bending and transverse tension

Upload: asghar-hussain-shah

Post on 02-Jun-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 Bending and Transverse Tension

    1/23

    BENDING AND

    TRANSVERSE SHEAR

  • 8/10/2019 Bending and Transverse Tension

    2/23

    TRANSVERSE SHEAR OF BEAMS

    definition

    side panels of a beam element are subjected to shearing forceand a perpendicular vector component of bending moment

    at the same instance.

    y

    xz

    MxVy

    2/23

    y

    xz

    dz lC

    C

    Vy

    MxMy

    Assumptions:

    straight beam axis

    ???

    homogeneous material, oo!e"s la# applies

    $ constant cross section:A%z& 'A, Sx%z& ' Sx,Ix%z& 'Ixetc.

  • 8/10/2019 Bending and Transverse Tension

    3/23

    3/23

    Reminder

    stress formula for simple uniaxial bending

    simple shear

    complementarit( of shear stresses

    z

    dz

    yzzy =

    Mx

    I xy

    Mx

    Vy

    y

    xzVy

    z zy=Vy

    A

    uniform stress distribution

    %rough approximation onl(&:

    yzzy

    xzy

    zy' yz

    TRANSVERSE SHEAR OF BEAMS

  • 8/10/2019 Bending and Transverse Tension

    4/23

    )/23

    *ac!groundK

    yz

    zy

    z

    yz: +eroat %unloaded& external surfaces

    complementarit(: zy, corneris also

    !

    cross sections do not remain plane %???...&

    zy =Mx

    I xy holds just approximatel(

    yz- zy-

    yz: longitudinal shear

    zy 'V

    y

    A, but zymax is even larger

    TRANSVERSE SHEAR OF BEAMS

  • 8/10/2019 Bending and Transverse Tension

    5/23

    /23

    *ac!ground

    hear stresses #ithin the plane of the cross sectionat the boundar( are tangential

    K

    C

    dAz

    z'

    t

    tz-

    zt-

    0 distribution of both directions and magnitudes ofstresses calculated from simple shear are contradictor(

    zy =Mx

    I xy : can be !ept altogether,

    zy%y& % 0zt& ???

    so"id sections thin#$a""ed sections

    TRANSVERSE SHEAR OF BEAMS

  • 8/10/2019 Bending and Transverse Tension

    6/23

    1/23

    45:

    hear stresses parallel to the shearing force in solid sections

    hear stresses perpendicular to the shearing force in solid sections

    6ongitudinal shear of a finite segment of beams #ith solid sections

    hear stresses in thin7#alled cross sections loaded in their s(mmetr( axis

    hear stresses in thin7#alled cross sections loaded orthogonall( to their s(mmetr(

    axis, the concept of shear centre

    TRANSVERSE SHEAR OF BEAMS

  • 8/10/2019 Bending and Transverse Tension

    7/23

    8/23

    9urther assumptions:

    s(mmetric cross section, V' Vyis directed along the s(mmetr( axis,

    M'Mx%bending moment vector is perpendicular to the shearing bending is uniaxial&,

    normal stresses arise onl( from bending ,

    shear stresses arise onl( from shearing.

    zy =MxI x y

    ANA%&SIS OF THE BEAM E%EMENT

    GEOMETRI' e;uations

    C

    dx

    $ rig. c. s.: x= y= xy=,

    z%y,z& = y = x%z&ydx%z&

    dz

    zx%x,y,z& =

    du%x,y,z&

    dz

    zy%y,z& =dv%y,z&

    dz

    ne more assumption:

    vertical displacement v%arising

    strictl( from shear& depends onl( ony

    but not onx%that is, zyis constant

    #ithin a given hori+ontal section&

    %;uasi& plane cross sections %for bending&:

    TRANSVERSE SHEAR OF SO%ID BEAMS

  • 8/10/2019 Bending and Transverse Tension

    8/23

  • 8/10/2019 Bending and Transverse Tension

    9/23

    B/23

    STATI'A% e;uations for a section of the beam e"ement

    C

    z

    y

    xy

    z

    Mx$ dMx

    dz

    %%y&

    A'

    Vy$ dVy

    MxVy

    yy

    &'$d&'&'$d&' &'

    d

    dz

    d

    d z%y& dA' yz%y&%%y& dzA'

    "#z

    : %&'$d&'&d&'' d&''d

    the order of differentiationand integration is reversible:

    dA' yz%y&%%y&A'dz%y&

    dz

    dA' yz%y&%%y&A'

    dMxdz

    y

    Ix

    Vy%z& 'dM

    x%z&

    dz

    z%y& ' yMx%z&

    Ix

    ydA' yz%y&%%y&A'

    Vy

    Ix

    Sx' : first moment of the sectionA'about the central axisx

    the shear formula:

    yzy =zyy=$y Sx

    ' y

    Ix %y

    Vy

    zy * !

