bernardo leon de la barra

29
Towards Integrated K12 STEM Education: A Wheelchair Sport Context

Upload: informa-australia

Post on 13-May-2015

332 views

Category:

Education


1 download

DESCRIPTION

Bernardo Leon de la Barra

TRANSCRIPT

Page 1: Bernardo Leon de la Barra

Towards Integrated K‐12 STEM Education: A 

Wheelchair Sport Context

Page 2: Bernardo Leon de la Barra

“The Paralympic Movement builds a bridge which links sport with social awareness 

thus contributing to the development of a more equitable society with respect and equal opportunities for all individuals.”

International Paralympic Committee Strategic Plan, 2011‐2014

The Following Statement Does Not Mention STEM Education

Page 3: Bernardo Leon de la Barra

Technology Has The Potential to Improve Lives

Page 4: Bernardo Leon de la Barra

Dominic Nolan, Manager, STEM Curricula, at

the Royal Academy of Engineering (UK) has provided 

access to a number of resources that are used in some of the following slides

Page 5: Bernardo Leon de la Barra

Winning Medals: Does Engineering Design Make a Difference?

Page 6: Bernardo Leon de la Barra

The “Big Question”: Does Engineering Design Make a 

Difference?The success of an athlete is the resultof many hours of training, dedicationand sacrifice.

In the case of wheelchair athletes,there is an added dimension – the workof the team who designed thewheelchair.

So, when a wheelchair athlete winsa medal, to what extent hasengineering design made adifference to his/her performance?

Shelly WoodsSilver medal in the women’s marathon

(T12-L1), London 2012. Photograph courtesy of BAE Systems plc.

Page 7: Bernardo Leon de la Barra

A Quick Introduction to Wheelchair Sport

Boston Marathon

Page 8: Bernardo Leon de la Barra

A Quick Introduction to Wheelchair Sport

London 2012 wheelchair rugby (1:19 min)

http://www.youtube.com/watch?v=g1_aUAGvWK4

Shelly Woods

“Racing to the finish line” (2:19 min)http://www.youtube.com/watch?v=1wwHCJZCUrA&feature=relmfu

“Setting goals along the way” (1:58 min)www.youtube.com/watch?v=AQLRS4JRWmU&feature=relmfu

Page 9: Bernardo Leon de la Barra

There are different wheelchair designs

http://www.draftwheelchairs.com

1960s-style wheelchair

modern basketball wheelchair

modern track wheelchair

A Quick Introduction to Wheelchair Sport

Page 10: Bernardo Leon de la Barra

A Practical Integrated STEM Challenge

(Design and) make a 1:10 scale model track wheelchair

Page 11: Bernardo Leon de la Barra

20 mm

100 mm

A Practical Integrated STEM Challenge

Page 12: Bernardo Leon de la Barra

A Practical Integrated STEM Challenge

How far can you launch a model (track) wheelchair?

How straight can you make a model (track) wheelchair travel?

Test trackLauncher

Track barriers

Octopus strap

C/G clamps/cramps

Medals (targets)

Page 13: Bernardo Leon de la Barra

Going Back to the “Big Question”: Does Engineering Design Make a 

Difference?

Some possible sub-questions

Why do you think the wheels of performance wheelchairs are

cambered (angled)?

What aspects of STEM do you think this design feature is based on?

How much of a difference do you think cambering the wheels makes?

Page 14: Bernardo Leon de la Barra

Some Car Enthusiasts are also Into Cambered Wheels!

