benthic foraminifera as effective tools for exploration of gas hydrate rich zones at blake ridge,...

16
 Exploration Geology and Geoinformatics  Editors S. ANBAZHAGAN R. VENKATACHALAPAT HY R. NEELAKANTAN MACMILLAN

Upload: sundar-raj

Post on 29-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 1/16

 

Exploration Geology and

Geoinformatics

 Editors

S. ANBAZHAGANR. VENKATACHALAPATHY

R. NEELAKANTAN 

MACMILLAN

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 2/16

c  Macmillan Publishers India Ltd., 2009 

All rights reserved. No part of this publication may be reproduced or

transmitted, in any form or by any means, without permission. Any

person who does any unauthorized act in relation to this publication

may be liable to criminal prosecution and civil claims for damages.

First published, 2009

MACMILLAN PUBLISHERS INDIA LTD.

Delhi Bangalore Chennai Kolkata Mumbai

Ahmedabad Bhopal Chandigarh Coimbatore Cuttak 

Guwahati Hubli Hyderabad Jaipur Lucknow Madurai

Nagpur Patna Pune Thiruvanthapuram Visakhapatnam

Companies and representatives throughout the world

ISBN 10: 0230-63867-8

ISBN 13: 978-0230-63867-9

Published by Rajiv Beri for Macmillan Publishers India Ltd.

2/10, Ansari Road, Daryaganj, New Delhi 110 002

Printed at Sanat Printers

312 EPIP, Kundli 131 028 

This book is meant for educational and learning purposes. The author(s) of the book has/have taken all reasonable care to

ensure that the contents of the book do not violate any existing copyright or other intellectual property rights of any person

in any manner whatsoever. In the event the author(s) has/have been unable to track any source and if any copyright has been

inadvertently infringed, please notify the publisher in writing for corrective action.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 3/16

 

Benthic Foraminifera as Effective Tools

for Exploration of Gas Hydrate RichZones at Blake Ridge, Northwest

Atlantic Ocean

M. S U N D A R R A J, S O M A D E  A N D A N I L K. G U P T A

ABSTRACT

Gas hydrates, also known as methane hydrates, are solid ice like crystals composed of water

and methane molecules (with small amounts of carbon dioxide, propane and ethane), which

are stable under high pressure, low temperatures and adequate concentration of gas (Sloan,

1990; Kvenvolden, 1993). They are trapped in marine sediments and permafrost regions.

For the comprehensive study of methane rich zones, researchers have been using deep sea

benthic foraminifera and their carbon isotopic signatures, Total Organic Carbon; Dissolved

Inorganic Carbon, etc. as key indicators.

Blake Ridge is one of the earliest documented marine gas hydrate province in the

northwestern Atlantic Ocean (Katz et al., 1999; Holbrook et al., 2002; Robinson et al.,2004). Blake Ridge consists of a pile of Tertiary to Quaternary drift deposits dominated by

fine grained nanno fossil bearing hemipelagic sediments (Markl et al., 1970). The organic

carbon content in the sediment often closely relates to the surface water productivity

(Pedersen and Calvert, 1990). Thus, variations of organic carbon in marine sediments can be

used as a proxy for productivity. While consistent abundance of intermediate to high organic

carbon associated biofacies and high TOC along with low carbon isotopic values indicate

increased marine biological productivity, lower TOC values indicate decreased terrigenous

flux. Presence of dysoxic species combined with geochemical data and physical properties

of sediments evidently indicates in-situ gas hydrates were formed at Blake Ridge using

biogenic methane (Bhaumik and Gupta, 2005).

Some benthic foraminiferal groups like Bolivina, Cassidulina, Chilostomella, Epistominella,

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 4/16

32 EXPLORATION GEOLOGY AND GEOINFORMATICS

 Gavelinopsis, Globobulimina, Nonionella, Trifarina, Uvigerina, etc. are known to colonize

hydrocarbon-seeped bacterial mats and may be attracted from methane gas or hydrogen

sulphide gas emissions (Torres et al., 2003; Hill et al., 2003, 2004; Robinson et al., 2004;

Gupta, 2004; Panieri, 2005). Also, highly depleted δ13

C excursions of marine carbonates are

important indicators of gas hydrate rich environment (Hill et al., 2003; Hill et al., 2004).Uvigerinids, Bolivinids, elongated benthics along with some other intermediate to high

organic carbon taxa (Cibicides kullenbergi, C. bradyi,  Eggerella bradyi, Globocassidulina

subglobosa, Gyroidinoides cibaoensis,   Robulus gibbus) are abundant in the methane and

hydrate rich zones of Blake Ridge indicating its adaptability to such highly reducing organic

carbon rich environment (Rathburn et al., 2000; Hill et al., 2003; Robinson et al., 2004;

Panieri, 2005; Bhaumik and Gupta, 2005). Thus, benthic foraminiferal analyses combined

with geochemical data are effective tools in exploring methane hydrate rich zones.

Keywords

 Benthic Foraminifera, Gas Hydrate and Blake Ridge

1.  INTRODUCTION

Presently, the world faces challenges to meet its requirements of conventional

sources of energy like coal, petroleum and natural gas whose continuous depletion

brings attention on alternative sources of energy. Researchers like MacDonald,

(1990) and Gupta, (2004) have mentioned that the energy potential of methanehydrates is significantly larger than that of the other unconventional sources of gas,

such as coal beds, tight sands, black shales, deep aquifers and conventional natural

gas. Gas hydrates, solid ice like crystals composed of water and methane molecules,

are found in many regions of the world (Table 1).

