bf02481505.pdf

Upload: ryan-hanafi

Post on 01-Mar-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 bf02481505.pdf

    1/5

    Artif Life Robotics (2001) 5:215-219 9 I SAR OB 2001

    S h i n ic h i S a g a r a 9 T a k e s h i T a l f i k a w a 9 M a s a k a z u T a m u r a

    R y o z o K a t o h

    E x p e r i m e n t s o n a fl o a t in g u n d e r w a t e r r o b o t w i t h a t w o l in k m a n i p u l a t o r

    Received: Oc tober 30, 2000 / Accepted: May 30, 2002

    A b s t r a c t T h i s a r t i c l e c o n c e r n s e x p e r i m e n t s w i t h a f l e e -

    f l o a ti n g u n d e r w a t e r r o b o t w i th a t w o - d i m e n s i o n a l , h o r i z o n -

    t a l p l a n a r , t w o - l in k m a n i p u l a t o r . S o m e d y n a m i c m o d e l s o f

    u n d e r w a t e r m a n i p u l a t o r s h a v e b e e n p r o p o s e d , b u t o n l y a

    f e w e x p e r i m e n t s h a v e b e e n c a r r i e d o u t . H e r e , w e d e r i v e a

    d y n a m i c m o d e l f o r a f r e e - f l o a t i n g u n d e r w a t e r r o b o t w i t h a

    t w o - l i n k m a n i p u l a t o r , i n c l u d i n g t h e h y d r o d y n a m i c f o r c e s ,

    a n d v a l i d a t e t h e e f f e c t i v e n e s s o f t h e m o d e l b y s i m u l a t i o n

    a n d e x p e r i m e n t . W e a l s o s h o w a n e x p e r i m e n t a l r e s u l t u s i n g

    a r es o l v e d a c c e l e r a ti o n c o n t r o l m e t h o d . T h e s e e x p e r i m e n -

    t a l r e s u lt s s h o w t h e e f f e c t iv e n e s s t h e m o d e l a n d t h e c o n t r o l

    m e t h o d .

    K e y w o r d s U n d e r w a t e r r o b o t 9 M a n i p u l a t o r - E x p e r i m e n t 9

    R e s o l v e d a c c e l e ra t i o n c o n t r o l

    P 0 p o s i t i o n v e c t o r o f c e n t e r o f g r a v i t y o f b a s e w i t h r e -

    s pe c t t o 2?v

    X ~ p o s i t i o n a n d a t t i t u d e v e c t o r o f e n d - t i p w i t h r e s p e c t

    to Z v ( = [p r , 021 r )

    X 0 p o s i t i o n a n d a tt i t u d e v e c t o r o f c e n t e r o f g r a v i t y o f

    b a s e w i t h r e s p e c t t o Z v ( = [P 0 , 0 0] r )

    j o i n t a n g u l a r v e l o c i t y v e c t o r ( =

    [ 0 1 ~ 2 ] T )

    r n m a s s o f l in k i ( li n k 0 m e a n s t h e r o b o t b a s e )

    M , i a d d e d m a s s i n e r t i a o f l i n k i

    I z i n e r t i a t e n s o r o f l i n k i

    / ~ a d d e d i n e r ti a t e n s o r o f l i n k i

    x i p o s i t i o n v e c t o r f r o m j o i n t i t o j o i n t ( i + 1 ) w i t h

    respect to 2J~

    s i p o s i t i o n v e c t o r f r o m o r i g i n o f 27i t o c e n t e r o f g r a v i t y

    o f l i nk i w i t h r e s pe c t t o 22,.

    E u n i t m a t r i x

    List of symbols

    Z v i n e r t i a l c o o r d i n a t e f l a m e

    Z i i - th l i n k c o o r d i n a t e f r a m e (i = 0 , 1 , 2 ; l i n k 0 m e a n s

    b a s e )

    U R c o o r d i n a t e t r a n s f o r m a t i o n m a t r i x f r o m 2 ;i t o Zv

    r0 p o s i t i o n v e c t o r o f o r i g i n o f Z 0 w i t h r e s p e c t t o 2 2v

    l i l e n g t h o f l i nk i

    v i v e l o c i t y v e c t o r o f l i n k i w i t h r e s p e c t to 2 ;,,

    r r e l a t i v e j o i n t a n g l e

    coi j o i n t a n g u l a r v e l o c i t y ( =

    ~ i )

