Theory of Plasticity, MIRPublishers, Moscow. Revised translation of the 1969 Russian edition.

Keillor, G. (1987). Leaving Home, Penguin Books, London, England; NewYork, New York; Markham, Ontario; Auckland, New Zealand.

Koiter, W. T. (1945). On the Stability of Elastic Equilibrium, H.J. Paris,

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

573

Bibliography

Amsterdam. In Dutch, also NASA TT-F10,833, (1967); also Air ForceFlight Dynamics Laboratory, AFFDL-TR-70-25, (1970).

Koiter, W. T. (1966). Post-buckling analysis of a simple two-bar frame,Recent Progress in Applied Mechanics, Almquist and Wiksell.

Koiter, W. T. (1976). General theory of mode interaction in stiffened plateand shell structures, Technical Report Rept. WTHD-91, Delft Univer-sity of Technology, Delft, The Netherlands.

Koiter, W. T. (2008). W. T. Koiter’s Elastic Stability of Solids and Struc-tures, Cambridge University Press. Also published online 2009.

Koiter, W. T. & Kuiken, G. D. C. (1971). The interaction between localbuckling and overall buckling on the behaviour of built-up columns,Technical Report Rept. WTHD-23, Delft University of Technology,Delft, The Netherlands.

Koiter, W. T. & van der Neut, A. (1979). Interaction between local and over-all buckling of stiffened compression panels, TWS International Con-ference On Thin-Walled Structures, University of Strathclyde, Scot-land.

Kreyszig, E. (1993). Advanced Engineering Mathematics, Seventh Edition,John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto,Singapore.

Kuznetsov, V. V. & Levyakov, S. V. (2002). Complete solution of thestability problem for elastica of Euler’s column, Int. J. Non-LinearMechanics 37(6): 1003–1009.

Kyriakides, S. & Corona, E. (2007). Mechanics of offshore pipelines: Buck-ling and collapse, Elsevier.

Kyriakides, S. & Shaw, P. K. (1982). Response and stability of elastoplasticcircular pipes under combined bending and external pressure, Int. J.Solids Structures 18(11): 957–973.

Lakes, R. S. (1987). Foam structures with a negative poisson’s ratio, Science235: 1038–1040.

Levy, M. (1899). Comptes rendus 9’Octbr., pp. 535–539.

Levy, M. & Salvadori, M. (1992). Why Buildings Fall Down, W.W. Norton& Company, New York, London.

Malvern, L. E. (1969). Introduction to the Mechanics of a ContinuousMedium, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Mau, S. T. & El-Mabsout, M. (1989). Inelastic buckling of reinforcing bars,Journal of Engineering Mechanics 115: 1–17.

Melosh, R. J. (1963). Basis of derivation of matrices for the direct stiffnessmethod, AIAA Journal 1: 1631–1637.

Mikhlin, S. G. (1964). Variational Methods in Mathematical Physics, Perg-amon Press, Oxford, Edinburgh, London, New York, Paris, Frankfurt.

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

574

Bibliography

Translated by T. Boddington.

Møllmann, H. & Goltermann, P. (1989a). Interactive buckling in thin-walledbeams—i. theory, Int. J. Solids Structures 25(7): 715–728.

Møllmann, H. & Goltermann, P. (1989b). Interactive buckling in thin-walledbeams—ii. applications, Int. J. Solids Structures 25(7): 729–749.

Muskhelishvili, N. I. (1963). Some Basic Problems of the MathematicalTheory of Elasticity, P. Noordhoff Ltd., Groningen, The Netherlands.Translated from the Russian by J.R.M. Radok.

Navier, C. M. L. H. (1827). Memoires de l’Academie des Sciences 7.

Needleman, A. & Tvergaard, V. (1976). An analysis of the imperfectionsensitivity of square elastic-plastic plates under compression,’, Inter-national Journal of Solids and Structures 12: 185–201.

Needleman, A. & Tvergaard, V. (1982). Aspects of plastic postbucklingbehavior, in H. Hopkins & M. Sewell (eds), Mechanics of Solids. TheRodney Hill 60th Anniversary Volume, pp. 453–498.

Noor, A. K. & Peters, J. M. (1981). Mixed models and reduced/selectiveintegration displacement models for nonlinear analysis of curved beams,International Journal for Numerical Methods in Engineering 17: 615–631.

Ottosen, N. S. & Petersson, H. (1992). Introduction to the Finite ElementMethod, Prentice Hall, New York, London, Toronto, Tokyo, Sydney,Singapore.

Pearson, C. E. (1959). Theoretical Elasticity, Harvard University Press,Cambridge, Massachusetts.

Peek, R. & Kheyrkhahan, M. (1993). Postbuckling behavior and imperfec-tion sensitivity of elastic structures by the Lyapunov-Schmidt-Koiterapproach, Computer Methods in Applied Mechanics and Engineering108: 261–279.

Pian, T. H. H. (1964). Derivation of element stiffness matrices by assumedstress distribution, AIAA Journal 2: 1333–1336.

Prager, W. & Hodge, Jr., P. G. (1968). Theory of Perfectly Plastic Solids,Dover Publications, Inc., New York. Paperback edition, first publishedin 1951 by John Wiley and Sons.

Prandtl, L. (1904). Eine neue Darstellung der Torsionsspannungen, Jahres-bericht d. deutsch. Math. Vereinigung .

Reismann, H. & Pawlik, P. S. (1980). Elasticity, Theory and Applications,Wiley, New York.

Renton, J. D. (1991). Generalized beam theory applied to shear stiffness,International Journal of Solids and Structures 27: 1955–1967.

Roorda, J. (1965). Stability of structures with small imperfections, Journalof the Engineering Mechanics Division, ASCE (EMI) 91: 87–106.

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

575

Bibliography

Saint-Venant, B. (1855). Memoire sur la torsion des prismes, Paris.

Shanley, F. R. (1947). Inelastic column theory, Journal of the AeronauticalSciences 14: 261–267.

Sokolnikoff, I. S. (1956). Mathematical Theory of Elasticity, second edn,McGraw-Hill Book Company, Inc., New York, Toronto, London.

Stephens, W. B. (1971). Imperfection sensitivity of axially compressedstringer reinforced cylindrical panels under internal pressure, AIAAJ. 9: 1713–1719.

Stolarski, H. & Belytschko, T. (1982). Membrane locking and reduced inte-gration for curved elements, Journal of Applied Mechanics 49: 172–176.

Strang, G. & Fix, G. J. (1973). An Analysis of the Finite Element Method,Prentice-Hall, Inc., Englewood Cliffs, N.J.

