beta transition rates and eos for massive...

30
Beta transition rates and EOS for massive stars (New Nuclear Theory: TOAMD) Hiroshi Toki (RCNP/Osaka) with toki@monash 2016.2.2 (2.1~2.6) Takayuki Myo(Osaka IT) Kiyomi Ikeda(RIKEN) Hisashi Horiuchi(RCNP/Osaka) Tadahiro Suhara(Matsue TC) Toshio Suzuki (Nihon) Ken’ichi Nomoto (WPI/Tokyo) Hong Shen (Nankai) Jinniu Hu (Nankai)

Upload: others

Post on 21-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Beta transition rates and EOS for massive stars

(New Nuclear Theory: TOAMD)

Hiroshi Toki (RCNP/Osaka) with

!

toki@monash 2016.2.2 (2.1~2.6)

Takayuki Myo(Osaka IT) Kiyomi Ikeda(RIKEN)

Hisashi Horiuchi(RCNP/Osaka) Tadahiro Suhara(Matsue TC)

Toshio Suzuki (Nihon) Ken’ichi Nomoto (WPI/Tokyo)

Hong Shen (Nankai) Jinniu Hu (Nankai)

Page 2: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,
Page 3: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

My desire: 1. Provide best NP results for astrophysics 2. EOS table: H. Shen, H. Toki, K. Oyamatsu, K. SumiyoshiNucl. Phys. A637 (1998) 435

3. Beta transition rate for nuclear URCA: H. Toki, T. Suzuki, K. Nomoto, S. Jones, R. Hirschi, Phys. Rev. C88 (2013) 015806 !

Content: 1. Beta transition rates for URCA nuclei 2. EOS table for supernova and neutron star (URCA) 3. New theory using nuclear interaction (TOAMD)

Page 4: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Beta transition rates in sd-shell nuclei

Several works: 1. T.Kajino, E.Shiino, H.Toki, A.Brown, H.Wildenthal, NP (1988) 2. T.Oda et al, Atomic and nuclear data table (1994) 3. H.Toki, T.Suzuki, K.Nomoto, S.Jones, R.Hirschi, PR (2013) 4. T.Suzuki, H.Toki, K.Nomoto, APJ (2016)

These works are all based on the shell modelfor sd-shell nuclei by A. Brown and H. Wildenthal

Page 5: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Nuclear shell structure

54Fe (Most stable)sd − shell

pf − shell(Suzuki)

Page 6: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

HΨ = EΨ

H = [T +U ]ii=1

A

∑ + Viji≠ j

A

∑Ψ = AC

C∑ (s)n1(d3/2 )

n2 (d5/2 )n3

No. of parameters

ε j

sd V sd

3

63

[T +U ]ψ j = ε jψ j

(s)n1(d3/2 )n2 (d5/2 )

n3 V (s)n1(d3/2 )n2 (d5/2 )

n3 = C sd∑ V sd

Phenomenologicalsd − shell

Page 7: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Level scheme

Page 8: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

!gA = 0.77gA

f στ i Beta transition rate

Page 9: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

URCA process for rapid cooling of star(A,Z )+ e− → (A,Z −1)+ν(A,Z −1)→ (A,Z )+ e− +ν

25Na − 25Mg 23Na − 23Ne

Page 10: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

sd-shell model calculationToki-Suzuki table

Oda table

Jones calculation

25Na − 25Mg

23Na − 23Ne

Suzuki, Toki, NomotoAstro J. (2016)

other beta rates

Page 11: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

neutron star cooling

p + e− → n +νn→ p + e− +ν

URCA process for

npn(k)1

kFp kF

n

µn = µp + µe(Beta equilibrium)

Momentum conservation

kFp = kF

e

(Charge neutrality)

kFp + kF

e > kFn

(2kFp )3 > (kF

n )3

ρ p

ρ> 19

8ρ p > ρn

Page 12: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

EOS with the RMF theory (Shen EOS)

Relativistic Mean Field Theory (RMF)

mean-field approximation: meson field operators are replaced by their expectation values !no-sea approximation: contributions from the negative-energy Dirac sea are ignored

Applications flavor SU(2) flavor SU(3)

infinite matter: nuclear matter strange hadronic matter

finite system: nuclei hypernuclei

, ,σ ω ρ

Shen Toki Oyamatsu Sumiyoshi Nucl. Phys. A637 (1998) 435

Page 13: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Relativistic Mean Field Theory (Phenomenological model)

