bec-bcs crossover in njl model; towards qcd phase diagram ... · bcs-bec crossover zchiral field...

49
18 Mar 2010 NFQCD10 BEC-BCS crossover in NJL model; towards QCD phase diagram & role of fluctuations Hiroaki Abuki (Tokyo Science University) Many thanks to: Gordon Baym, Tetsuo Hatsuda, Naoki Yamamoto & Tomas Brauner

Upload: others

Post on 18-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 18 Mar 2010 NFQCD10

    BEC-BCS crossover in NJL model; towards QCD phase diagram & role of fluctuationsHiroaki Abuki

    (Tokyo Science University)

    Many thanks to:

    Gordon Baym, Tetsuo Hatsuda, Naoki Yamamoto& Tomas Brauner

  • Plan

    BEC-BCS crossover with axial anomaly

    Notion of BEC-BCS crossoverIn general relativistic systems?Axial anomaly induced BEC-BCS transition(1)

    How can we deal with fluctuations?

    1/N expansion vs. Nozieres-Schmitt-RinkApplied to Nonrelativistic Fermi gas(2)

    CFL/2SC models of color superconductor(2)

    (1) HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408(2) HA, T. Brauner, PRD78, 125010 (2008)

  • Plan

    BEC-BCS crossover with axial anomaly

    Notion of BEC-BCS crossoverIn general relativistic systems?Axial anomaly induced BEC-BCS transition(1)

    How can we deal with fluctuations?

    1/N expansion vs. Nozieres-Schmitt-RinkApplied to Nonrelativistic Fermi gas(2)

    CFL/2SC models of color superconductor(2)

    (1) HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408(2) HA, T. Brauner, PRD78, 125010 (2008)

  • What is the BEC-BCS crossover?

    (1) D. M. Eagles, Phys. Rev. 186, 456 (1969) (2) A. J. Leggett, J. Phys. C 41, 7 (1980)(3) Nozières and Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

  • What is the BEC-BCS crossover?

    1F sk a

    c

    F

    TE

    0Weak Strong

    BCS

    depends exponentiallyon coupling

    / 2 | |/ ~ π− F sk ac FT E e

    1957

    1924

    Naïve application of BCSleads power law blow up

    ( )naive

    2 2 2 2

    1/ ~log 2 /c F F s F s

    T Ek a k a

    Eagles (1969), Leggett (1

    980)

    Nozieres & Schmitt-Rink

    (1985) …

    BEC

    “universal value”not depending

    on coupling

    / ~ 0.2314..c FT E/ 1dξ

    1/3d N −=( ) 1/32 / 2

    2T Bd N

    mTπλ −= ≈ =

    1/3 2 /3,F Fk n E n∝ ∝ Unitarity limit

  • Crossover observed in UCA

    Note: interaction is tunable via Magnetic field!K40: Regal et al., Nature 424, 47 (03), PRL92 (04): JILA groupLi6: Strecker et al., PRL91 (03): Rice group; Zwierlen et al., PRL91 (03): MIT group; Chin et al., Science 305, 1128 (04): Austrian group

    K40 (JILA)

    Relevant scales:

    Tc ∼ 100nKTF ∼ 1µKρ ∼ 1014cm-3λ ∼ 100nm

    N0/N

    BCSBEC

  • In general relativistic systems?

    What is a relativistic matter?

    kF/mc∼λc/d (:=relativity parameter)

    ∼10−9 in cold atom systems∼10−7 in 3He∼10−2 nuclear matter (deuteron gas;

    Lombardo, Nozieres, Schuck, Schulze, Sedrakian,PRC64, 064314 (2001)

    In cold quark matter with CSC

    kF/mc 100 relativistic enough!

    .

  • A schematic phase diagram of QCD

    ∼300milion tons/cm3

    CP

    χSBCSC

    µq

    T

    ∼300MeV

    mq ≠ 0

    100

    101

    102

    103

    104

    105

    ξ c/d

    q

    103 104 105 106

    qc d/ξ

    Cooper pair sizevs.

    inter-quark spacing

    HA, T. Hatsuda, K. Itakura, PRD 65 (02)See also M. Matsuzaki, PRD62 (00) for pair size

    ]MeV[μ

    BEC-like?