    0 i a b s o l u t e j o i n t a n g l e

    P e p o s i t i o n v e c t o r o f e n d - t i p w i t h r e s p e c t t o v

    S. Sagara (~ ) 9T. Tanikawa 9M. Tamura 9R. Katoh

    Dep artme nt of Control Engineering, Kyushu Insti tute of

    Technology, Tobata-ku, Kitakyushu 804-8550, Japan

    Tel. +81-93-884-3189;Fax +81-93-861-1159

    e-mail: [email protected]

    This work was presented in part at the 5th International Symposium on

    Artificial Life and Robotics, Oita, Japan, January 26-28, 2000

    Introduct ion

    S i n c e u n d e r w a t e r r o b o t s a r e n e c e s s a r y f o r o c e a n e x p l o r a -

    t io n , m a n y s tu d i es h a v e b e e n d o n e o n u n d e r w a t e r r o b o t i c

    v e h i c l e s ( U R V s ) , i n c l u d i n g r e m o t e l y o p e r a t e d v e h i c l e s

    ( R O V s ) a n d a u t o n o m o u s u n d e r w a t e r v e h ic l es ( A U V s ) . 1 T o

    o b t a i n r e s o u r c e s a n d t o c o n s t r u c t u n d e r w a t e r s t r u c t u r e s ,

    U R V s , a n d e s p e ci a ll y A U V s w i t h m a n i p u la t o r s , a r e r e -

    q u i re d . T h e r e f o r e , e x t r e m e l y a c c u r a t e d y n a m i c m o d e l s a n d /

    o r c o n t r o l m e t h o d s o f m a n i p u l a t o r s a r e v i ta l i n o r d e r t o

    m a i n t a i n g o o d c o n t r o l p e r f o r m a n c e o f a n A U V . F u r t h e r -

    m o r e , th e s e m a n i p u l a t o r s m a y b e la r g e , a n d t h e i r d y n a m i c s

    c a n n o t b e i g n o r e d . R e c e n t l y , s e v e r a l d y n a m i c m o d e l s o f

    u n d e r w a t e r m a n i p u l a t o r s h a v e b e e n p r o p o s e d , 2-6 a n d a f ew

    e x p e r i m e n t s h a v e b e e n d o n e t o v e ri f y t h e a c c u r a c y o f th e

    m o d e l b y u s i ng a o n e - l in k a r m y A d y n a m i c m o d e l o f a n

    u n d e r w a t e r m a n i p u l a t o r i n c l u d e s n o n l i n e a r h y d r o d y n a m i c

    f o r c e s su c h a s a d d e d m a s s f o r c e a n d d r a g f o r c e , a n d a c o m -

    p l e t e h y d r o d y n a m i c m o d e l h a s n o t y e t b e e n o b t a i n e d .

    T h e r e f o r e , r o b u s t c o n t ro l m e t h o d s f o r u n d e r w a t e r m a n i p u -

    l a t o r s a r e n e c e s s a r y i n o r d e r t o o b t a i n a h i g h l y c o n t r o l

    p e r f o r m a n c e .

  • 7/25/2019 bf02481505.pdf

    2/5

    216

    a13 = -10S 0 + b11, a23 = 10C0 + b21

    b~ = -l l + b~:, b12 = -

    bzl = l lG + b22, b22 = 12C2

    Si = s in0i , C /= cos0i ( i = 0,1,2)

    Next , l e t Q and L be a l inea r and an angu la r m om entum

    o f t h e r o b o t , r e s p e c ti v e l y, i n c l u d in g h y d r o d y n a m i c a d d e d

    m ass M,, and ad ded ine r t i a I~ ; The n

    Fig. 1. Floating two-link underwater rob ot manipulator

    2

    Q =

    [ Q ~ , Q 2 , 0 ] r

    =

    ~ _V R i m ~ E +

    Ma,)S,

    2)

    02 i=0

    2

    U: \ ~ ~Joi nt 2 / r 2

    f 'X k ~ ,, ~ xCqT...... Link 1 \

    ~ _ ~ 0 . ~ ~ ? ~ ~ w h e r e

    s i = v i + ~ , X s , , o o = [ 0 , 0 , ~ i 1 r i = 0 , 1 , 2 )

    F r o m E q s . 1 - 3 t h e f o l l o w i n g e q u a t i o n c a n b e o b t a i n e d :

    Link O)

    \ ~

    F = [ Q , , Q 2 , L 3 ] r = C . t o + D * 4 )

    Fig. 2.