Current geophysical surveys such as seismoprofiling, Well log methods and Bottom

Simulating Reflectors (BSRs) give indirect information about hydrate content of 

sediments. But, they are not always reliable. For example BSRs have failed to locate

gas hydrate horizons at Ocean Drilling Program Site 994C located on the Blake

Ridge, North Atlantic, where much data comes from the geochemical and sediment

parameters (Paull, 1996). Thus the need arises to develop new methods for exploringgas hydrates (Table 2). Key indicators like deep sea benthic foraminifera and their

carbon isotopic signatures, Total Organic Carbon; Dissolve Inorganic Carbon, etc.

have been used for the study of methane fluxes and seep zones.

Benthic foraminifera are an important component of the marine community and

sensitive to environmental changes. Benthic foraminifera has a capacity to adapt

and are able to survive and proliferate in a wide range of marine environments,

including extreme ecosystems, such as oligotrophic abyssal plains (Coull et al.,

1977) or hydrothermal vents (Sen Gupta and Aharon, 1994) as well as deep-sea

trenches.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 5/16

BENTHIC FORAMINIFERA AS EFFECTIVE TOOLS FOR EXPLORATION OF… 33

Table 1. Some Major Gas ‐ Hydrate (Methane seepage) Zones of  the World. 

 Area  Water  depth (m)  References Continental margin off  Peru  252  Wefer et al., 1994 

Gulf  of  Mexico  150 ‐ 700 

Sen Gupta and Aharon, 1994; Sen 

Gupta et al., 1997 

Eel River, Northern California 

Margin 

500 ‐ 525  Rathburn et al., 2000 

Hydrate Ridge, Oregon  600 ‐ 900 

Torres et al., 2003; Hill et al., 

2004a; Cannariato and Stott, 2004 

Santa Barbara Channel  120 ‐ 580 

Kennett et al., 2000; Hinrichs et 

al., 2003; Hill et al., 2003, 2004b 

Blake Ridge, northwest Atlantic  1981 ‐ 2158 

Katz et al., 1999; Dillon et al., 

2001; Holbrook et al., 2002; 

Robinson et al., 2004 

Miocene limestone of  Italy  600 ‐ 100  Barbieri and Panieri, 2004 

Rockall Trough  800 ‐ 1000  Panieri, 2005 

Studies of dead and living benthic foraminifera have shown that benthic

foraminiferal distribution patterns are closely tied to the organic carbon flux and the

organic carbon content of the sediment (Fariduddin and Loubere, 1997; Schmiedl etal., 1997; De Stigter et al., 1998; Gupta and Thomas, 1999; 2003; Gupta et al., 2004;

Singh and Gupta, 2004). Other studies have demonstrated the sensitivity of the

biofacies composition to changes in oxygen levels of the bottom water and pore

water oxygenation (Loubere, 1996; Jannink et al., 1998). Over the last three

decades, scientists have increased their interest to understand different aspects of 

benthic foraminifera for paleoenvironmental reconstructions. Numerous species of 

benthic foraminifera have been found in different methane rich marine settings and

have proved to be good indicator of methane releases (e.g. Wefer et al., 1994; Sen

Gupta et al., 1997; Rathburn et al., 2000; Hill et al., 2003).

Table 2.  Methane Fluxes

 Identified

 Using

 Different

 Methods. 

Method   References Highly negative carbon isotopic 

excursions of  benthic and planktic 

foraminifera, total organic carbon 

Wefer et al., 1994; Dickens et al., 1995; Katz et al., 1999; 

Kennett et al., 2000; Rathburn et al., 2000; Torres et al., 

2003; Hill et al., 2003, 2004a,b 

Presence of  chemosynthetic bacteria 

and biota 

Hinrichs et al., 2003; Van Dover et al., 2003 

Reflection seismic profiles  Dillon et al., 2001; Holbrook et al., 2002 

Pore water

 chemistry

 Luff 

 and

 Wallmann,

 2003

 

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 6/16

34 EXPLORATION GEOLOGY AND GEOINFORMATICS

 

Some species are attracted to bacterial mats and feed on bacterial rich food near

methane seeps or hydrogen sulphide gas emissions showing their potential as

indicators of methane release in the geological record. Some methane loving benthic

foraminiferal groups include species of    Bolivina, Cassidulina, Chilostomella,

  Epistominella, Gavelinopsis, Globobulimina, Nonionella, Trifarina, Uvigerina etc.(Sen Gupta and Aharon, 1994; Wefer et al., 1994; Sen Gupta et al., 1997; Rathburn

et al., 2000; Bernhard et al., 2001; Torres et al., 2003; Hill et al., 2003, 2004;

Robinson et al., 2004; Gupta, 2004; Panieri, 2005) which can withstand such

stressful conditions. A detailed table of environment inferred from each species is

given in Appendix1.