Sundstrom, B. (ed.) (2010). Handbook of Solid Mechanics, Department ofSolid Mechanics, KTH, Stockholm, Sweden.

Thompson, J. M. T. & Hunt, G. W. (1973). A General Theory of ElasticStability, Wiley, New York.

Timoshenko, S. P. & Gere, J. M. (1961). Theory of Elastic Stability, secondedn, McGraw-Hill, New York, Toronto, London.

Timoshenko, S. P. & Goodier, J. N. (1970). Theory of Elasticity, third edn,McGraw-Hill, New York, Toronto, London.

Timoshenko, S. P. & Woinowsky-Krieger, S. (1959). Theory of Plates andShells, second edn, McGraw-Hill, New York, Toronto, London.

Truesdell, C. (1965). The Elements of Continuum Mechanics, Springer-Verlag New York, Inc., New York.

Tvergaard, V. (1973a). Imperfection-sensitivity of a wide integrally stiffenedpanel under compression, International Journal of Solids and Struc-tures 9: 177–192.

Tvergaard, V. (1973b). Influence of post-buckling behaviour on optimumdesign of stiffened panels, International Journal of Solids and Struc-tures 9: 1519–1534.

Tvergaard, V. (1976). Buckling behaviour of plate and shell structures,Proceedings of the 14th IUTAM Congress, pp. 233–247.

Tvergaard, V. & Needleman, A. (1975). Buckling of eccentrically stiffenedelastic-plastic panels on two simple supports or multiply supported,International Journal of Solids and Structures 11: 647–663.

van der Neut, A. (1969). The interaction of local buckling and columnfailure of thin-walled compression members, in M. Hetenyi & W. Vin-cent (eds), Proceedings of the 12th International Congress on AppliedMechanics, Springer-Verlag, Berlin, pp. 389–399.

Washizu, K. (1982). Variational Methods in Elasticity and Plasticity, Perg-amon, Oxford.

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

576

Bibliography

Wunderlich, W., Obrecht, H. & Schrodter, V. (1986). Nonlinear analysisand elastic-plastic load-carrying behaviour of thin-walled spatial beamstructures with warping constraints, International Journal for Numer-ical Methods in Engineering 22: 671–695.

Yu, T. & Johnson, W. (1982). The Plastica: The large elastic-plastic de-flections of a strut, International Journal of Non-Linear Mechanics17: 195–209. Online 2002.

Zienkiewicz, O. C. & Taylor, R. L. (2000a). Finite Element Method—Volume 1: The Basis, Fifth Edition, Butterworth-Heinemann, Oxford.xvi+669 pages.

Zienkiewicz, O. C. & Taylor, R. L. (2000b). Finite Element Method—Volume 2: Solid Mechanics, Fifth Edition, Butterworth-Heinemann,Oxford. xii+459 pages.

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

577

Index

AAdmissible

KinematicallyDisplacement field . . . . 25

AiryStress Function Φ . 181, 313

Algol . . . . . . . . . . . . . . . . . . 433American

“American epsilon” 530, 533,534

AnalysisTensor . . . . . . . . . . . . . 516

AnalyticManipulations . . . . . . . . 433

AngleChange of . . . . . . . . . 12, 40

Anisotropy . . . . . . . . . . . . . . . 28Antiymmetric

Matrix . . . . . . . . . . . . . 515Approximate

SolutionEuler Column . . . . . . 545Plate buckling . . . . . . 335

ApproximationGood . . . . . . . . . . . . . . 530

AreaCross-sectional A . . 204, 205Effective Ae . . . 115, 235, 236

AsymmetricStructure . . . . . . . . . . . 538

AuxiliaryCondition . . . . 545, 548, 568

Axes of the cross-section . . . . 206Axial

Equilibrium . . . . . . . . . . 220Fiber

Strain εf . . . . . . . . . . 202Force N . . . . . . . . . . . . 202Stiffness . . . . . . . . 115, 122Strain ε . . . . . . 132, 261–263

AxisNeutral . . . . . . . . . . . . . 206

BBar

Deformation . . . . . . . . . 92Finite

Element . . . . . . . . . . . 433Base vector

Deformed gm . . . . . . . . . 11Undeformed ij . . . . . . . . . 8

Bauschinger effect . . . . . . . . . 80Beam

AxialStrain ε 94, 97, 105, 109

112, 132, 147Axis . . . . . . . . . . . . . . . 206Bending

Strain κ 94, 97, 105, 109113, 132

Bernoulli-Euler 94, 97, 109Fully nonlinear . . 95, 125

CurvatureStrain κ 94, 97, 105, 109

113, 132Curvature of . . . . . . . . . 131Fiber . . . . . . . . . . . . . . 200Fully nonlinear

Bernoulli-Euler . . . . . 95Curved Bernoulli-Euler 125

Rotation of . . . . . . . . . . 130Shear

Strain ϕ . . . . . . 105, 113Shear strain ϕ . . . . . . . . 95Timoshenko . . . 95, 104, 110

BehaviorPostbuckling . . . . . . . . . 342

BendingDeformation . . . . . . . . . 93Instability

Tubes . . . . . . . . . . . . 148Melosh

Element . . . . . . . . . . . 430Moment M . . . . . . . . . . 202Plates . . . . . . . . . . . . . . 159

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

579

E. Byskov, Elementary Continuum Mechanics for Everyone,Solid Mechanics and Its Applications 194, DOI: 10.1007/978-94-007-5766-0,Ó Springer Science+Business Media Dordrecht 2013

Index

Stiffness . . . . . . . . 115, 122Bernoulli-Euler

Beam . . . . . . . . . . 94, 97Fully nonlinear (curved) 125Fully nonlinear (straight) .

