benchmarking orthology in eukaryotes 12-01-2004 nijmegen tim hulsen

31
Benchmarking Orthology in Eukaryotes 12-01-2004 Nijmegen Tim Hulsen

Post on 19-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Benchmarking Orthology in Eukaryotes

12-01-2004 NijmegenTim Hulsen

Summary

• (1) An introduction to orthology• (2) Orthology determination methods• (3) Benchmarking:

– co-expression– conservation of co-expression– SwissProt name

• (4) Conclusions

An introduction to orthology

(from http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html)

Orthology determination methods

• Orthology databases/methods:• COG/KOG• Inparanoid• OrthoMCL

• Inclusiveness:• one-to-one/one-to-many/many-to-many• organisms

• Best bidirectional hit/Phylogenetic trees

Benchmarking orthology

• Quality of orthology difficult to test; no golden standard

• Orthologs should have highly similar functions

• Measuring conservation of function:– functional annotation– co-expression– domain structure

Benchmarked orthology determination methods

• BBH: Best Bidirectional Hit• KOG: euKaryotic Orthologous Groups• INP: INPARANOID• MCL: OrthoMCL• Z1H: All pairs with Z >= 100• COM: Comics Phylogenetic Tree

Method• EQN: Equal SwissProt Names

Data set used

• ‘Protein World’: all proteins in all available (SPTREMBL) proteomes compared to each other

• Smith-Waterman with Z-value statistics:100 randomized shuffles to test significance of SW score

O. MFTGQEYHSV

shuffle

1. GQHMSVFTEY2. YMSHQFTVGEetc.

# seqs

SW score

rnd ori: 5*SD Z = 5

Data set used

• Z-value compensates for:– bias in amino acid composition– sequence length

• Proteomes used:– Human: 28,508 proteins– Mouse: 20,877 proteins

595,161,516 pairs

BBH method

• Easiest method: ‘best bidirectional hit’• Human protein (1) SW best hit in

mouse (2)• Mouse protein (2) SW best hit in

human (3)• If 3 equals 1, the human and mouse

protein are considered to be orthologs• 12,817 human-mouse orthologous

pairs (12,817 human, 12,817 mouse proteins)

KOG method• KOG: euKaryotic Orthologous Groups• Eukaryotic version of COG, Clusters

of Orthologous Groups• COG method:

– All-vs-all seq. comparison (BLAST)

– Detect and collapse obvious paralogs

Sp1-Sp1 Sp2-Sp2 Sp1-Sp2

EHs-Hs < EBBH paralogsEMm-Mm < EBBH paralogs

etc. for other species determine BBHs

KOG method– Detect triangles of best hits

– Merge triangles with a common side to form COGs

– Case-by-case ‘manual’ analysis, examination of large COGs (might be split up)

KOG method

• KOG method mainly the same as COG method; special attention for eukaryotic multidomain structure

• Group orthologies: many-to-many• Cognitor: assign a KOG to each protein

(mouse not yet in KOG)• 810,697 human-mouse orthologous

pairs (20,478 human, 15,640 mouse proteins)

Tatusov et al., “The COG database: an updated version includes eukaryotes”, BMC Bioinformatics. 2003 Sep 11;4(1):41

INP method• All-vs-all followed by a

number of extra steps to add ‘in-paralogs’ many-to-many relations possible

• 54,553 human-mouse orthologous pairs (19,504 human, 17,030 mouse proteins)

Remm et al., “Automatic clustering of orthologs and in-paralogs from pairwise species comparisons”, J Mol Biol. 2001 Dec 14; 314(5):1041-52

Dataset A Dataset B Outgroup dataset C

1) Find all possible pairwise 3) Find all possible pairwisesimilarity scores between similarity scores betweendatasets A-A, B-B, A-B and B-A datasets A-C and B-Cthat score higher than cutoff that score higher than cutoff

2) Find two-way best hitsand mark them aspotential orthologs 4) Delete potential orthologs if

their pairwise score is lowerthan their score against anyoutgroup sequence

5) Add additional orthologs(in-paralogs) for eachorthologous sequence pair

6) Add confidence valuesfor all in-paralogs

7) Resolve overlappinggroups of orthologs

8) Add bootstrap-basedconfidence valuesfor all groups of orthologs

Output list of orthologs

MCL method• All-vs-all BLASTP

determine orthologs + ‘recent’ paralogs use Markov clustering to determine ortholog groups

• 7,322 human-mouse orthologous pairs (human 6,332, mouse 6,115 proteins)

Li et al., “OrthoMCL: identification of ortholog groups for eukaryotic genomes”, Genome Res. 2003 Sep;13(9):2178-89

Z1H method

• All human-mouse pairs with Z >= 100 in Protein World set are considered to be orthologs

• 290,176 human-mouse orthologous pairs (19,055 human, 16,149 mouse proteins)

COM method Human

All 9 eukaryotic proteomes in Protein World

Z>20, RH>0.5*QL

24,263 groups

PHYLOME

SELECTION OF HOMOLOGS

ALIGNMENTS AND TREES

PROTEOME

PROTEOMES

TREE SCANNING

LIST Hs-Mm:85,848 pairsHs-Dm:55,934 pairsetc.