1.1.  Origin of Gas Hydrates

Gas hydrates occur mainly in two geologic settings viz. permafrost regions on land

or oceanic sediments of continental margins. These are also found in deep lakes,

inland seas, arctic localities associated with petroleum accumulations etc. (Shipley et

al, 1979; Kvenvolden, 1990, 1993a, 1998). The methane formed in gas hydrates may

be biogenic (Claypool and Kaplan, 1974) or thermogenic (Hyndman and Davis,

1992) in origin. Biogenic methane is formed from bacterial decomposition of 

sedimentary organic matter (SOM) in low temperature and anaerobic condition at

shallow depths (Paul et al, 1994) which produce food for benthic foraminifera. On

the contrary if the SOM breaks in high temperature (80°C-150°C) to produce

primary and secondary thermogenic gases containing less methane and more short

chain hydrocarbons like ethane, propane, butane etc., accounts for their thermogenic

origin. The gas hydrate formed from biogenic hydrocarbon is mainly 99% pure

methane.

2. LOCATION AND OCEANOGRAPHIC SETTINGS

Blake Ridge, in the northwestern Atlantic Ocean (Fig.1) (Katz et al., 1999; Holbrook 

et al., 2002; Robinson et al., 2004) contains nearly 15 Gt (Gt = 1015 gm) (Dickens et

al, 1997) to 40 Gt (Holbrook et al., 1996) of stored carbon in the form of gas

hydrates. Presently the area underlies the periphery of the subtropical central gyre

and is influenced by the northerly flowing, warm, saline Gulf Stream surface current

as well as the southerly flowing Western Boundary Under Current (WBUC). While

bottom water temperature of the Blake Ridge Diaper (water depth 2155m) is of 3.2ºC (Van Dover et al., 2003), the modern lysocline lies in between the 4000 to 4350

m water depth, which is linked to the mixing zone of Antarctic Bottom Water

(AABW) and North Atlantic Deep Water (NADW) in the subtropical northwest

Atlantic (Balsam, 1983). The disseminated gas hydrate rich sediments lies

approximately 185 to 450 meter below sea floor sandwiched between methane rich

sediments below and methane free sediments above. Blake Ridge is a well

established gas hydrate field and provides an ample opportunity to understand

methane genesis and eruptions using various proxies during the Quaternary.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 7/16

BENTHIC FORAMINIFERA AS EFFECTIVE TOOLS FOR EXPLORATION OF… 35

Fig. 1. Location map of Gas Hydrate rich zones (ODP Holes 991 to 997), Blake

Ridge, Northwest Atlantic.

2.1. Lithology

Blake Ridge consists of a pile of Tertiary to Quaternary drift deposits dominated by

fine grained nannofossil bearing hemipelagic mud and silty clay (Markl et al., 1970;

Shipboard Scientific Party, 1996). The thickness of the methane-hydrate stability

zone in this region ranges from zero along the northwestern edge of the continental

shelf to a maximum thickness of about 700 m along the eastern edge of the Blake

Ridge (Collett, 1993). The gas thus produced from deep beneath oceanic sediments

enters into Gas Hydrate Stability Zone (GSHZ) and forms gas hydrates while the

free gas persists beneath it. Favorable factors for the formation of gas hydrate in this

region include high pressure (~2.6 Mpa), low temperature (0-10oC), high organic

carbon (2.0%-3.5%), high porosity, adequate amount of methane and pore water,water depths of 300-1000 m and rapid sedimentation rate (Claypool and Kaplan

1974; Kvenvolden, 1993, 1998; Malone, 1994; Ginsberg and Soloviev, 1997; Sloan,

1990; Fehn et al., 2000). Figure 2 shows a cross section along the Blake Ridge

depicting the bathymetry and temperature variance in the area. Shipboard

examinations of smear slides indicate that clays, calcite, and quartz are the dominant

mineral components; feldspars, dolomite, and pyrite are minor components.

Siliceous microfossils are present primarily as diatoms, although there are some

sponge spicules and radiolarians. The presence of strong BSR is found in Blake

Ridge, with other proxies it is also evident that disseminated methane hydrates

occurs through out sedimentary section between ~180 and ~450 m below seafloor,

which may extend about ~30 mbsf (Paull et al, 1996; Lorenson, T. D. and ShipboardScientific Party, 2000).

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 8/16

36 EXPLORATION GEOLOGY AND GEOINFORMATICS

 

Fig 2. Depth vs Temperature Plot at Blake Ridge (Courtesy: Ocean Data View).

3. EXPLORATION OF GAS HYDRATE RICH ZONES

As Gas hydrates are not preserved in cores or in exposed outcrops, it is necessary to

find digenetic “finger prints” (or proxies) to identify sediments that contained gas

hydrate (Rodriguez et.al, 2000). Also, in the absence of free methane gas emission,

BSR’s are unable to detect gas hydrate deposits, particularly in Blake Ridge as free

methane is believed to have already escaped to the atmosphere, so heremicropaleontological fingerprints can be regarded as more suitable tools in studying

gas hydrate deposits. Uvigerinids, Bolivinids, elongated benthics along with some

other intermediate to high organic carbon taxa (e.g. Cibicides kullenbergi, C. bradyi,

 Eggerella bradyi, Globocassidulina subglobosa, Gyroidinoides cibaoensis, Robulus

gibbus) are abundant in the methane and hydrate rich zones of Blake Ridge which

indicates their adaptability to such highly reducing organic carbon rich environment

(Rathburn et al., 2000; Hill et al., 2003; Robinson et al., 2004; Panieri, 2005;

Bhaumik and Gupta, 2005).