    Two-link underwater robot manipulator model

    wh ere C ~ R 3 and D ~ R 3 are matri ces inc ludin g the

    a d d e d m a s s M ~ a n d t h e a d d e d i n e r t i a I , ; H e r e , w e a s s u m e

    In th i s a r t i c le , we de r ive a dynam ic m ode l fo r a tha t the add ed m ass and added ine r t i a a re cons tan t . In

    f ree - f loa t ing unde rwa te r rob o t wi th a tw o-d im ens io na l , rea l i ty , the adde d m ass and ine r t i a a re va r iab le , bu t the

    i n f lu e n c e o f t h e v a r i a t i o n i s c o m p e n s a t e d f o r b y t h e c o n t r o l

    hor izon ta l p lana r , two- l ink m anipu la to r , a s shown in F ig . 1 ,

    m e thod g iven in S ec t . 3 .

    inc lud ing the hydrodynam ic fo rces , and va l ida te the e f fec -

    t i v en e s s o f th e m o d e l b y s i m u l a t io n a n d e x p e r i m e n t . W e

    a lso show an expe r im enta l re su l t us ing a re so lved acce le ra -

    t i o n c o n t r o l m e t h o d . 2 .3 F l u i d d r a g f o r c e a n d m o m e n t

    Kinematics and dynamics

    2 . 1 Mode l ing

    G e n e r a l l y , t h e d r a g f o r c e a n d m o m e n t o f th e j o i n t i c a n b e

    rep res ent ed as 4'5

    ^

    Z = - CD Di [.o

    Iw llw dx

    5)

    T h e u n d e r w a t e r r o b o t m o d e l u s e d h e r e i s s h o w n i n F ig . 2. It

    h a s a r o b o t b a s e a n d a 2 - D O F m a n i p u l a t o r w h i c h c a n m o v e

    in a plane.

    2 . 2 Kinem at ic s

    ^ ^

    = CD, D,f *,llw,llw,d , 6)

    wh er e wi = vi + ~o x .~, p is the fluid dens ity, C, is the dra g

    coeffic ient , and Di is the height of l ink i .

    F i r st , a t im e de r iva t ive o f the end- t ip po s i t ion and a t t i tude

    vector X~ is

    X e : A X 0 + B~ (1 )

    w h e r e

    2 .4 E q u a t i o n o f m o t i o n

    C o n s i d e r i n g t h e h y d r o d y n a m i c f o r c e s d e s c r i b e d a b o v e a n d

    u s i n g t h e N e w t o n - E u l e r f o r m u l a t i o n , t h e f o l l o w i n g e q u a -

    t i o n o f m o t i o n c a n b e o b t a i n e d :

  • 7/25/2019 bf02481505.pdf

    3/5

    Fig 3 Configuration

    underwater robot system

    o f t h e

    o 0 8 r r r r n n

    X - Y T r a c k e r

    L : : : : : : : : : . . .

    D i g i ta l C o m p u t e r

    2 1 7

    C C D C a m e r a

    C a b l e L E D

    \ 1 I \ 1 I

    , , r ] W n n

    I I I I

    I I

    i

    . . . . S id e V ie w

    t

    [

    i i

    D C S e r v o M o t o r w i th E n c o d e r

    B a s e

    L i n k - 1

    9~'~ b, , . / L in k- 2

    : ' ' :

    J o i n t - 1 J o i n t - 2

    T o p V i e w

    . . . . . . . . . . . . . . . . . . . . . .

    U n d e r w a t e r R o b o t M a n i r e l a to r

    . . . . . . . . . . . . . . . .

    M + M a ) g l + b q , [ 1 )

    + FD

    = [ 0 , 0 , 0 , z 1 , ~ 2 ] T ( 7 )

    w h e r e q =

    [X r ,

    ~ r ] r , M i s t h e i n e r t i a m a t r i x ,

    b q,

  • 7/25/2019 bf02481505.pdf

    4/5

    218

    m ]

    0.3 Ini t ia l s ta te

    Fina l s ta te

    a 7 o : 1

    0 . 3 *

    ' ' ' ' '

    0 . 2 0

    0.2 0.4 0.6

    0 . 8 1 [ m ]

    0 .2

    0

    0.2

    0.2

    I I I t

    c e n t

    Q ~ ' , ~ / ~ I/ T a r g e ,n i t i a l s t a te F i n a l s t a t ;

    i I i i i

    0 0 .2 0 .4 0 .6 0 .8

    X [m ]