    BCS-like

  • NJL model with axial anomaly (1)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    〈φ〉≠0〈d〉=0 〈φ〉≠0

    〈d〉≠0

    〈φ〉=0〈d〉=0

  • NJL model with axial anomaly (2)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Model setup (chiral limit)

    (6)(4)0( )q i q LLL µγ= + +∂ +

    ( )( )

    (4)

    (4)

    8 tr

    2 tr R Rd L L

    G

    H d d d d

    L

    L

    χ φ φ+

    + +

    ⎧⎪ =⎪⎪⎨⎪ = +⎪⎪⎩

    Chiral fields: Diquark fields:

    L

    H

    L

    L L

    L

    G

    L

    R R

    ( )ij Rj Liq qφ = ( )a abc b c

    L ijk Lj Lkid q Cqε ε=

    For general construction of GL free energy (→ Talk: T. Hatsuda, 3/10)see also Yamamoto, Tachibana, Baym & T.H., PRL97 (06)

    (r,g,b)(u,d,s)

  • NJL model with axial anomaly (3)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Model setup (chiral limit)

    KMT term for U(1)A breaking

    K responsible for η’ mass decoupling

    (6)(4)0( )q i q LLL µγ= +∂ + +

    ( )

    ( )KMT

    KMT'

    (6)

    (6)

    8 det h.c.

    tr' h.c.R LK

    L

    L d d

    K φ

    φ+

    ⎧⎪ = − +⎪⎪⎨⎪ = +⎪⎪⎩ K

    uL uR

    sL sR

    dL dR

    /36 ( ) ( )

    (1) ( ( 1) )nA L R L R

    U Z q q±→ → −

  • NJL model with axial anomaly (4)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Favorable mean fields

    Chiral: 〈φij〉 = δij (χ/2) (V-singlet, 0+)

    CFL: 〈dLaj〉 = −−〈dRaj〉 = δaj (s/2)(for K’ >0 ) (V+C-singlet, 0+)

    Spontaneous symmetry breaking in CFLAlford, Rajagopal, Wilczek, NPB99

    (3) (3) (3) (1) (1)C L R B ASU SU SU U U× × × ×

    2(3)L R CSU Z+ +→ × Z6

  • NJL model with axial anomaly (5)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Dirac/Mojorana mass formations

    .

    Lots of work done:

    (with variety of CSC phases)Ruester et al, (05)Blaschke et al., PRD72 (05)

    (+vector interaction)Zhang, Fukushima, Kunihiro, PRD79 (09)Zhang, Kunihiro, PRD80 (09)

    etc…See for a review:Buballa, Phys. Rept. 407 (05)

  • NJL model with axial anomaly (6)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    〈φ〉=0〈d〉=0

    Pisarski-Wilczek (‘84)

    〈φ〉≠0〈d〉=0 〈φ〉=0

    〈d〉≠0

    K’=0 (no interplay b/w chiral and super)

    (G,K,H):M. Buballa, Phys. Rept. 407 (05)

  • NJL model with axial anomaly (7)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    〈φ〉≠0〈d〉=0 〈φ〉≠0

    〈d〉≠0

    K’ = 4.2K0 (turning on the interplay)

    〈φ〉=0〈d〉=0

    Talk; T. Hatsuda 3/10,Hatsuda, Tachibana, Yamamoto, Baym (06)

    For another possible realization:Talk; T. Kunihiro 3/10,Kitazawa, Kunihiro, Koide, Nemoto (02)Zhang, Kunihiro (09, w Fukushima 08)

  • NJL model with axial anomaly (8)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    〈φ〉≠0〈d〉=0 〈φ〉≠0

    〈d〉≠0

    m = 5.5 MeV (turning on quark mass)

    〈φ〉≈0〈d〉=0

    Critical Point (CEP)Asakawa, Yazaki (89)Chiral sym. is onlyapproximate one

  • NJL model with axial anomaly (9)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Chiral transition; dependence on (K’,K)

    Effect of K’ :• weaken the chiral

    transition

    Effect of K :• strengthen 1st order

    chiral transition

    Effect of mq :• helps to weken the

    chiral transition

    K/K0

    K’/

    K0

    5

    4

    3

    2

    1

    03210

    1st order

    crossover

    K'c

    m q=0

    5

    4

    3

    2

    1

    03210

    1st order

    crossover

    m q=

    5 MeV

    mq= 1

    40 Me

    V

  • NJL model with axial anomaly (10)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    〈d〉≠0

    BEC-BCS crossover in the CFL (COE)?