2 2 3 42 3

2 23

2

[ ]1 1 1 12 2 3 41 1 1 ( )4 2 41 1 ...4 2

aa

a a a a

L i M g g g

m g g

W W m c

R R m

µ µ µµ σ ω µ ρ µ

µµ σ

µυ µ µµυ ω µ µ

µυ µµυ ρ µ

ψ γ σ γ ω γ τ ρ ψ

σ σ σ σ σ

ω ω ω ω

ρ ρ

= ∂ − − − −

+ ∂ ∂ − − −

− + +

− + +

Lagrangian

Lagrangian Equations Mean-Field Approximation

Calculate everything such as , , ...p sε

TM1 parameter set

EOS

6 parameters

Page 14: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

L. S. Geng, H. Toki, J. Meng, Prog. Theor. Phys. 113 (2005) 785

( )2theo expt1

2.1

ni i

iM M

nσ =

−=

=

2157 nuclei

Comparison with nuclear physics data

Page 15: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Shen EOS H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998) H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Astrophys. J. Suppl. 197, 20 (2011)

ρc ∼ 2.2ρ⊙ρ p ∼ 0.08ρ

URCA process does not occur for neutron star cooling

ρ p

ρ> 19(URCA condition)

LS PSU (non-relativistic) soft EOSH.Shen G.Shen (relativistic) hard EOS

Page 16: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

npn(k)1

kFp kF

n

npn(k)1

kFp kF

n

Brueckner-Hartree-Fock TOAMD

!kp +!ke =!kn becomes possible!!

URCA becomes possible in neutron star cooling

New theory with tensor and short range correlations

Page 17: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

toki@numazupion 17

Deuteron (1+)NN interaction

S=1 and L=0 or 2

π

Ψ J=1 =ψ SY0χS=1 +ψ D Y2χS=1[ ]1

AV8

ψ S

ψ D

Page 18: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

18

Variational calculation of light nuclei with NN interaction

C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51(2001)

ΨVπ ΨΨVNN Ψ

~ 80%

Ψ = φ(r12)φ(r23)...φ(rij )

VMC+GFMC

VNNN

Fujita-Miyazawa

Relativistic

Pion is keyHeavy nuclei (Super model)

Page 19: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

19

Pion is important in nucleus• 80% of attraction is due to pion • Tensor interaction is particularly important

and difficult to handle (50%)

! σ 1 ⋅! q ! σ 2 ⋅! q

mπ2 + q2 =

13

q2

mπ2 + q2 S12( ˆ q ) +

13

q2

mπ2 + q2

! σ 1 ⋅! σ 2

=13

q2

mπ2 + q2 S12( ˆ q ) +

13

1− mπ2

mπ2 + q2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ ! σ 1 ⋅! σ 2

Pion Tensor spin-spin

high momentum low momentum

Page 20: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Tensor Optimized Antisymmetrized Molecular Dynamics (TOAMD)

Tensor optimized shell model(TOSM) 1. We include tensor interaction most effectively to shell model  2. Difficult to treat cluster structure

+Antisymmetrized molecular dynamics (AMD) 1. Cluster+shell structure is handled on the same footing with effective interaction

2. Difficult to treat bare nucleon-nucleon interaction

Study nuclear structure based on nuclear interaction

Myo Toki Ikeda

Horiuchi Enyo Kimura..

Page 21: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

TOAMD project1. T. Myo : S-shell nuclei (He3, He4)   Make fundamental programs and establish the TOAMD concept (almost finished) 2. T. Suhara : P-shell nuclei   Establish the treatment of shell structure 3. H. Toki, T. Yamada : Nuclear matter   Study infinite matter 4. Many collaborations : China, Korea

Page 22: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Nuclear Matter(Relativistic effect)G

VQ

Brockmann Machleidt : PRC42(1990)1965

(α ⋅ p + βm +U ) !ψ = E !ψ

U = βUS +UV !m = m +US ( !m)

Uk ( !m) = kpp∑ G( !m) kp − pk

Relativistic Brueckner-Hartree-Fock with Bonn-potential

npn(k)1

kFp kF

n

Page 23: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Infinite matter(non-relativistic framework: 3 body repulsion +Boost corrections)