COM method

Example: BMP6 (Bone Morphogenetic Protein 6) 5 Hs-Mm orthologous relations defined

EQN method

• Consider all Hs-Mm pairs with equal SwissProt names to be orthologous

• e.g. ANDR_HUMANANDR_MOUSE• Used as benchmark later on• 5,214 Hs-Mm orthologous pairs

(5,214 human, 5,214 mouse proteins)

Benchmarkingthrough co-expression

• Comparison of expression profiles of each orthologous gene pair

• Using GeneLogic Expressor data set:

organism samples fragments

tissue categories

SNOMED tissue categories

human 3269 44792 115 15

mouse 859 36701 25 12

Expression tissue categories

HUMAN MOUSE

1 Blood vessel 1 Blood vessel

2 Cardiovascular system

2 Cardiovascular system

3 Digestive organs

3 Digestive organs

4 Digestive system

4 Digestive system

5 Endocrine gland -

6 Female genital system

5 Female genital system

7 Hematopoietic system

6 Hematopoietic system

8 Integumentary system

7 Integumentary system

HUMAN MOUSE

9 Male genital system

8 Male genital system

10 Musculoskeletal system

9 Musculoskeletal system

11 Nervous system

10 Nervous system

12 Product of conception

-

13 Respiratory system

11 Respiratory system

14 Topographic region

-

15 Urinary tract 12 Urinary tract

Co-expression calculation

• Calculation of the correlation coefficient: Nxy – (x)(y)

r = ---------------------------- sqrt( (Nx2 - (x)2)(Ny2 – (y)2))

• Measured over the 12 corresponding SNOMED tissue categories

Co-expression example #1

High correlation: 0.914167

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12

Human gene 1: 206316_s_at Mouse gene 1: 162926_at

Co-expression example #2

Low correlation: -0.935731

0

25

50

75

100

125

150

175

200

225

1 2 3 4 5 6 7 8 9 10 11 12

Human gene 2: 205428_s_at Mouse gene 2: 97166_at

Benchmarking throughco-expression

-1,00

-0,80

-0,60

-0,40

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Average proteome size

Ave

rag

e c

orr

ela

tion

BBH COM EQN INP KOG MCL Z1H

-

+

Benchmarking through conservation of co-

expressionHumanGene A Gene B

MouseGene A’ Gene B’

Co-expression = Cab (-1<=corr.<=1)

Ca’b’ >= Cab

Increases probability that A and B are involved in the same process

(Co-expression calculated over 115 tissues in human, 25 in mouse)

All-vs-all:Human: 40,678 chip fragmentsMouse: 29,910 chip fragments

Benchmarking through conservation of co-

expression• Gene Ontology (GO) database:

hierarchical system of function and location descriptions

• Orthologs are in same functional category when they are in the same 4th level GO

Biological Process class

Benchmarking through conservation of co-

expression

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Co-expression (Correlation)

Fra

ctio

n S

am

e G

O B

iol.

Pro

cess

(4

th L

eve

l)

BBH COM EQN INP KOG MCL Z1H

Benchmarking through SwissProt name

• How many of the predicted orthologous relations have equal SwissProt names (EQN set in other benchmarks)

• + reliable because checked by hand• - assumes only one-to-one

relationships are possible

Benchmarking through SwissProt name

(ALL: if all possible human-mouse pairs (or random fraction) would be orthologs)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

Average proteome size

Fra

cti

on

of

EQ

N s

et

co

ve

red

BBH COM EQN INP KOG MCL Z1H ALL

Conclusions• Hard to point out the ‘best’ orthology

determination method• In most cases: less=better,

more=worse• Method that should be used depends

on research question: do you need few reliable orthologies or many less reliable orthologies?

• Future directions: look at conservation of domain structure as a benchmark

Credits

• Martijn Huynen• Peter Groenen• Comics Group• Gert Vriend• Rest of CMBI• Organon Bioinf. Group