Often surface water productivity is closely related to the organic carbon content in

the sediment (Muller and Suess, 1979; Pederson, 1983; Sarnthein et al., 1987;

Pedersen and Calvert, 1990) and thus, variations of organic carbon in marine

sediments can be used as a proxy for productivity. The Total Organic Carbon (TOC)

concentrations transformed into mass accumulation rates of TOC can be used for the

interpretation of changes in preservation conditions or supply of OM (Jia, et al.,

2002). For example: the Arabian Sea and the Bay of Bengal with thick pile of 

sediments (3 - 4 km) and high organic carbon content (in the Arabian Sea, total

organic carbon (TOC) ranges from 0.48 to 4% and in the Bay of Bengal from 0.26 to

2%), are potential areas for gas hydrate rich zones (Gupta,   et al., 1998, 2003;

Kuldeep et al., 1998; Veerayya et al., 1998; Subrahmanium et al., 1999).

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 9/16

BENTHIC FORAMINIFERA AS EFFECTIVE TOOLS FOR EXPLORATION OF… 37

While high TOC and low carbon isotopic values along with consistent abundance of 

intermediate to high organic carbon associated biofacies indicate increased marine

biological productivity, lower TOC values indicate decreased terrigenous flux. At

Blake Ridge, the occurrence of dysoxic species along with geochemical data and

physical properties of sediments evidently indicates in-situ gas hydrates wereformed using biogenic methane (Bhaumik and Gupta, 2005).

REFERENCES

Akira Tsujimoto, Ritsuo Nomura, Moriaki Yasuhara, Shusaku Yoshikawa, (2006) Benthicforaminiferal assemblages in Osaka Bay, southwestern Japan: faunal changes over the last 50

years, Paleontological Research, Volume 10, Issue 2.

Almogi – Labin, A., Schmiedl, G., Hemleben, C., Siman-tov, R., Segl, M., Meischner, D.,

(2000). The influence of the NE winter monsoon on productivity changes in the Gulf of Aden, NW Arabian Sea, during the last 530ka as recorded by foraminifera. MarineMicropaleontology, 40: 295-319.

Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S. and Trauth, M., (1999).Scaling percentages and distributional patterns of benthic foraminifera with flux rates of 

organic carbon. Journal of Foraminiferal Research, 29:173-185.

Annin, V.K. (2001). Benthic foraminifera assemblages as bottom environmental indicators,Posiet Bay, Sea of Japan, Journal of Asian Earth Sciences, 20, 1, pp. 9-29(21).

Balsam, W. L., (1983). Carbonate dissolution on the Muir Seamount (Western North Atlantic):

Interglacial/Glacial changes. Journal of Sedimentary Petrology, v. 53, p. 719-731.

Barbieri, R., Panieri, G., (2004). How are benthic foraminiferal faunas influenced by cold seeps?Evidence from the Miocene of Italy. Palaeogeography, Palaeoclimatology, Palaeoecology

204, 257-275.

Bernhard, J. M., Buck, K. R., and Barry, J. P., (2001). Monterey bay cold-seep biota:

Assemblages, abundances, and ultrastructure of living foraminifera. Deep-Sea Research,Part-I, v. 48, p. 2233-2249.

Bhaumik, A. K., and Gupta, A. K., (2005). Deep-sea benthic foraminifera from gas hydrate-rich

zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). Current Science, v. 88, p. 1969-

1973.

Cannariato, K. G., and Stott, L. D., (2004). Evidence against clathrate-derived methane releaseto Santa Barbara Basin surface waters? Geochemistry Geophysics Geosystems, v. 5, Q05007,doi: 10.1029/2003GC000600.

Clark, D. F., (1971). Effects of agriculture outfall on benthonic foraminifera in Clam Bay, NovaScotia. Maritime Sediments 4, 76-84.

Claypool, G. and Kaplan, I, (1974). The origin and distribution of methane in marine

sediments.In: Kaplan, I. (eds) Natural gases in marine sediments. Plenum, New York, 315-340.

Collett, T.S., (1993). Natural gas hydrates of the Prudhoe Bay–Kuparuk River area, North Slope,

Alaska. AAPG Bull., 77:793–812.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 10/16

38 EXPLORATION GEOLOGY AND GEOINFORMATICS

 

Coull, B. C., Ellison, R. L., Fleeger, J. W. et al., (1977). Quantitative estimates of the miofaunafrom the deep sea off North Carolina, U.S.A. Marine Biology, 39; 233.

De Stigter, H. C., Jorrisen, F. J. and Van der Zwaan, G. J., (1998). Bathymetric distribution andmicrohabitat partitioning of live (rose bengal stained) benthic foraminifera along a shelf to

deep sea transect in the southern Adriatic Sea, Journal of Foraminiferal Research, 28.40-65.

Dickens, G.R., O’Neil, J.R., Rea, D.K., and Owen, R.M., (1995). Dissociation of oceanicmethane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene.

Paleoceanography, 10:965–971.

Dickens, G.R., Paull, C.K., Wallace, P., and the ODP Leg 164 Scientific Party, (1997). Direct

measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 385:427–428.

Dillon, W. P., Nealon, J. W., Taylor, M. H., Lee, M. W., Drury, R. M., and Anton, C. H., (2001).

Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge-Causes and implication to seafloor stability and methane release, in: Paull. C. K., and Dillon,

W. P. (eds), Natural gas hydrates: Occurrence, distribution and detection. AmericanGeophysical Union, Geophysical Monograph, v. 124, p. 211-233.

Faridduddin, M., Loubere, P., (1997). The surface ocean productivity response of deeper benthic

foraminifera in the Atlantic Ocean. Mar. Micropaleontol. 32, 289– 310.

Fehn,U., Snyder, G. and Egeberg, P. K., (2000). Dating of pore waters with 129I: Relevance for

the origin of marine gas hydrates. Science, 289, 2332-2335.

Fontanier C., Jorissen F.J., Licari L., Alexandre A., Anschutz P. and P. Carbonel, (2002). Live

benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, andmicrohabitats. Deep-Sea Research I , 49, 751-785.

Ginsburg, G. D. and Soloviev, V. A., (1997). Methane migration within the submarine gas-hydrate stability zone under deer-water conditions. Marine Geology, 137, 49-57.

Gooday, A.J., (1993). Deep-sea benthic foraminiferal species which exploit phytodetritus:

characteristic features and controls on distribution, Marine Micropaleontology, 22: 187-205.

Gooday, A. J., (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography:

environmental influences on faunal characteristics. Advances in Marine Biology, v. 46.

Gupta, A. K. (1997). Paleoceanographic and paleoclimatic history of the Somali Basin duringthe Pliocene-Pleistocene: Multivariate analyses of benthic foraminifera from DSDP Site 241

(leg 25). Journal of Foraminiferal Research, 27:196-208.

Gupta, A. K., (2004). Marine gas hydrates: their economic and environmental importance,Current Science, Vol. 86, No. 9.

Gupta, A. K. and Satapathy, S. K., (2000). Latest Miocene-Pleistocene abyssal benthic

foraminifera from west-central Indian Ocean DSDP Site 236: Paleoceanographic and

paleoclimatic inferences. Journal of Paleontological Socociety of India, 45: 33-48.

Gupta, A. K. and Thomas, E., (1999). Latest Miocene-Pleistocene productivity and deep-seaventilation in the northwestern Indian Ocean (DSDP Site 219). Paleoceanography, 14: 62-73.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 11/16

BENTHIC FORAMINIFERA AS EFFECTIVE TOOLS FOR EXPLORATION OF… 39

Gupta, A. K. and Thomas, E., (2003). Initiation of Northern Hemisphere glaciation andstrengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, easternequatorial Indian Ocean. Geology, 31: 47-50.

Gupta, A. K., Anderson, D. A. and Overpeck J. T., (2003). Abrupt changes in the Asiansouthwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature,

421: 354-356.

Gupta, A. K., Singh, R. K., Joseph, S., and Thomas, E., (2004). Indian Ocean high-productivityevent (10-8 Ma): Linked to global cooling or to the initiation of the Indian monsoons?

Geology, 32(9): 753-756.

Gupta, H. K., Subrahmanium, C., Rao, H.Y., Thakur, N.K., Rao, T.G., Ashalata, B., Khanna, R.,

Reddi, S.I. and Drolia, R.K., (1998). Analysis of single channel seismic data along thecontinental margins of India for gas hydrates. NGRI Technical Report No. NGRI-98-Lithos-221.

Harloff, J., Mackensen, A., (1997). Recent benthic foraminiferal associations and ecology of theScotia Sea and Argentine Basin. Marine Micropaleontology 31, 1-29.

Hayward, B. W., (2002). Late Pliocene to middle Pleistocene extinctions of deep-sea benthic

foraminifera (“Stilostomella extinction”) in the southwest Pacific. Journal of ForaminiferalResearch, v. 32, p. 274-307.

Hayward Bruce W., Neil Helen, Carter Rowan, Grenfell Hugh R. and Hayward Jessica J.,(2002). Factors influencing the distribution patterns of Recent deep-sea benthic foraminifera,

east of New Zealand, Southwest Pacific Ocean. Marine Micropaleontology, 46,139-176.

Hermelin, J. O. R. and Shimmield, G. B., (1990). The importance of the oxygen minimum zone

and sediment geochemistry on the distribution of recent benthic foraminifera from the nwindian ocean. Marine geology, 91: 1-29.

Hill, T.M., Kennett, J.P., and Spero, H.J. (2003). Foraminifera as indicators of methane-richenvironments: A study of modern methane seeps in Santa Barbara Channel, California. Mar.

Micropaleontol. 49, 123-138.

Hill, T. M., Kennett, J. P. and Valentine, D. L., (2004a). Isotopic evidence for the incorporation

of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge,Northeast Pacific. Geochimica et Cosmochimica Acta, v. 68, p. 4619-4627.

Hill, T. M., Kennett, J. P., and Spero, H. J., (2004b). High-resolution records of methane hydrate

dissociation: ODP Site 893, Santa Barbara Basin. Earth and Planetary Science Letters, v.223, p. 127-140.

Hinrichs, K., Hmelo, L. R., and Sylva, S. P., (2003). Molecular Fossil Record of Elevated

Methane Levels in Late Pleistocene Coastal Waters. Science, v. 299, p. 1214-1217.

Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., Lizarralde, D., and Leg 164Scientific Party, (1996). Methane hydrate and free gas on the Blake Ridge from vertical

seismic profiling. Science, v. 273, p. 1840-1843.