. . . . . . . . . . . . . . . . 95Linear . . . . . . . . . . . . 109Moderately nonlinear . 97

BifurcationBuckling . . . . . 281, 282, 299Load

Higher . . . . . . . . . . . . 301Biharmonic

Operator ∇4 (nabla) . . . 180Bilinear

Operator l11 . . . . . 162, 554Boundary

ConditionsKinematic . . . . . . . 15, 39Static . . . . . 18, 20, 48, 53

Kinematic . . . . . . . . . . . . 6Static . . . . . . . . . . . . . . 6

BrazierEffect . . . . . . . . . . . . . . 148Solution . . . . . . . . 154–157

BridgeQuebec . . . . . . . . . . . . . 368

Broken Pocket Calculator . . . 522Buckling

Bifurcation . . . 281, 282, 299Column

Model . . . . . . . . . . . . 291Fields u1, ε1, σ1 . . 300, 344Limit load . . . . . . . . . . . 281Load . . . . . . . . . . . 120, 318Mode u1 . . . . . . . . 300, 318Mode w(1) . . . . . . . . . . . 120Plate . . . . . . . . . . . . . . . 309Problem . . . . . . . . 300, 348Snap . . . . . . . . . . . . . . . 281

Load λs . . . . . . . . . . . 282Budiansky, B. . . . . . . . . . . . . 342Budiansky-Hutchinson

Notation . . . . . . . . . 25, 553Interpretation of . . . . 569

Bulk BModulus . . . . . . . . . . . . . 67

Byskov, E. . . . . . . . . . . . . . . 343Byskov, E. & Hansen, J.C. . . 343Byskov, E. & Hutchinson, J.W. 343Byskov, E., Damkilde, L. & Jensen,

K.J. . . . . . . . . . . . . 343

CC++ . . . . . . . . . . . . . . . . . . 433Calculator

Broken . . . . . . . . . . . . . 522Calculus

of variations . . . . . . . . . 521Cantilever

TimoshenkoBeam . . . . . . . . . . . . 122

CartesianCoordinate

System . . . . . . . . 8, 511Center

of Gravity . . . . . . . . . . . 206Change

of angle . . . . . . . . . . . 12, 41of length . . . . . . . . . . 11, 40

“Characteristic”Displacement . . 401, 544, 561

Christensen, C.D. . . . . . . . . . 343Circular

Cross-section . . 211, 226, 255Ring-shaped 216, 232, 260

FiniteElement . . . . . . . . . . . 449

ClassicalCritical load λc 120, 282, 299,

300Column

ElasticModel . . . . . . . . . . . . 383

Elastic-plastic . . . . . . . . 374Euler . . . . 119, 302, 360, 545Imperfect

Model . . . . . . . . . . . . 290Model . . . . . . . . . . . . . . 285

Elastic Shanley . . . . . 383Shanley plastic . . . . . . 380

PerfectModel . . . . . . . . . . . . 285

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

580

Index

Timoshenko . . . . . . . . . . 306Truss

Geometrically imperfect 369Geometrically perfect . 369

Vector . . . . . . . . . . . . . . 510Comma

Notation ( ),j . . . . . 9, 512Compatibility

Equations . . 14, 36, 247, 253Strain . . . . . . . . . . . . . . . 36Torsion . . . . . . . . . 247, 253

ComplementaryEnergy ΠC . . . . . . 480, 562

Modified ΠCM . . . . . . 479Strain

Energy function WC(εij) 58Conclusion

Shanley . . . . . . . . . . . . . 391Concrete . . . . . . . . . . . . . . . 77Condition

Auxiliary . . . . . 545, 548, 568Side . . . . . . . . . . . 545, 568

ConjugateQuantities . . . . . . . . . . . . 26Work . . . . . . . . . . . . . . 557

ConservativeLoad . . . . . . . . . . . . . . . 284

ConsistentTheory . . . . . . . . . . . . . 99

ConstantPostbuckling a . . . . 346, 349Postbuckling b . . . . 346, 351

ConstantsLame µ and λ . . . . . . . . . 65

ConstitutiveOperator . . . . . . . . . . . . 558

Linear H . . . . . . . . . . 558Relations . . . . . . . . . . . . . 60

Hyperelasticity . . . . . . . 28Linear hyperelasticity . . 28

ConventionSummation . 8, 511, 512, 514

CoordinateSystem

Cartesian . . . . . . . 8, 511Coordinates

Generalized

Functions . . . . . . . . . 519Vectors . . . . . . . . . . . 517

Transformation of . . . . . . 42Crawford, R.F. & Hedgepeth, J.M.

. . . . . . . . . . . . . . . . 343Criteria

Stability . . . . . . . . . . . . 281Criterion

Rigid-body . . . . 4, 449, 458Critical load

Classical λc . . . 120, 219, 300Cross-section

Circular . . . . . 211, 226, 255Ring-shaped 216, 236, 260

Elliptic . . . . . . . . . . . . . 257Equilateral

Triangle . . . . . . . . . . . 263I-shaped . . . . . . . . 214, 228Rectangular . . . 212, 225, 265Ring-shaped

Circular . . . . 216, 236, 260T-shaped . . . . . . . . . . . . 212

Cross-sectionalArea A . . . . . . . . . . . . . 204

Cross-sectional area A . . . . . . 205Curl

Curl v . . . . . . . . . . . . . 514Curvature

beam . . . . . . . . . . . . . . 131Geometric k0 and k . . . . 127Radii of ρ0 and ρ . . . . . . 127Strain κ 94, 122, 161, 202, 203

DDeficiency

MeloshElement . . . . . . . . . . . 430

DeformationBar . . . . . . . . . . . . . . . . 92Bending . . . . . . . . . . . . 93Shear . . . . . . . . . . . . . . 93Theory of plasticity . . . . 81

DeformedBase vector gm . . . . . . . . 11

DensityStrain

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

581

Index

Energy W (εij) . . . . . . . 66Energy W (γij) . . . . . . . 27

DerivativeGateaux . . . . . . . . 531, 558

DeterminateStatically . . . . . . . . . . . 116

DeviatorStrain εjk . . . . . . . . . . . . 67Stress σjk . . . . . . . . 67, 81

Displacement“Characteristic” 401, 544, 561Field

Kinematically admissible 25Generalized u . . . . . . . . 553Interpolation

Matrix [N ] . . . . . . . . . 415Vector

Element {v}j . . . . . . . 422Displacements

Infinitesimal . . . . . . . 35–60Large . . . . . . . . . . . . 5–31

Divergence . . . . . . . . . . . . . . 511Theorem . . . . . . . . . . . . . 21

Dot notation · . . . . . . . . . . . 555Dummy

Index . . . . . . . . . .. 8, 512

EEffect

Brazier . . . . . . . . . . . . . 148Effective

Area Ae . . 122, 234, 236, 239Shear

Stiffness GAe 122, 234, 236Stress σe . . . . . . . . . . . . 81

EigenvalueProblem . . . . . . . . . . . . 326

Eigenvalue problemLinear . . . . . . . . . . . . . . 120

Eigenvector . . . . . . . . . . . . . 326Elastic

TimoshenkoBeam . . . . . . . . . . . . 122

Elastic ShanleyModel

Column . . . . . . . . . . . 383

Elastica . . . . . . . . . . . . . . . . 134Elasticity

Hyperelasticity . . . . . . . . 28Modulus of E . . . . . . . . . 65Nonlinear . . . . . . . . . . . 74