    [ml

    0.3

    Initial sta te Fin al tate

    ~ , ~ . . ~ ~ /~ [ ~ E .~perim ent

    ..... ~ [ . . . . . . Sim ulation ]

    -0.3 i i i i i i

    b - 0.2 0 0.2 0.4 0.6 0.8 1 [m]

    F i g . 4 . O p e n - l o o p r e s u l t , a r 1 5 d e g / s . b ~1 = 3 0 d e g / s

    F i g . 5 . M o t i o n o f t h e u n d e r w a t e r r o b o t

    - 2

    x lO

    1 . 0 5 ]

    C 3

    1 . 0 5

    l

    I I

    5 10

    i m e [ s ]

    5

    T a b l e 1 . P h y s i c a l p a r a m e t e r s o f th e u n d e r w a t e r r o b o t

    B a s e L i n k 1 L i n k 2

    M a ss kg ) 31 . 72 7 . 48 9 . 68

    M o m e n t o f i n e r t i a k g m 2 ) 0 .4 1 0 . 2 0 0 . 3 7

    L i n k l e n g t h m ) 0 . 16 0 . 3 0 0 .3 0

    H e i g h t m ) 0 . 3 0 0 . 30 0 . 3 0

    A d d e d m a s s k g ) 4 8 . 2 6 3 2 . 8 2 3 2 . 82

    A d d e d m o m e n t o f i n e r ti a k g m 2 ) 0 0 .1 5 0 .3 3

    m a r k e r s a r e t r a n s f o r m e d i n t o p o s i t i o n d a t a b y t h e v i d e o

    t r a c k e r , a n d p u t i n t o t h e P C v i a a G P I B c o m m u n i c a t i o n

    l i n e . U s i n g t h e p o s i t i o n d a t a a n d t h e r o t a t i o n a l a n g l e o f

    e a c h jo i n t m e a s u r e d b y t h e i n c r e m e n t a l t y p e e n c o d e r , t h e

    p o s i t i o n s a n d a t t i t u d e a n g l e s o f t h e r o b o t b a s e a n d m a n i p u -

    l a t o r a r e c o m p u t e d i n t h e P C , a n d a r e a l s o u s e d i n t h e

    c o n t r o l l e r .

    x l 0 3

    9

    5 1 0 1 5

    T ime [ s ]

    3

    2

    1

    0

    0

    F i g . 6 . T r a c k i n g e r r o r

    n o t c o n s t a n t . H o w e v e r , t h e b e h a v i o r i s s i m i l a r , a n d i t i s

    c o n s i d e r e d t h a t t h e m o d e l i s a p p r o p r i a t e .

    4 .2 V e r i f i c a t i o n o f m o d e l

    T o v e r i f y t h e a c c u r a c y o f t h e m o d e l , a n o p e n - l o o p s i m u l a -

    t i o n a n d e x p e r i m e n t a r e p e r f o r m e d . I n t h e c a se o f t h e s i m u -

    la t ion , the d rag coe f f i c ien t s a re co ns tan t va lues CD0 = 1 .12 ,

    C D , = C D ~ = 2 .

    F i g u r e 4 s h o w s a n e x a m p l e o f t h e r e s u lt s , w h e r e j o i n t 1

    m o v e s a t c o n s t a n t r o t a t i o n a l v e l o c i t y . F r o m t h i s f i g u r e , i t

    c a n b e s e e n t h a t t h e s i m u l a t i o n a n d t h e e x p e r i m e n t a r e

    s l i g h t l y d i f f e r e n t b e c a u s e o f t h e i n f l u e n c e o f t h e a p p r o x i -

    m a t e d h y d r o d y n a m i c f o r c e s . F u r t h e r m o r e , i n r e a l i t y , C o, i s

    4 .3 E x p e r i m e n t a l re s u l t s

    T y p i c a l e x p e r i m e n t a l r e s u l ts o f e n d - t i p p o s i t io n c o n t r o l a r e

    s h o w n i n F i g s . 5 a n d 6 . I n t h i s e x p e r i m e n t , t h e r e f e r e n c e

    t r a j e c t o r y o f t h e e n d - t i p i s a s t r a i g h t l i n e . T h e f e e d b a c k

    ga ins a re Kv = 2 and p= 1 . F i g u r e 5 s h o w s t h e m o t i o n o f

    t h e r o b o t , a n d F i g . 6 sh o w s t h e t i m e h i s t o r y o f th e d e s i r e d

    a c c e l e r a t i o n p a t t e r n a n d o f th e e n d - t i p t r a c k i n g e r r o r . I n

    F i g. 6 , t h e t r a c k i n g e r r o r d o e s n o t c o n v e r g e t o 0 b e c a u s e o f

    t h e i n f l u e n c e o f t h e w a v e s , H o w e v e r , t h e e r r o r i s v e r y s m a ll .