Holbrook, W. S., Lizarralde, D., Pecher, I. A., Gorman, A. R., Hackwith, K.L., Hornbach, M.,

and Saffer, D., (2002). Escape of methane gas through sediment waves in a large methanehydrate province. Geology, v. 30, p. 467-470.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 12/16

40 EXPLORATION GEOLOGY AND GEOINFORMATICS

 Hyndman R.D.,and E.E. Davis, (1992). A mechanism for the formation of methane hydrate and

seafloor bottom-simulating reflectors by vertical fluidexpulsion,J.Geophys.Res.,97(B5),7025–7041.

Jannink, N. T., Zachariasse, W. J. and Van der Zwaan, G. J., (1998). Living (rose Bengalstained) benthic foraminifera from the Pakistan continental margin (Northern Arabian Sea).

Deep-sea research-I, v. 45, p. 1483-1513.

Jia, G., Peng, P., Fang, D., (2002). Burial of different types of organic carbon in core 17,962from South China Sea since the Last Glacial period. Quaternary Research 58, 93–100.

Katz, M. E., Pak, D. K., Dickens, G. R., and Miller, K. G., (1999). The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science, v. 286, p.

1531-1533.Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J., (2000). Carbon Isotopic Evidence

for Methane Hydrate Instability During Quaternary Interstadials. Science, v. 288, p. 128-133.

Kuldeep, C., Singh, R.P. and Julka, A.C., (1998). Gas hydrate potential of Indian offshore area.Proc. 2nd Conference and Exposition on Petroleum Geophysics SPG-98, Chennai, 19-21 Jan

1998, p. 357-368.

Kvenvolden, K. A., (1988). Global Biogeochem. Cycles 2, 221–229.

Kvenvolden, K.A., (1993). Gas hydrates: geological perspective and global change. Rev.

Geophys., 31:173–187

Kvenvolden, K.A., (1998). A primer on the geological occurrence of gas hydrate. Geol.Soc,London, special publication, 137, 9-30.

Kvenvolden, K. A., Ginsburg, G. D. and Soloviev, V. A., Geo-Mar. Lett., (1993), 13, 32–40.Lorenson, T. D. and Shipboard Scientific Party, 2000

Loubere, P., (1996). The surface ocean productivity and bottom water oxygen signals in deepwater benthic foraminiferal assemblages. Marine Micropaleontology, 28: 247-261.

Loubere, P., and Fariduddin, M., (1999). Quantitative estimates of global patterns of surface

ocean biological productivity and its seasonal variation on time scales from centuries to

millennia. Global biogeochemical Cycles 13:115-133.

Luff, R., and Wallmann, K., (2003). Fluid flow, methane fluxes, carbonate precipitation andbiogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia

Margin: Numerical modeling and mass balances. Geochimica et Cosmochimica Acta, v. 67,no. 18, p. 3403-3421.

Mac Donald, G., (1990). The future of methane as an energy resource. Annul. Rev. Ener., 15,

53-83.

Mackensen, A., Schmiedl, G., Harloff, J., and Giese, M., (1995). Deep-sea foraminifera in theSouth Atlantic Ocean: Ecology and assemblage generation. Micropaleontology, 41: 342-358.

Malone, R. D., (1994). Gas hydrate geology and geography. International Conference on NaturalGas hydrates. Annals of the New York Academy of Science (eds Sloan, Happel and

Hantow), 715, 225-231.

Markl, R. G., Bryan, G. M., and Ewing, J. I., (1970). Structure of the Blake-Bahama OuterRidge. Journal of Geophysical Research, v. 75, p. 4539-4555.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 13/16

BENTHIC FORAMINIFERA AS EFFECTIVE TOOLS FOR EXPLORATION OF… 41

Muller, P. J., & Suess, E., (1979). Productivity, sedimentation rate and sedimentary organicmatter in the oceans, I. Organic carbon preservation. Deep-Sea Research, 26, 1347-1362.

Murray, J. W., (1991), Ecology and Palaeoecology of Benthic Foraminifera, Longman Scientificand Technical (John Wiley), 365 pp.

Panieri, G., (2005). Benthic foraminifera associated with a hydrocarbon seep in the Rockall

Trough (NE Atlantic). Geobios, v. 38, p. 247-255.

Paull, C.K., Ussler III, W. and Borowski, W.S., (1994). Sources of biogenic methane to form

marine gas hydrates; In situ production or upword migration? International Conference onNatural Gas hydrates. Annals of the New York Academy of Science (eds Sloan, Happel and

Hantow), 715, 392-409.

Paull, C.K., Matsumoto, R., Wallace, P.J., (1996). Proc. ODP, Init. Repts., 164: College Station,

TX (Ocean Drilling Program).

Paull, C. K., (1996). Ann. N.Y. Acad. Sci., 715, pp. 392–409.

Pedersen, T.F., (1983). Increased productivity in the eastern equatorial Pacific during the last

glacial maxima (19000 to 14000 yr B.P). Geology 11, 16-19.

Pedersen, T.F., Calvert, S.E., (1990). Anoxia vs. productivity: what controls the formation of 

organic carbon rich sediments and sedimentary rocks? Am. Assoc. Pet. Geol. 74, 454–466.