    TRANSVERSE SHEAR OF SO%ID BEAMS

  • 8/10/2019 Bending and Transverse Tension

    10/23

    A'

    C/23

    zy * !

    CMx

    Vy

    zy=$y Sx

    '

    Ix %

    Vy

    A'

    zy

    C

    MxVy

    zy y =$y Sx

    ' y

    Ix %

    Vy

    zy

    for sections #ith side#alls parallel to Vy%%is constant&: zy,max: at the maximum of S'x,

    i. e., at the height of the centro#(

    zy y =$y Sx

    ' y

    Ix % y

    Vy

    for a generic cross sectionzy,max: at the maximum of S'x/%

    TRANSVERSE SHEAR OF SO%ID BEAMS

  • 8/10/2019 Bending and Transverse Tension

    11/23

    CC/23

    zy + zx * !

    SMx

    Vy

    zy=$y Sx

    '

    Ix %

    Vy

    A'

    zy

    zx$

    t

    )

    **

    t

    zx,max= zytan

    zy

    max= zt

    max=zt=zx , max

    2zy2

    max=

    zy

    cos

    maximum shear stress

    at the t#o boundaries:

    t

    zy

    *zx*

    ze*

    ze*=zx

    *2zy* 2

    resultant of theshear stress at a point*:

    *

    TRANSVERSE SHEAR OF SO%ID BEAMS

  • 8/10/2019 Bending and Transverse Tension

    12/23

    C2/23

    zy + H* ! ,ca"c-"ation of the res-"tant "ongit-dina" shear.

    ""

    TRANSVERSE SHEAR OF SO%ID BEAMS

  • 8/10/2019 Bending and Transverse Tension

    13/23

    %y&

    C3/23

    zy + H* !

    yz=zy=$y Sx

    '

    I x %

    Vy

    C

    z

    y

    x

    lA'

    dz

    d

    Vyz

    %%y&

    l%y& ' d%y,z& ' yz%y,z&%%y& dzzC

    z2

    d%y,z& 'yz%y,z&%%y& dz

    it is alread( !no#n:

    KC

    K2

    moreover,yis fixed:

    zC

    z2

    l' %dzzC

    z2Vy%z& Sx'

    Ix%

    l' Vy%z& dzzC

    z2Sx'

    Ix AV: area of the shearforce diagram atlength l'z2DzCl' AV

    Sx'

    Ix

    TRANSVERSE SHEAR OF SO%ID BEAMS

    ,ca"c-"ation of the res-"tant "ongit-dina" shear.

  • 8/10/2019 Bending and Transverse Tension

    14/23

    C)/23

    $ith shearing force /ara""e" to $ith shearing force /er/endic-"ar tothe s0mmetr0 a1is the s0mmetr0 a1is

    Vy Vy

    MxMx

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    9urther assumptions:

    M'Mx%bending moment vector is perpendicular to the shearing bending is uniaxial&,

    normal stresses arise onl( from bending ,

    shear stresses arise onl( from shearing.

    shear stresses are parallel to the #all of the section,

    shear stresses in a section perpendicular to the #all are constant.

    zy =

    Mx

    I x y

  • 8/10/2019 Bending and Transverse Tension

    15/23

    C/23

    z%y,z& '=z%y,z&

    zt%t,z& ' !=zt%t,z&

    EF

    >tzEF >zt z

    ('

    EF

    tzEF zt @z

    ) '

    $ rig. c. s.: x=y=xy=,

    z%y,z& = y = x%z&ydx%z&

    dz

    zn%n,t,z& ' ' den%n,t,z&

    dz

    zt%t,z& = det%y,z&dz

    "#x: zx%x,y,z& dA'Vx%z& '

    "#y: zy%y,z& dA' Vy%z&

    M#z: %zx%x,y,z&y$

    zy%y,z&x& dA' $%z& '

    A%z&

    A%z&

    A%z&

    M#x: z%x,y,z&ydA'Mx%z&A%z&

    $ith shearing force /ara""e" to the s0mmetr0 a1is

    tn

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    GEOMETRI' e;uationsSTATI'A% e;uations

    MATERIA% e;uations

    automaticall(satisfieddue to

    s(mmetr(

    zyis constant in a

    hori+ontal plane

  • 8/10/2019 Bending and Transverse Tension

    16/23

    C1/23

    Vy

    Mx

    +

    +dz

    x+Dx

    v

    v

    v

    A'

    z

    z

    xz

    z$ dz

    x

    y

    "#z: dz%y& dA' xz%x,y& vdzA'

    dA' xz%x,y& vA'

    dz%y&

    dz

    dA' xz%x,y& vA'dM

    xdz

    y

    Ix

    ydA' xz%x,y& vA'

    Vy

    Ix

    e;uilibrium of #idth +Dx:

    Sx' : as before

    approximation: the centroid of area of#idth +Dxis at a height of /2 %vGG &

    xzx=zx x=$y Sx

    ' x

    Ix v

    Vy

    zx/2x=

    $y +x v/2

    Ix v =

    $y +x

    2Ix

    Vy Vy

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    $ith shearing force /ara""e" to the s0mmetr0 a1is