    F r o m t h e s e f i g u r e s , i t c a n b e s e e n t h a t t h e e n d - t i p f o l l o w s

    t h e r e f e r e n c e t r a j e c t o r y i n s p i t e o f t h e i n f l u e n c e o f t h e

  • 7/25/2019 bf02481505.pdf

    5/5

    h y d r o d y n a m i c f o r c e s , a n d t h e r e s o l v e d a c c e l e r a t i o n c o n t r o l

    m e t h o d c a n b e a p p l i e d to u n d e r w a t e r r o b o t m a n i p u l a t o r s .

    Conclusion

    I n t hi s a r ti c l e, w e h a v e d e r i v e d a d y n a m i c m o d e l f o r a

    f r e e -f l o a ti n g u n d e r w a t e r r o b o t w i t h a t w o - d i m e n s i o n a l ,

    h o r i z o n t a l p l a n a r , t w o - l i n k m a n i p u l a t o r , i n c l u d i n g t h e

    h y d r o d y n a m i c f o rc e s , a n d v a l i d a t e d t h e e f f e c ti v e n e s s o f t h e

    m o d e l b y s i m u l a t i o n a n d e x p e r i m e n t . F u r t h e r m o r e , t h e e x -

    p e r i m e n t a l r e s u l t h a s s h o w n t h a t t h e r e s o l v e d a c c e l e r a t i o n

    c o n t r o l m e t h o d is u s e f u l f o r a n u n d e r w a t e r r o b o t m a n i p u l a -

    t o r in s p it e o f a n a p p r o x i m a t i o n o f th e h y d r o d y n a m i c f o rc e s .

    A c k n o w l e d g m e n t T h i s r e s e a rc h i s p e r f o r m e d w i th t h e s u p p o r t o f

    G r a n t - i n - A i d f o r D e v e l o p m e n t a l S c i e n t if i c R e s e a r c h o f t h e M i n i s tr y

    o f E duca t ion , C u l tu r e , Spor t s , Sc i ence , and T ech no logy o f Japan ,

    No .10650245 , a t t he Sa t e l l i t e Ve n tu r e Bus iness L abor a to r y , Kyush u

    I ns t i t u t e o f T echno logy .

    219

    References

    1 . Yuh J ed ) 1995) Under wa te r r obo t i c veh i c l es : des ign and con t r o l

    T SI P r ess

    2 . M c L a i n T W , R o c k S M , L e e M J 1 9 96 ) E x p e r i m e n t s i n t h e c o o r d i-

    n a t e d c o n t r o l o f a n u n d e r w a t e r a r m / v e h i c l e s y s te m . A u t o n R o b o t s

    3:213-232

    3 . M c L a i n T W , R o c k S M 1 9 98 ) D e v e l o p m e n t a n d e x p e r i m e n t a l v a li -

    d a t i o n o f a n u n d e r w a t e r m a n i p u l a t o r h y d r o d y n a m i c m o d e l . I n t J

    Rob o t i cs R es 17 :748-759

    4 . M c M i l l a n S , D a v i d D E , M c G h e e R B 1 9 95 ) E ff i c ie n t d y n a m i c s i m u -

    l a t io n o f a n u n d e r w a t e r v e h i c l e w i t h a r o b o t i c m a n ip u l a t o r. I E E E

    T r ans Sys t M a n Cybe r n 25 :t194 1206

    5 . L 6ve sque B, Richar d M J 1994) Dynam ic ana lys is o f a man ipu la to r

    in a f lu id e nv i r onm en t . I n t J Robo t i cs Re s 13 :221- 231

    6 . T a r n T J , S h o u lt s G A , Y a n g S P 1 9 96 ) A d y n a m i c m o d e l o f a n

    u n d e r w a t e r v e h i c l e w it h a r o b o t ic m a n i p u l a to r . A u t o n R o b o t s

    3:269-283

    7 . Yosh ida K, Um etan i Y 1993) Con t r o l o f space man ipu la to r s w i th

    gener a l i zed Jacob ian mat r ix . I n : Xu Y, Kanade T eds) Space robo t -

    i cs : dynamics and con t r o l . K luwer , Dor d sech t , p 165- 204