Rathburn, A. E., and Corliss, B. H., (1994). The ecology of living (stained) benthic foraminiferafrom the Sulu Sea. Paleoceanography, 9: 87-150.

Rathburn, A. E., Levin, L. A., Held, Z., and Lohmann, K. C., (2000). Benthic foraminiferaassociated with cold methane seeps on the northern California margin: Ecology and stableisotopic composition. Marine Micropaleontology, v. 38, p. 247-266.

Robinson, C. A., Bernhard, J. M., Levin, L. A., Mendoza, G. F. and Blanks, J. K., (2004).

Surficial Hydrocarbon Seep Infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and theGulf of Mexico (690-2240 m). Marine Ecology, v. 25, no. 4, p. 313-336.

Rodriguez, N.M., Paull, C.K., and Borowski, W.S., (2000). Zonation of authigenic carbonateswithin gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern

North America. In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc.ODP, Sci. Results, 164: College Station, TX (Ocean Drilling Program), 301-312.

Sarnthein, M., Winn, K., Zahn, R., (1987). Paleoproductivity of ocean upwelling and the effect

on atmospheric CO2 and climate change during deglaciation times. In: Berger,W.H.,Laberyrie, L.D. (Eds.), Abrupt Climate Change. Reidel, Dordrecht, pp. 311-337.

SAS Institute, Inc., (1988). SAS/STAT users’ guide: release 6.03 edition, carry, N.C., 1-1003.

Schmiedl, G., Mackensen, A. and Muller, P. J., (1997). Recent benthic foraminifera from the

eastern South Atlantic Ocean: Dependence on food supply and water masses. Marine

Micropaleontology, 32: 249-287.

Sen Gupta, B.K., Aharon, P., (1994). Benthic foraminifera of bathyal hydrocarbon vents of theGulf of Mexico: initial report on communities and stable isotopes. Geo-Marine Letters 14,

88–96.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 14/16

42 EXPLORATION GEOLOGY AND GEOINFORMATICS

 Sen Gupta, B. K., and Machain-Castillo, M. L., (1993). Benthic foraminifera in oxygen-poor

habitats. Marine Micropaleontology, 20:183-201.

Sen Gupta, B.K., Platon, E., Bernhard, J.M., and Aharon, P., (1997). Foraminiferal colonization

of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico Slope: Journalof Foraminiferal Research, 27: 292-300.

Shipboard Scientific Party, (1996). Principal results. In Mascle, J., Lohmann, G.P., Clift, P.D., et

al., Proc. ODP, Init. Repts., 159: College Station, TX (Ocean Drilling Program), 297-314.

Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., McMillen, K.J., Ladd, J.W. and

Worzel, J.L., (1979). Seismic reflection evidence for the widespread occurrence of possiblegas hydrate horizons on continental slopes and rises. AAPG, 63, 2204-2213.

Singh, R.K. and Gupta, A. K., (2004). Late Oligocene-Miocene paleoceanographic evolution of the southeastern Indian Ocean: Evidence from deep-sea benthic foraminifera (ODP Site 757).

Marine Micropaleontology, 51: 153-170.

Sloan, E.D., (1990). Clathrate Hydrates of Natural Gases: New York (Marcel Dekker).

Subrahmanium, C., Reddi, S. I., Thakur, N. K., Rao, T. G. and Sain, K., Gas hydrates – A

synoptic view. J. Geol. Soc. India, (1999), 52, 497–512.Thomas, E; Booth, l; Maslin, M; Shackleton, N.J; (1995). North-eastern Atlantic benthic

foraminifera during the last 45,000 years: productivity changes as seen from the bottom up

paleoceanography10, 545-562.

Thomas, E., Abramson, I., Varekamp, J. C., and Buchholtz ten Brink, M. R., (2004).Eutrophication of long island sound as traced by benthic foraminifera, Proceedings 6th

Biennual Long Island Sound Meeting (Groton, CT, October 2002) pg 87-91.

Torres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., and deAngelis, M. A., (2003). Is methane venting at the seafloor recorded by δ13C of benthic

foraminifera shells? Paleoceanography, v. 18, no. 3, 1062. doi: 10.1029/2002PA000824.

Van Dover, C. L., Aharon, P., Bernhard, J. M., Caylor, E., Doerries, M., Flickinger, W.,Gilhooly, W., Goffredi, S. K., Knick, K. E., Macko, S. A., Rapoport, S., Raulfs, E. C.,

Ruppel, C., Salerno, J. L., Seitz, R. D., Sen Gupta, B. K., Shank, T., Turnipseed, M.,

Vrijenhoek, R., (2003). Blake Ridge methane seeps: characterization of a soft-sediment,chemosynthetically based ecosystem. Deep-Sea Research, Part-I, v. 50, p. 281-300.

Veerayya, M., Karisiddaiah, S.M., Vora, K.W., Wagle, B.G. and Almeida, F., (1998). Detection

of gas charged sediments and gas hydrate horizons along the western continental margins of India. In: Henriet, J.P., Mienert, J. (Eds), Gas hydrates: relevance to world margin stability

and climate change. Geological Society of London, Special Publication, v. 137, p. 239-253.

Wefer G, Heinze P. M. and Berger W. H., (1994). Clues to ancient methane release, Nature, 369:282.