Elastic-plasticColumn . . . . . . . . . . . . . 374

ElementDisplacement vector {v}j 422Isoparametric . . . . . . . . 459Load

Vector {r}j . . . . . . . . 420Vector at system level {R}j

. . . . . . . . . . . . . . . . 421Stiffness

Matrix [k]j . 409, 416, 417Matrix at system level [K]j

. . . . . . . . . . . . . . . . 419Transformation

Matrix [T ]j . . . . . . . . 418Elimination

InternalNodes . . . . . . . . . . . . 437

StressField Parameters . . . . 488

EllipticCross-section . . . . . . . . . 257

Elongation“Fiber” . . . . . . . . . . . . . . 11

EnergyComplementary ΠC . 58, 480,

562Density

Strain W (εij) . . . . . . . 66Strain W (γij) . . . . . . . 27

ModifiedPotential ΠPM . . 460, 548

Potential ΠP . 28, 30, 55, 56,521, 558

Minimum of . . . . . . . . 560Stationarity of . . . . . . 559

EngineeringStrain e . . . . . . . . . . . . . 132

epsilon“American epsilon” 530, 533,

534Equations

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

582

Index

Compatibility 14, 36, 247, 253Equilibrium . . . . . . . . 15, 48Finite element . . . . . . . . 421

EquilibriumAxial . . . . . . . . . . . . . . 220Equations . . . . . . . . . 15, 48Internal . . . . . . . . . . . 15, 48Moment . . . . . . . . . . . . 222Transverse . . . . . . . . . . . 220

EulerColumn . . . 119, 302, 360, 545

Approximate solution . 545Load . . . . . . . . 120, 373, 383

Expansionof λ . . . . . . . . . . . . . . . 346Theorem . . . . . . . . . . . . 320

ExperimentShanley . . . . . . . . . . . . . 380

FFEM . . . . . . . . . . . . . . . . . . 395

IntroductoryExample . . . . . . . . . . 397

FiberBeam . . . . . . . . . . . . . . 200Elongation γ . . . . . . . . . . 11Stress

Linear over the cross-section. . . . . . . . . . . . . . . . 210

Fields . . . . . . . . . . . . . . . . . . 510Buckling u1, ε1, σ1 300, 344Postbuckling u11, u111, ε11,

ε111, σ11, σ111 . . . . 346Finite

ElementBar . . . . . . . . . . . . . . 433Circular . . . . . . . . . . . 449Equations . . . . . . . . . 421Hybrid . . . . 479, 483, 489Isoparametric . . . . . . . 498Melosh . . . . . . . . . . . 426Method . . . . . . . . . . . 395Notation . . . . . . . . . . 326Plate . . . . . . . . . . . . . 425Stress hybrid . . . . . . . 479Torsion . . . . . . . . . . . 499

GGateaux

Derivative . . . . . . . 531, 558Generalized

CoordinatesFunctions . . . . . . . . . 5Vectors . . . . . . . . . . . 517

Displacement u . . . . . . . 553Hooke’s Law . . . . . . . . . . 27Load T . . . . . . . . . . . . . 555Strain . . 26, 62, 97, 105, 109,

113, 132, 134, 147, 161,184, 276, 398, 556, 559

Beams: ε and κ . . 97, 109,147

Beams: ε, ϕ and κ 105, 113

FirstMoment Sz . . . . . . 203, 204Order

Moment Sz . . . . . . . . 203Problem . . . . . . . . . . 348

Fitch, J.R. . . . . . . . . . . . . . . 343Force

Axial N . . . . . . . . . . . . 202Membrane Nαβ . . . . . . .Vector

. . . . . . . . . 417Formula

Grashof’s . . . . . . . . . . . 224Navier’s . . . . . . . . . . . . 210

Fortran . . . . . . . . . . . . . . . . . 433Frame

Roorda’s . . . . . . . . . . . . 329Free

Index . . . . . . . . . . . . . . 514Function

StressTorsion T . . . . . . . . . 245

Functional Π . . 521, 522, 529, 530Torsion . . . . . . . . . . . . . 499

Functional ΠVariation δΠ of . . . . . . . 529

FunctionsGeneralized

Coordinates . . . . . . . . 519

74

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

Nodal {q}

583

19

Index

Plates: εαβ and καβ . 161,184, 276

Strain εj . . . . . . . . . . . . . 62Stress . . 26, 62, 100, 105, 109,

113, 134, 147, 162, 184,276, 398, 557, 559

Beams: N and M 100, 109,147

Beams: N , V and M . 113Beams: N , V and M . 105Plates: Nαβ and Mαβ 162,

184, 276Stress σj . . . . . . . . . . . . . 62

GeometricCurvature k0 and k . . . . 127Matrix KG

mn . . . . . 325, 328Stiffness

Matrix KGmn . . . 325, 328

Vector . . . . . . . . . . . . . . 510Good

Approximation . . . . . . . 530Grashof’s formula . . . . . . . . . 224Gravity

Center of . . . . . . . . . . . . 206Greek

Index . . . . . . . . . . 160, 514

HHardening

Isotropic . . . . . . . . . . . .Kinematic . . . . . . . . . . .Nonlinear . . . . . . . . . . . 375Strain . . . . . . . . . . . . . .

Hooke’s lawGeneralized . . . . . . . . . . . 27

Hutchinson, J.W. . . . . . . . . . 342Hybrid

FiniteElement . . . . 479, 483, 489

Hyperelasticity . . . . . . . . . . . . 27Linear . . . . . . . . . . . . 27, 28Potential energy . . . . . . . 29

II1 . . . . . . . . . . . . . . . . . . . . . 55

Trace of σij . . . . . . . . . . . 55I2 . . . . . . . . . . . . . . . . . . . . . 55

Quadratic invariant of σij 55I3 . . . . . . . . . . . . . . . . . . . . . 55

Determinant of σij . . . . . . 55Il’yushin

Theory . . . . . . . . . . . . . 374Imperfect

ColumnModel . . . . . . . . . . . . 290

ImperfectionSensitivity . . . . . . . 342, 357

IncrementalTheory of plasticity . . . . 80

IndexDummy . . . . . . . . . . 512Free . . . . . . . . . . . . . . . 514Greek . . . . . . . . . . 160, 514Notation . . . . . . . . 511, 512Repeated . . . . . . . . . . . . .