  • 8/10/2019 Bending and Transverse Tension

    17/23

    C8/23

    zx/2x=

    $y +x v/2

    Ix v =

    $y +x

    2Ix

    Vy Vy

    Vy

    flanges: hori+ontal shear stresses onl($

    $

    zxmax=

    $y +

    2

    Ix

    Vy

    zx

    max

    zxmax

    Mxzt $

    zymax

    #eb: vertical shear stresses onl(

    zymax=$y Sx

    ' max

    Ix vVy

    %the shear formula&zy y =$y Sx

    ' y

    Ix % y

    Vy

    maximum stressat the centroid:

    stress at the top orbottom of the #eb:

    zy-

    $y 2+v /2

    Ix v =

    $y +

    Ix

    $y

    zx

    max

    zy.

    $y 2+v /2

    Ix v =

    $y +

    Ix

    Vy Vy shear f"o$

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    $ith shearing force /ara""e" to the s0mmetr0 a1is

  • 8/10/2019 Bending and Transverse Tension

    18/23

    CtzEF >zt z

    ('

    EF

    tzEF zt @z

    ) '

    x=

    y=

    xy=,

    z%y,z& = y = x%z&ydx%z&

    dz

    zn%n,t,z& ' ' den%n,t,z&

    dz

    zt%t,z& = det%y,z&dz

    "#x: zx%x,y,z& dA'Vx%z& '

    "#y: zy%y,z& dA' Vy%z&

    M#z: %zx%x,y,z&y$

    zy%y,z&x& dA' $%z& ' !

    A%z&

    A%z&

    A%z&

    M#x: z%x,y,z&ydA'Mx%z&A%z&

    tn

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    GEOMETRI' e;uationsSTATI'A% e;uations

    MATERIA% e;uations

    $ rig. c. s.:

    satisfied due tos(mmetr(

    zyis constant in a

    hori+ontal plane

    $ith shearing force /er/endic-"ar to the s0mmetr0 a1is

  • 8/10/2019 Bending and Transverse Tension

    19/23

    CB/23

    Vy

    Mx

    z

    x

    ydz

    x+Dx

    z

    xzz$ dz

    xzx=zx x=$y Sx

    ' x

    Ix v

    Vy

    zx/2x=

    $y +x v/2

    Ix v =

    $y +x

    2Ix

    Vy Vy

    %calculation of stresses: as in sectionss(mmetric abouty&

    H#isting D #h(?

    Vy

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    $ith shearing force /er/endic-"ar to the s0mmetr0 a1is

  • 8/10/2019 Bending and Transverse Tension

    20/23

    /=$y +

    2

    2v

    )Ix$'

    Vy

    2/23

    Vy

    $zxmax

    Mxzt

    $

    zymax

    zxmax

    zxmax=$

    y

    +

    2Ix

    Vy

    zy.

    $y +v /2

    Ix v =

    $y +

    2Ix

    Vy Vy

    /

    /

    0' Vy

    /=zx

    max+v

    2=

    $y +2

    v

    )Ix/

    Vy

    C

    0' Vy

    C,*.

    "' Vy

    C,*. CS

    e

    Vy

    e=+

    2

    2v

    )Ix

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    $ith shearing force /er/endic-"ar to the s0mmetr0 a1is

    H#isting D #h(?

  • 8/10/2019 Bending and Transverse Tension

    21/23

    zy.

    $y +v /2

    Ix v =

    $y +

    2Ix

    Vy Vy

    2C/23

    CS: the shear centre,vertical force"passing through

    this point causes no t.#%t#n-

    Vy

    $zxmax

    Mxzt

    $

    zymax

    zxmax

    zxmax=$

    y

    +

    2Ix

    Vy

    "

    e

    CS

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

    $ith shearing force /er/endic-"ar to the s0mmetr0 a1is

    Io t#isting J

    /=$y +

    2

    2v

    )Ix$'

    Vy

    /

    /

    0' Vy

    /=zx

    max+v

    2=

    $y +2

    v

    )Ix/

    Vy

    C

    0' Vy

    C,*.

    "' Vy

    C,*. CS

    e e=+

    2

    2v

    )Ix

  • 8/10/2019 Bending and Transverse Tension

    22/23

    C

    22/23

    So far333

    $

    zt

    $

    ,*.C

    ,*.! "CCS

    e xS "' Vy

    $'" %e$xS&

    Mx 4 Vyand Ttogether$ere considered3

    To ha5eMx and Vyon"04 s-/erim/ose 6Ton it ,7.

    C

    1$,*.

    C

    "' Vy

    C

    ,*.Vy

    Mx

    TRANSVERSE SHEAR OF THIN#2A%%ED BEAMS

  • 8/10/2019 Bending and Transverse Tension

    23/23

    2C/2C

    'riteria

    2