Page 15: Bernardo Leon de la Barra

“Winning Medals: Does Engineering Design Make a 

Difference?”This resource may be used to 

address a number of science and mathematics concepts for a range of grade levels using a socially relevant real‐world context

Page 16: Bernardo Leon de la Barra

Inertia

(Lateral) stability

Mass (weight)

Moment

Momentum

Newton’s laws

Point of effort

Speed

(Tangential) velocity

Torque

Turning moment (advantage)

Some Key Science ConceptsAcceleration (linear and rotational)

Axis

Centre of rotation (of a mass)

Energy (kinetic and potential)

Equations of motion

Force

Friction

Fulcrum (pivot point)

Gravity

Impulse

Page 17: Bernardo Leon de la Barra

Angles (in a triangle)

Arc

Average

Calculus

Circle

Circumference

Cosine

Cycle

Distance

Graph

Some Key Mathematics ConceptsFrequency (Hertz)

Hypotenuse

Inclination

Integration

Measurement

Outliers

Right angle triangles

Parallel and perpendicular (force) components

Protractor

Pythagoras theorem

Page 18: Bernardo Leon de la Barra

Quadrant

Repetition rate

Scale

Sector

Sine

Slope

Speed

Stopwatch

Tangent

Trigonometry

Some Key Mathematics ConceptsVectors

Weight

· Δ

12

Page 19: Bernardo Leon de la Barra

The Science and Mathematics of Sport Wheelchair Design

Acceleration (linear or rotational)

This athlete needs to change

direction quickly in response to the

motion of a ball or other athletes

Athletes are competing

with others for straight-line

speed (from a start at rest)

Page 20: Bernardo Leon de la Barra

The Science and Mathematics of Sport Wheelchair Design

Torque (Nm) = force (N) x distance (m)

In order to accelerate, the athlete needs the help of a torque, which is a “moment” (a particular application of [upper-body

muscle] force in a rotational or “twisting” fashion) used to rotate an object about an axis or pivot point (fulcrum)

Page 21: Bernardo Leon de la Barra

Track: The distance between the points at which a wheelchair’s two tyres

touch the ground.

The Science and Mathematics of Sport Wheelchair Design

Wheelchair for playing basketballWheelchair for everyday use 

(Negatively) cambering (“angling”) a wheelchair's wheels increases its track.

Page 22: Bernardo Leon de la Barra

How much bigger is the basketball wheelchair’s track?

The Science and Mathematics of Sport Wheelchair Design

Page 23: Bernardo Leon de la Barra

The Science and Mathematics of Sport Wheelchair Design

sin 20 cm

34.5 cm ⇒ 12 cm

⇒ Track 60 2 60 69 ∗ sin 20

84 [cm]

How much bigger is the basketball wheelchair’s track?

Page 24: Bernardo Leon de la Barra

The Science and Mathematics of Sport Wheelchair Design

Cambering and turning moment advantage

Page 25: Bernardo Leon de la Barra

Negatively cambering a wheelchair's wheels increases its track and creates a

turning moment advantage, which makes it more manoeuvrable (“agile”).

This time the distance in the above equation is the measurement between

the centre of rotation of the wheelchair and the point at which the wheel

touches the ground.

The Science and Mathematics of Sport Wheelchair DesignTurning moment (Nm) = force (N) x distance (m)

Page 26: Bernardo Leon de la Barra

The Science and Mathematics of Sport Wheelchair DesignTurning moment (Nm) = force (N) x distance (m)

Note that a 40% of additional turning moment is caused when the 69 cm

diameter wheels of a wheelchair are cambered by 20 degrees. This means

that the athlete can change direction at a rate 40% higher when she/he

applies a sudden muscle force to the hand-rims of the wheelchair. This is a

huge gain in rotational acceleration and hence manoeuvrability and agility.

Page 27: Bernardo Leon de la Barra

30 cm ruler

The Science and Mathematics of Sport Wheelchair Design

As stated earlier, the “Winning Medals: Does Engineering Design Make a

Difference?” resource briefly described in this presentation provides many

more explicit connections to science and mathematics concepts.

Page 28: Bernardo Leon de la Barra

http://www.raeng.org.uk/publications/other/winning‐medals‐teacher‐version 

http://www.raeng.org.uk/publications/other/winning‐medals‐student‐version

http://www.raeng.org.uk/education/schools/teaching-and-learning-resources/curriculum-resources

Page 29: Bernardo Leon de la Barra

Our contact details

http://www.utas.edu.au/stem

[email protected]

[email protected]