Lower-case . . . . . 512, 514Roman . . . . . . . . . . . . . 512Summation . . . . . . . . . . 512

InertiaMoment I of . . . . . . . . . 205

InfinitesimalDisplacements . . . . . . 35–60Rotation ωij . . . . . . . 14, 35Strain eij . . . . . . . . . 13, 35Stress σmn . . . . . . . . . . . 47Theory

Equilibrium . . . . . . . . . 48Kinematic boundary condi-

tions . . . . . . . . . . . 39Kinematics . . . . . . . . . 35Linear elasticity . . . . . . 63Nonlinear Constitutive Mod-

els . . . . . . . . . . . . . 74Plasticity . . . . . . . . . . 75Static boundary conditions

. . . . . . . . . . . . . . . . 53Initial

PostbucklingBehavior . . . . . . 343, 345

State . . . . . . . . . . . . . . . .Young’s Modulus E or E0

Inner

8584

79

780

8

8,

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

584

Index

Product . . . . . .Instability

Tubes . . . . . . . . . . . . . . 148Integration

Reduced . . . . . . . . 183, 462Interaction

Between modes . . . . . . . 343Mode

Imperfections . . . . . . . 366Internal

Equilibrium . . . . . . . . 18, 48Mismatch . . . . 449, 457, 459Nodes

Elimination . . . . . . . . 437Interpretation

Budiansky-Hutchinson Nota-tion . . . . . . . . . . . . 569

ElementMatrix [k] . . . . . . . . . 417

of strains . . . . . . . . . . . . . 39of stresses . . . . . . . . . . . . 48System

Stiffness matrix [K] . . 410Invariants

Strain J1, J2, J3 . . . . . . . 46Stress I1, I2, I3 . . . . . . . . 55

I-shapedCross-section . . . . . 214, 228

IsoparametricElement . . . . . . . . . . . . 459Finite

Element . . . . . . . . . . . 498Isotropic

Hardening . . . . . . . . . . .Isotropy . . . . . . . . . . . . . . 28, 64

JJ1 . . . . . . . . . . . . . . . . . . . . . 46

Trace of εij . . . . . . . . . . . 46J2 . . . . . . . . . . . . . . . . . . . . . 46

Quadratic invariant of εij . 46J3 . . . . . . . . . . . . . . . . . . . . . 46

Determinant of εij . . . . . . 46

KKinematic

Boundary . . . . . . . . . . . .Conditions . . . . . . . 15, 39

Hardening . . . . . . . . . . .Kinematically

AdmissibleDisplacement field . . . . 25

Kinematically moderately nonlinear,3-D . . . . . . . . . . . . 33

KinematicsInfinitesimal

Theory . . . . . . . . . . . . 35Large displacements . . . . .

Kirchhoff-Love plate theory . . 159Koiter, W.T. . . . . . . . . 342, 345Koiter, W.T. & Kuiken, G.D.C. 343Kronecker

delta δij . . . . . . . . . . . . 513Kronecker delta δij . . . . .

LLagrange

Multiplier . 44, 183, 459, 480,545, 547, 548, 568

Strain γij . . . . .Lame constants µ and λ . . . . . 65Large

Displacements . . . . . .Large displacements

Boundary conditionsKinematic . . . . . . . . . . 15Static . . . . . . . . . . . . . 20

Constitutive relations . . . . 27Equilibrium

Internal . . . . . . . . . . . . 18Internal equilibrium . . . . . 18Kinematic boundary condi-

tions . . . . . . . . . . . 15Kinematics . . . . . . . . . . .Static boundary conditions 20Statics . . . . . . . . . . . . . . 15

LawTresca’s . . . . . . . . . . . . .

9, 518, 555

85

6

84

7

8, 524

9, 132, 553

5–31

7

83

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

585

Index

von Mises’ . . . . . . . . . . .Laying

Pipelines . . . . . . . . . . . . 149Length

Change of . . . . . . . . . 11, 40of the line element . . . . . 129

Limit loadBuckling . . . . . . . . . . . . 281

Line elementLength of . . . . . . . . . . . 129

LinearBernoulli-Euler

Beam . . . . . . . . . . . . 109Constitutive

Operator H . . . . . . . . 558Eigenvalue problem 120, 300Elastic

Plate . . . . . . . . . 175, 273Hyperelasticity . . . . . . . . 27Operator l1 . . . . . . 162, 556Prebuckling . . . . . . 298, 341Timoshenko

Beam . . . . . . . . . . . . 110Load

Buckling . . . . . . . . 120, 318Classical Critical load λc 282Conservative . . . . . . . . . 284Critical

Classical λc . . . . . . . . 282Euler . . . . . . . 120, 373, 383Generalized T . . . . . . . . 555Non-conservative . . . . . . 284Reduced

Modulus . . . . . . 373, 386Tangent

Modulus . . . 373, 376, 381Vector . . . . . . . . . . 420, 421

Locking . . . . . . . . . 449, 457, 459Membrane . . . . . . . . . . . 183

LowerBound of shear stiffness . 237

LunchesNo

Free . . . . . . . . . . . . . 440

MManipulations

Analytic . . . . . . . . . . . . 433Material

Anisotropic . . . . . . . . . . . 28Compliance matrix [C] . . 178Isotropic . . . . . . . . . . . . . 28Stiffness

Matrix [D(ξ)]j . . . . . . 416Stiffness matrix [D] . . . . 176

MatrixAntiymmetric . . . . . . . . 515Displacement

Interpolation . . . . . . . 415Element

Stiffness . . . . 409, 416, 419Transformation . . . . . 418

GeometricStiffness KG

mn . . 325, 328Material

Stiffness . . . . . . . . . . . 416Stiffness . . 325, 328, 410, 420

Geometric KGmn . 325, 328

StrainDistribution . . . . . . . . 416

Symmetric . . . . . . . . . . . 515System

Stiffness [K] . . . . . . . . 418Two-dimensional . . . . . . 510

maxima . . . . . . . . . . . . . . . . . 433Program . . . . . . . . . . . . 442

MeanStrain ε . . . . . . . . . . . . . . 67Stress σ . . . . . . . . .

MeloshElement

Bending . . . . . . . . . . . 430Deficiency . . . . . . . . . 430

FiniteElement . . . . . . . . . . . 426

MembraneForce Nαβ . . . . . . . . . . .Locking . . . . . . . . . . . . . 183Strain εαβ . . . . . . .