Akmal Pandhyaripande Ravenhall : PRC58(1998)1804

Relativistic effectEffective mass    =3 body repulsion

C.M. boost effect    =C.M. boost interaction

Ψ = ij 1+ Fij( )∏ Φ

+ 3 body attraction(Δ)

Fijp correlation function

Variational chain summation (VCS)

Page 24: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

TOSM for relativistic matter

Ψ = C0 0 + Cαα∑ 2p2h :α

Brueckner-Hartree-Fock type equation

Page 25: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Numerical results of TOSM and comments

5MeV/A short

It is difficult to include 3 body interaction in TOSM

C0 Cα(low momentum)(high momentum)

3 body interaction (Fujita-Miyazawa delta term)

Tensor Short-range

Page 26: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

TOAMD for nuclear matter

Ψ = (1+ FS )(1+ FD )Φ(RNM )

Φ(RNM ) = ψ p (r, s)ξ p (t)p

A∏

ψ p (r, s) =Ep + !m2 !m

χ p (s)

σ ⋅ pEp + !m

χ p (s)

⎜⎜⎜

⎟⎟⎟

1Veipr

FD = fD (rij )(3(2m)2γ 5iγ 5 j − k

2 γ 5iγ ixγ 5 j

x∑ γ j

x )τ i ⋅τ j

FS = fS (rij )γ i0γ j

0

→ 3σ 1 ⋅ kσ 2 ⋅ k − k2σ 1 ⋅σ 2

→1

H = T +VBonn +UΔ(Three body interaction)

Page 27: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

RNM FSVFS RNM = 12

C(p1p2 :q1q2 )p1p2:q1q2∑ Cµ1

Cµ2Cµ3

µ1µ2µ3∑

e−k12 /kµ1

2

k1k2∑ e−k2

2 /kµ22

e−( p1−q1−k1−k2 )2 /kµ3

2

M (p1 − k1 |Γ | p1 − k1 − k2 )M (p2 + k1 |Γ | p2 + k1 + k2 )

M (p |1 | q) =Ep +m2Ep

Eq +m2Eq

χ p† 1− σ ⋅ p

Ep +mσ ⋅qEq +m

⎝⎜⎞

⎠⎟χq

M (p |γ 5 | q) =Ep +m2Ep

Eq +m2Eq

χ p† − σ ⋅ p

Ep +m+ σ ⋅qEq +m

⎝⎜⎞

⎠⎟χq

MC(Metropolis) method for integration

Formulation is simple(2 body+3 body..)

C(p1p2 :q1q2 ) = δ p1q1δ p2q2

−δ p1q2δ p2q1

p1

q1 q2

p2

k3

k2

k1

Γ Γp1 − k1

p1 − k1 − k2

p2 + k1

p2 + k1 + k2

2 body term (we can use Feynmann rule)

f = dp1∫ dp2dk1dk2 f (p1p2k1k2 )θ(p1 − kF )θ(p2 − kF )e−k1

2 /kµ12

e−k22 /kµ 2

2

Page 28: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Present status (preliminary)σ +ω +π +δ +η + (ρ)One gaussian -> many gaussiansTwo body term -> many body termTwo -> Three body interaction

(Bonn potential)

-1.5-1

-0.5 0

0.5 1

1.5 2

0.5 1 1.5 2

C

r

-30-20-10

0 10 20 30

0 0.1 0.2 0.3

E [M

eV]

density [fm-3]

0 10 20 30 40 50 60

0 0.1 0.2 0.3

E [M

eV]

density [fm-3]

N=Z N only

D

S

HF

S

S+D

HF S

S+D

Page 29: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Nuclear matter Neutron matter

M (p→ n) ~ (1− n(kn ))n(kp )URCA

M (n→ p) ~ (1− n(kp ))n(kn )

TOSM=Two body version of TOAMD

possible!!

Page 30: Beta transition rates and EOS for massive starsusers.monash.edu/~cdoherty/EC-SN-2016/ECSN-Toki.pdf · Beta transition rates in sd-shell nuclei Several works: 1.T.Kajino, E.Shiino,

Conclusion 1. Nuclear URCA process (sd-shell) 2. Fine mesh table ̶> T. Suzuki talk 3. URCA in neutron stars: RMF NO!! 4. Many body theory with correlation YES!! 5. BHF should be extended to TOAMD 6. We are close to get numbers with TOAMD 7. URCA in neutron star cooling will be possible 8. EOS using TOAMD will come soon