Woodruff, F., (1985). Changes in Miocene deep-sea benthic foraminiferal distribution in the

Pacific Ocean: Relationship to paleoceanography. In: Kennett, J.P. (Ed.), The Miocene

Ocean: Paleoceanography and Biogeography. Geol. Soc. Am. Mem. 163, pp. 131-175.

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 15/16

BENTHIC FORAMINIFERA AS EFFECTIVE TOOLS FOR EXPLORATION OF… 43

APPENDIX

Appendix 1. List of Benthic Foraminiferal Species and their Inferred Environments.

Genus 

Environment  

References 

Bolivina  d’Orbigny, 1839  Opportunists, cosmopolitan, 

infaunal taxon, associated with 

the OMZ, found in phytodetritus 

rich dysaerobic environments. 

Sen  Gupta  and 

Machain‐Castillo,  1993; 

Gupta  and  Satapathy, 

2000; Gooday, 2003 Cassidulina  d’Orbigny, 1826  C. laevigata related to cold 

waters, high seasonality 

environment and enhanced 

organic carbon influx. 

Murray,  1991;  Loubere 

and  Fariduddin,  1999; 

Schmiedl et al., 1997 Chilostomella  Reus, 1849  Methane‐loving  taxa  found  in 

hydrocarbon‐seep bacterial mats 

and hydrocarbon vents and seep 

zone. 

Sen Gupta, and Aharon, 

1994,  Wefer,  et  al., 

1994;  Rathburn,  et  al., 

2000,  Hill,  et  al.,  2003, 

Torres, et al., 2003, Sen 

Gupta, et al., 1997, Hill, 

et al., 2004. Cibicides  Montfort, 1808  Epifaunal,  well‐aerated  bottom 

waters and low organic flux.  Hayward  et  al,  2002; 

Fariduddin and Loubere, 

1997;  Schmiedl,  et  al., 

1997 Eggerella  Cushman, 1935  Eggerella  advena  is  related  to 

eutrophication  and  increased 

nutrient  supply;  indicative  of  

pollution;  found  in  semi‐open 

inlet  environments  with  silt 

substrate  and  reflect 

intermediate  flux  of   relatively 

degraded organic matter. 

Thomas,  et  al,  2004; 

Akira  Tsujimoto  et  al., 

2006;  Clark  ,1971; 

Annin,  2001;  Gupta 

1997 

Epistominella  Husezima  and 

Maruhasi, 1944  Opportunistically exploit 

phytodetritus (‘phytodetritus 

species’). Gooday ,1993 

Gavelinopsis  Hofker, 1951  Well‐oxygenated bottom water, influenced by lateral input of  

organic particulate matter 

transported by bottom current 

Hayward, 2002 

Globobulimina  Cushman, 1927  Infaunal, associated with high 

food supply, and refractory 

organic carbon input. Gooday, 2003; 

Fontanier et al., 2002 

8/9/2019 Benthic foraminifera as effective tools for exploration of Gas hydrate rich zones at Blake Ridge, Northwest Atlantic …

http://slidepdf.com/reader/full/benthic-foraminifera-as-effective-tools-for-exploration-of-gas-hydrate-rich 16/16

44 EXPLORATION GEOLOGY AND GEOINFORMATICS

 

Genus  Environment   References Globocassidulina  Voloshinova, 

1960 

Infaunal, year round high 

nutrient supply.  Rathburn and 

Corliss, 1994; 

Mackensen et al., 

1995 Gyroidinoides  Brotzen, 1942  G. cibaoensis reported from 

low oxygenated deep waters 

of  the northwestern Indian 

Ocean having moderate flux of  

organic matter. 

Gupta, and Thomas, 

1999 

Noninella  Cushman, 

1926 

Infaunal species N. auris prefer anoxic, H2S‐containing 

sediments, feed on methane 

oxidizing bacteria and could be 

an indicator

 of 

 biogenic

 

methane below the sediment 

surface. 

Wefer et al. 1994 

Robulus  de Montfort, 

1808 

Marked species of  upper part 

of  Oxygen Minimum Zone 

(OMZ) and indicative of  high 

organic carbon flux and low 

oxygen content. 

Hermelin and 

Shimmield, 1990 

Trifarina  Cushman, 

1923 

T. angulosa is infaunal, free‐

living, related to low 

temperatures, low

 salinity

 and

 

high sand content, variable 

organic flux rates, outer shelf  

to upper slope, well‐

oxygenated environments. 

Hayward et al. 2002; 

Murray, 1991, 

Gupta, 1997;

 

Mackensen, et al., 1995; Harloff  and Mackensen, 1997 

Uvigerina  d’Orbigny, 

1826 

U.   peregrina  is  shallow 

infaunal,  thriving  underneath 

OMZ, associated with high and 

sustained  flux  of   organic 

matter. In the Cascadia Margin 

U.   peregrina  was 

found 

attracted to rich bacterial food 

source  at  methane  seeps.  U.  proboscidea  blooms  in  high 

productivity  regions  of   the 

Indian,  Atlantic  and  Pacific 

Oceans  where  productivity  is 

high  throughout  the  year  and 

seasonality of   the  food supply 

is low or absent. 

Sen Gupta and 

Machain‐Castillo, 

1993; Altenbach et 

al., 1999, Torres et 

al., 2003, Gupta and 

Thomas, 1999;

 

Almogi‐Labin et al., 

2000, Thomas et al., 

1995, Woodruff, 

1985