MethodFinite

82

67, 82

74

74, 161

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

586

Index

Element . . . . . . . . . . . 395Mindlin

PlateTheory . . . . . . . . . . . 170

MinimumRayleigh Quotient Λ[φ] . 324

MismatchInternal . . . . . . 449, 457, 459

ModeBuckling . . . . . . . . . . . . 318Buckling E

Buckling w(1) . . . . . . . 120Interaction . . . . . . . . . . 343

Imperfections . . . . . . . 366Mode Interaction

Imperfections . . . . . . . . 366Model

ColumnBuckling . . . . . . . . . . 285Elastic Shanley . . . . . 383Imperfect . . . . . . . . . . 290Perfect . . . . . . . . . . . 285Plastic Shanley . . . . . 381

Moderate displacements . . . . . 33Moderately Nonlinear

Bernoulli-EulerBeam . . . . . . . . . . . . . 97

Moderately nonlinear, 3-D . . . . 33Modified

ComplementaryEnergy ΠCM . . . . . . . 479

Potential energy ΠPM . . 548Potential

Energy ΠPM . . . . . . . 460Modulus

Bulk B . . . . . . . . . . . . . . 67Shear G . . . . . . . . . . . . . 65Tangent ET . . . . . . . 81, 376Young’s

Initial E or E0 . . . . . . . 81Modulus of elasticity E . . . . . . 65Møllmann, H. & Goltermann, P. 343Moment

Bending M . . . . . . . . . . 202Equilibrium . . . . . . . . . . 222First Sz . . . . . . . . . . . . 204First-Order . . . . . . . . . . 203

Inertia I . . . . . . . . . . . . 205Second-order . . . . . . . . . 205Static Sz . . . . . . . . . . . . 204Static S . . . . . . . . . . . . 205Torsional MT . . . . 243, 248Twisting MT . . . . . 243, 248Zeroth Order . . . . . . . . . 203

Moment of inertia Izz . . . . . . 205Multiplier

Lagrange 44, 45, 183, 459, 480,545, 547, 548, 568

MuPAD . . . . . . . . . . . . . . . . 433

Nnabla (∇4), biharmonic operator .

. . . . . . . . . . . . . . . . 180Navier’s formula . . . . . . . . . . 210Neutral axis . . . . . . . . . . . . . 206No

FreeLunches . . . . . . . . . . . 440

NodalForce

Vector {q} . . . . . . . . . 417Nodes

Elimination . . . . . . . . . . 437Internal

Elimination . . . . . . . . 437Non-conservative

Load . . . . . . . . . . . . . . . 284Nonlinear

Elasticity . . . . . . . . . . . . 74Hardening . . . . . . . . . . . 375Kinematically moderate, 3-D

. . . . . . . . . . . . . . . . 33Plates . . . . . . . . . . . . . . 160Prebuckling . . . . . . 296, 343Timoshenko

Beam . . . . . . . . . . . . 104Notation

Budiansky-Hutchinson 25, 553Comma ( ),j . . . . . . . 9, 512Dot · . . . . . . . . . . . . . . 555Finite element . . . . . . . . 326Index . . . . . . . . . . 511, 512

ν

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

587

Index

Value of . . . . . . . . . . . . . 66

OOperator

Biharmonic ∇4 (nabla) . 180Bilinear l11 . . . . . . 162, 554Linear l1 . . . . . . . . 162, 554Quadratic l2 . . . . . 162, 554

Operators . . . . . . . . . . . . . . . 510Orthogonality

Condition on buckling modes. . . . . . . . . . . . . . . . 301

Ovalization . . . . . . . . . . . . . . 148Overbar ¯ . . . . . . . . . . . . . . 509

PPascal . . . . . . . . . . . . . . . . . . 433Peek, R. & Kheyrkhahan, M. . 343Perfect

ColumnModel . . . . . . . . . . . . 285

PermutationSymbol

Three-dimensional case eijk

. . . . . . . . . . . . . . . . 513Two-dimensional case eαβ .

. . . . . . . . . . . . 182, 514Piola-Kirchhoff stress tij . . . . . 17Pipelines

Laying . . . . . . . . . . . . . 149Plane

Strain . . . . . . . . . . . . . . . 72Stress . . . . . . . . . . . . . . . 73

Plasticity . . . . . . . . . . . . . . . . 74Deformation theory of . . . 82Incremental theory of . . . . 81Multi-Axial States . . . . . . 82One-Dimensional Case . . . 75Perfect . . . . . . . . . . . . . . 76Rigid, perfect . . . . . . . . . 76Total theory of . . . . . . . . 82

PlateBending . . . . . . . . . . . . 159Buckling . . . . . . . . . . . . 309Curvature strain καβ . . . 161

ExternalVirtual work . . . . . . . 163

FiniteElement . . . . . . . . . . . 425

GeneralizedStrains εαβ, καβ . 161, 184,

276Stresses Nαβ and Mαβ 162,

184,276Internal

Virtual work . . . . . . . 162Kirchhoff-Love . . . . . . . . 159Linear

Elastic . . . . . . . . 175, 273Membrane

Strain εαβ . . . . . . . . . 161Mindlin

Theory . . . . . . . . . . . 170Nonlinear . . . . . . . . . . . 160Shearing . . . . . . . . . . . . 159Stretching . . . . . . . . . . . 159Thick . . . . . . . . . . . . . . . 72Thin . . . . . . . . . . . . . . . . 73

159.........namraKnovPL/I . . . . . . . . . . . . . . . . . . . 433Pocket Calculator

Broken . . . . . . . . . . . . . 522Poisson’s ratio ν . . . . . . . . . . . 65Postbuckling

Behavior . . 341, 343, 345, 346Initial . . . . . . . . 343, 345

Constant a . . . . . . 346, 349Constant b . . . . . . 346, 351Fields u11, u111, ε11, ε111, σ11,

σ111 . . . . . . . . . . . . 346Neutral . . . . . . . . . . . . . 342Nonlinear

Prebuckling . . . . . . . . 343Problem . . . . . . . . . . . . 349Stable . . . . . . . . . . . . . . 342Unstable . . . . . . . . . . . . 342

“Potato” . . . . . . . . . . . . . . . . . . 6Potential

Energy ΠP 28, 30, 55, 56, 524,558

Hyperelasticity . . . . . . . 29Minimum of . . . . . . . . 560

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

588

Index

Modified ΠPM . . 460, 548Energy ΠP

Stationarity of . . . . . . 559Potential Π . . . . . . . . . 523, 557

Variation δΠ of . . . 529, 557Prebuckling

Linear . . . . . . . . . . 298, 341Nonlinear . . . . . . . 296, 343

PrincipalStrains . . . . . . . . . . . . . . 44Stresses . . . . . . . . . . . . . . 54

PrincipleMinimum Potential Energy .

. . . . . . . . . . . . . . . . 560Stationary Potential Energy .

. . . . . . . . . . . . . . . . 559Variational . . . . . . . . . . 521Virtual

Displacements . 21, 48, 555Forces . . . . . . . . 27, 56, 57Work . . . . . . . . . . . . . . 21

ProblemBuckling . . . . . . . . 300, 348First-order . . . . . . . . . . 348First-order postbuckling . 349Linear eigenvalue . . . . . . 300Postbuckling . . . . . . . . . 349Second

Order . . . . . . . . . . . . 349Second-order . . . . . . . . . 349Third

Order . . . . . . . . . . . . 350Third-order . . . . . . . . . . 350Third-order postbuckling 350

ProcedureRayleigh-Ritz . . . . . . . . 324

ProductInner . . . . . . . . . 9, 518, 555Scalar . . . . . . . . . . . . 9, 518

Programmaxima . . . . . . . . . . . . . 442

PythagorasTheorem of . . . . . . . . . . . 96

QQuadratic

Operator l2 . . . . . . 162, 554Quadratic operator l2 . . . . . . 162Quadrilateral

HybridFinite Element . . . . . . 489

QuantitiesConjugate . . . . . . . . . . . . 26

Quebec Bridge . . . . . . . . . . . 368Quotient

Rayleigh Λ[φ] . . . . . . . . 321

RRadii of curvature ρ0 and ρ . . 127Rayleigh

Quotient Λ[φ] . . . . . . . . 321Rayleigh Quotient Λ[φ]

Minimum . . . . . . . . . . . 324Stationary . . . . . . . . . . . 322

Rayleigh-Ritz Procedure . . . . 324Application of . . . . 329, 335

Rearrangementof Strain and Stress Compo-

nents . . . . . . . . . . . 61Rectangular

Cross-section . . 210, 225, 265Reduced

Integration . . . . . . 183, 462Modulus

Load . . . . . . 373, 379, 383Relations

Constitutive . . . . . . . . . . 61Reloading . . . . . . . . . . . . . . . . 80Repeated

Lower-caseIndex . . . . . . . . 512, 514

Repeated index . . . . . . . . . . . . . 8Restriction

Thermodynamic . . . . . . . 69Right-hand side

VectorSystem {R} . . . . . . . . 421

RigidPlasticity . . . . . . . . . . . . 76

Rigid-bodyCriterion . . . . . . . 4, 449, 458

Ring-shaped

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

589

Index

Cross-section . . 216, 232, 260Roman

Index . . . . . . . . . . . . . . 510Roorda’s frame . . . . . . . . . . . 331Rotation

beam . . . . . . . . . . . . . . 130Infinitesimal ωij . . . . . 14, 35

RowVector . . . . . . . . . . . . . . 510

SScalar

Product . . . . . . . . . . 9, 518Scalar product . . . . . . . . . . . . . 9Second

OrderMoment . . . . . . . . . . . 205Problem . . . . . . . . . . 349

SelfStrain . . . . . . . . . . 449, 459

SensitivityImperfection . . . . . 342, 355

Shanley . . . . . . . . . . . . . . . . 373Conclusion . . . . . . . . . . 341Experiment . . . . . . . . . . 380Model

Column plastic . . . . . . 381Shear

Deformation . . . . . . . . . 393Effective

Stiffness GAe 122, 234, 236Modulus G . . . . . . . . . . . 65Stiffness . . . . . . . . . . . . 234

Lower bound of . . . . . 237Shearing

Plates . . . . . . . . . . . . . . 159Side

Condition . . . . . . . 545, 568Snap Buckling . . . . . . . . . . . 281Snap buckling

Load λs . . . . . . . . . . . . 282Snap-through . . . . . . . . . . . . 282Softening

Strain . . . . . . . . . . . . . . . 80Solution

Approximate

Euler Column . . . . . . 545Plate buckling . . . . . . 337

Brazier . . . . . . . . . 154–156Special

Strain and stress states . . 72Stability

Criteria . . . . . . . . . . . . . 281State

Initial . . . . . . . . . . . . . . . . 7Virgin . . . . . . . . . . . . . . . . 7

StatesSpecial . . . . . . . . . . . . . . 72

StaticBoundary . . . . . . . . . . . . . 6

Conditions . . 18, 20, 48, 53Moment Sz . . . . . . . . . . 204Moment S . . . . . . . . . . . 205

Statically determinate . . . . . . 116Statics . . . . . . . . . . . . . . . . . . 15

Large displacements . . . . . 15Stationary

Rayleigh Quotient Λ[φ] . 323Steel . . . . . . . . . . . . . . . . . . . 76Stiffness

Axial . . . . . . . . . . 115, 122Bending . . . . . . . . 115, 122Effective

Shear . . . . . . . . . . . . 122Geometric

Matrix KGmn . . . 327, 330

Material . . . . . . . . . . . . 416Matrix 325, 328, 409, 410, 416,

419–421Geometric KG

mn . 327, 330System [K] . . . . 410, 420

Shear . . . . . . . 122, 234, 237System

Matrix [K] . . . . . . . . . 410Strain

Axial ε . . . . 84, 132, 202, 203Fiber εf . . . . . . . . . . 202

Bending κ . . . . . . . . . . . . 84Compatibility . . . . . . . . . 36Curvature κ 84, 132, 202, 203Curvature καβ . . . . . . . . 161Deviator εjk . . . . . . . . . . 67Deviatoric part εjk . . . . . 67

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

590

Index

DistributionMatrix [B] . . . . . . . . . 416

EnergyComplementary WC(εij) 58Density W (εij) . . . . . . 66Density W (γij) . . . . . . 27Function W (γij) . . . . . 27Function W (εij) . . . 57, 66

Engineering e . . . . . . . . 134Generalized . 26, 62,132, 134,

398,554, 557Generalized εj . . . . . . . . . 62Hardening . . . . . . . . . . . . 79Infinitesimal eij . . . . . 13, 35Interpretation of . . . . . . . 39Invariants J1, J2, J3 . . . . . 48Lagrange γij . . . . 9, 134, 553Mean ε . . . . . . . . . . . . . . 67Membrane εαβ . . . . . . . . 161

Membrane εαβ . . . . . . . 74Plane . . . . . . . . . . . . . . . 72Principal . . . . . . . . . . . . . 44Self . . . . . . . . . . . . 449, 458Shear ϕ . . . . . . . . . . . . . . 95Softening . . . . . . . . . . . . . 80Transformation of . . . . . . 41Two-dimensional . . . . . . . 72

StressDeviator σjk . . . . . . . . . . 67Deviatoric part σjk . . 67, 82Effective σe . . . . . . . . . . . 82Field Parameters

Elimination of . . . . . . 488Function

Airy Φ . . . . . . . . 281, 313Torsion T . . . . . . . . . 245

Generalized . 26, 62, 134, 398,555,557

Generalized σj . . . . . . . . . 62Hybrid

Finite element . . . . . . 483Infinitesimal σmn . . . . . . . 47Interpretation of . . . . . . . 48Invariants I1, I2, I3 . . . . . 55Mean σ . . . . . . . . . . . 67, 82Piola-Kirchhoff stress tij . 17Plane . . . . . . . . . . . . . . . 73

Principal . . . . . . . . . . . . . 54Transformation of . . . . . . 53Two-dimensional . . . . . . . 72

Stress hybridFinite

Element . . . . . . . . . . . 479Stretch λ . . . . . . . . . . . . . . . 126Stretching

Plates . . . . . . . . . . . . . . 159Structure

Asymmetric . . . . . . . . . . 358Symmetric . . . . . . . . . . . 357Too

Flexible . . . . . . . . . . . 563Stiff . . . . . . . . . . . . . . 560

SummationConvention . . 8, 511, 512, 514Index . . . . . . . . . . . . . . 512

SurfaceTractions τm . . . . . . . . . . 20Yield . . . . . . . . . . . . . . . 82

SymbolPermutation

Three-dimensional case eijk

. . . . . . . . . . . . . . . . 513Two-dimensional case eαβ .

. . . . . . . . . . . . 182, 514Symmetric

Matrix . . . . . . . . . . . . . 515Structure . . . . . . . . . . . 357

SystemRight-hand

Vector {R} . . . . . . . . 421Stiffness

Matrix [K] . . 410, 418, 420

T“Taking”

Variations . . . . . . . 531, 538Tangent

Modulus ET . . . . . . 81, 376Load . . . . . . 373, 376, 384

TensorAnalysis . . . . . . . . . . . . 516

TheoremDivergence . . . . . . . . . . . 21

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

591

Index

Expansion . . . . . . . . . . . 321Pythagoras . . . . . . . . . . . 96

TheoryConsistent . . . . . . . . . . . . 99Il’yushin . . . . . . . . . . . . 374

ThermodynamicRestriction . . . . . . . . . . . 69

ThickPlate . . . . . . . . . . . . . . . . 72

ThinPlate . . . . . . . . . . . . . . . . 73

ThirdOrder

Problem . . . . . . . . . . 350Thompson, G.M.T & Hunt, G.W.

. . . . . . . . . . . . . . . . 343Tilde ˜ . . . . . . . . . . . . . . . . 509Timoshenko

Beam . . . . . . . . 95, 104, 110Cantilever . . . . . 122, 234Elastic . . . . . . . . . . . . 122Linear . . . . . . . . . . . . 110Nonlinear . . . . . . . . . 104

Column . . . . . . . . . . . . . 106Too

FlexibleStructure . . . . . . . . . . 563

StiffStructure . . . . . . . . . . 560

Torque MT . . . . . . . . . . 243, 248Torsion . . . . . . . . . . . . . 241–269

Compatibility . . . . 247, 253Finite

Element . . . . . . . . . . . 499Functional . . . . . . . . . . . 499Warping . . . . . . . . 242, 254

TorsionalMoment MT . . . . . 243, 248

TotalTheory of plasticity . . . . . 82

TractionsSurface τm . . . . . . . . . . . 20

TransformationMatrix [T ]j . . . . . . . . . . 418of coordinates . . . . . . . . . 42of strain . . . . . . . . . . . . . 41of stress . . . . . . . . . . . . . 53

TransverseEquilibrium . . . . . . . . . . 220

Tresca’s “Law” . . . . . . . . . . . . 83Triangular

Cross-sectionEquilateral . . . . . . . . . 263

Truss columnGeometrically imperfect . 369Geometrically perfect . . . 369

T-shapedCross-section . . . . . . . . . 212

TubeBending

Instability . . . . . . . . . 148Instability . . . . . . . . . . . 148

Tvergaard, V. . . . . . . . . . . . . 343Twisting

Moment MT . . . . . 243, 248Two-dimensional

Matrix . . . . . . . . . . . . . 510Strain and stress states . . 72

UUnloading . . . . . . . . . . . . . . . 80

VValue

of ν . . . . . . . . . . . . . . . . . 66van der Neut, A. . . . . . . . . . . 343Variation . . . . . . . . . . . . . . . . 22

δΠ of a functional Π . . . 529δΠ of a potential Π 529, 557

VariationalPrinciple . . . . . . . . . . . . 521

Finite degree system . 532Functional . . . . . . . . . 522Infinitely many degrees of

freedom . . . . . . . . . 538Lagrange Multiplier . . 545Lagrange Multiplier η 568Potential energy ΠP . 533,

535Variations . . . . . . . . . . . . . . . 520

Calculus of . . . . . . . . . . 521“Taking” . . . . . . . . 531, 538

August 14, 2012 Continuum Mechanics for Everyone Esben Byskov

592

Index

VectorBase

Deformed gm . . . . . . . . 11Undeformed ij . . . . . . . . 8

Column . . . . . . . . . . . . . 510Displacement

Element {v}j . . . . . . . 422Element

Load . . . . . . . . . 420, 421“Geometric” . . . . . . . . . . 510Right-hand side . . . . . . . 421Row . . . . . . . . . . . . . . . 510

VectorsGeneralized

Coordinates . . . . . . . . 517Virgin

State . . . . . . . . . . . . . . . . . 7Virtual

DisplacementsPrinciple of 21, 48, 165, 555

ForcesPrinciple of . . . . 27, 56, 57

WorkPlates . . . . . . . . 162, 163Principle of . . . . . . . . . 21

159...yroehtetalpnamraKnovvon Mises’ “Law” . . . . . . . . . . 82

WWarping (torsion) . . . . . 240, 254Wood . . . . . . . . . . . . . . . . . . . 78Work

Conjugate . . . . . . . . . . . 557

YYield

Stress σY

Initial . . . . . . . . . . . . . 81Stress σy

Subsequent . . . . . . . . . 81Surface . . . . . . . . . . . . . . 82

Young’s Modulus E . . . . . . . . 65Initial E or E0 . . . . . . . . 81

ZZeroth

OrderMoment A . . . . . 203, 204

Esben Byskov Continuum Mechanics for Everyone August 14, 2012

593