    Transitions to theCFL (COE) phase :

    • Both are 2nd order

    • Both singal U(1)Bbreaking and arecharacterized byThouless condition

    • However, differentphysical origins

  • NJL model with axial anomaly (12)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Development of precursory to CSC:Kitazawa, Kunihiro, Koide, Nemoto (02)

    BEC of bound diquarks:Nishida,Abuki (PRD05, 07)Kitazawa,Rischke,Shovkovy (08)

    Mass of diquark hitschemical potential!

    ω =ΜD−2µ = 0µ=Mq

  • NJL model with axial anomaly (11)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    Effect of axial anomaly on (qq) attraction

    Neglecting fluctuation in chiral field

    KMT’ term increases (qq)-attraction in the positive parity channel

    ' (1/ 4) 'H HH K Hχ→ = + >

    ( )KMT'(6) t' r R L R LL dK d d dφ φ+ + += +

    ( )( )( )( )( )( )

    KMT'(6) (1/4) ' tr

    (1/4) ' tr

    R L R L

    R L R L

    L K d d d d

    K d d d d

    χ

    χ

    + +

    + +

    − − −

    + + +

  • NJL model with axial anomaly (13)HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408

    µ [MeV]

    K’/

    K0

    How robust is theBEC-like CFL?

    • K’ increases, thenBEC sets in at somecritical K’ (Q)

    • This happens beforethe chiral transitiongets crossover (P)

    • Between (Q) and (P)transition from BECto BCS is 1st order!

    Q

    P

  • Summary of 1st partRich phase diagram due to axial anomalyand its coupling to chiral/diquark fields

    Chiral crossover

    Diquark field contributes as if it is an external field for chiral transitionLow-T critical point appears!

    BCS-BEC crossover

    Chiral field behaves as if it is a mediating fieldthat increases (qq)-attraction

    GL prediction: Hatsuda, Tachibana, Yamamoto, Baym (06)

    c.f. Crossover by increasing H: Nishida, Abuki (05,07)NJL phase diagram: Kitazawa,Rischke,Shovkovy (08)

  • Plan

    BEC-BCS crossover with axial anomaly

    Notion of BEC-BCS crossoverIn general relativistic systems?Axial anomaly induced BEC-BCS transition(1)

    How can we deal with fluctuations?

    1/N expansion vs. Nozieres-Schmitt-RinkApplied to Nonrelativistic Fermi gas(2)

    CFL/2SC models of color superconductor(2)

    (1) HA, G. Baym, T. Hatsuda, N. Yamamoto, arXiv:1003.0408(2) HA, T. Brauner, PRD78, 125010 (2008)

  • Introduction of 1/N expansionFluctuations are obviously important in strong coupling (unitary) regime

    1/N is a method to take into account fluctuations about MF in a systematic, controlled way

    X Nikolic, Sachidev, PRA75 (2007) 033608 (NS)1. TC at unitarity

    X Veillette, Sheehy, Radzihovsky, PRA75 (2007) 043614 (VSR)2. TC at unitarity3. T=0 off the unitarity

    X Abuki, Brauner, PRD78, 125010 (2008) (AB)4. TC off the unitarity

  • 1/N expansion (1)Euclidian lagrangian for ψ = (ψ↑, ψ↓)T

    Introduce N “flavors” of spin doublet:

    ( )( )2 2

    *2 2 ,2 4

    TGLmτ

    ψ µ ψ ψ σ ψ ψ σ ψ+ +⎛ ⎞∇ ⎟⎜= ∂ − − −⎟⎜ ⎟⎟⎜⎜⎝ ⎠

    ( )( )2 2

    *2 22 4

    TN N

    GLNmτα α

    ψ µ ψ ψ σ ψ ψ σ ψ+ +⎛ ⎞∇ ⎟⎜= ∂ − − −⎟⎜ ⎟⎟⎜⎜⎝ ⎠

    ( )1 1 2 2( , ) , , , ,..., ,NT

    TNαψ ψ ψ ψ ψ ψ ψ ψ ψ ψ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓= → =

    2 2 2, 1T

    N N NU U U Uσ σ+= = : Sp(2N,R) ⊂ SU(2N)

  • 1/N expansion (2)

    SU(2) singlet Cooper pairSp(2N,R) singlet pairing field

    No additional symmetry breaking No unwanted NG bosons There is only physical one, the Anderson-Bogoliubov mode associated with correct U(1) (total number) breaking

    21

    ( ) ( ) ( )2

    NTGx x

    Nxα α

    αφ ψ σ ψ

    =∑∼

  • 1/N ordering of correctionsBosonized action

    For systematic handling, setting

    Thermodynamic potential at NLO

    [ ]TrLog2

    1/1

    0

    ( , )( , )

    TN

    xS d dx D x

    Gφ τ

    τ φ τ−⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥⎣ ⎦∫ ∫

    , 0

    ( , ) ( , )1 i ipxp

    x p eN

    ωτ

    ωφ τ δφ ω − +

    = ∆ + ∑ Bosonic fluctuation

    Fermion one loop:Mean Field app.

    Boson one loop:quantum effect

    LO ∼ O(1) NLO ∼ O(1/N)

    (1/(0) )1 ( , , ,1/ ) 1 ...NsF NT k a

    Nµ δΩ ∆ = Ω +Ω+

  • Coupled equations to be solved

    Equations that have to be solved:

    And similar equations of (∆0 , µ0) at T=0Self-consistent solution? … Dangerous!

    Gapless-conserving dichotomy (Violation ofGoldstone theorem or Conservation law)

    (1/ )

    (1/

    (0)

    2 20 0

    3(0)

    2

    )

    1 0

    13

    N

    NF

    N

    kNµ

    δπ

    δ

    µ

    ∆= ∆=

    ⎧⎪∂Ω ∂⎪ + =⎪⎪ ∂Ω

    ∆ ∂∆⎪⎪⎨⎪∂Ω ∂⎪⎪ + = −⎪⎪ ∂ ∂⎪⎩

    (TC , µC)

    X Haussmann et al, PRA75 (2007) 023610X Strinati and Pieri, Europphys. Lett. 71 359 (2005)X T. Kita, J. Phys. Soc. Jpn. 75, 044603 (2006)

  • Order by order expansion (NS)

    Want to solve:

    Expand also

    LO equation …

    … NLO equation

    (0) (1/ )1( ) ( ) ... 0NF x F xN

    + + =

    (0(0) )( ) 0F x =

    0

    (0)(1/ )( )

    01/1 1 ( ) 0

    x

    N

    x

    N dF xFN dx

    xN=

    + =

    (1 )(0) /1 ...NxxN

    x= + +

    no dangerous propagator inside!

  • Comparison with NSR

    Nozieres-Schmitt-Rink theory

    Missing 1/N correction to Thouless criterionSo no problem in solving two equations selfconsistently in (µ(kF), T(kF))1/N term in number eq. dominates in the strong coupling and recovers TC in BEC limitThe phase diagram in (µ, T)-plane unaffected: Only the bulk (µ, kF)-relations affected

    2

    (0)

    (0)

    03

    20

    (1/ )

    ( , ) 0

    1( , ) ( , )3

    C

    FC C

    N

    T

    kT T

    Nµ µ

    µ

    µ µπ

    δ

    ∆ ∆=

    ∆=

    ⎧⎪∂ =⎪⎪⎪⎪⎨⎪⎪∂ + ∂ = −⎪⎪⎪Ω

    2(1/

    0

    )1 ( , )N CTNδ µ

    ∆ ∆=Ω+ ∂

  • The results: UnitarityNS VSR

    Corrections are large! 1/N corrections to (βC, βCµC) and (TC, µC) formally equivalent at large N, but not at N=1!

    5.3172.014

    2.7851.504CC

    F

    C

    EN

    N

    T

    ⎧⎪⎪ = +⎪⎪⎪⎪⎨⎪⎪ = +⎪⎪⎪⎪⎩

    1.3100.496

    0.5801.747

    C

    C

    F

    F

    E N

    E N

    T

    µ

    ⎧⎪⎪ = −⎪⎪⎪⎪⎨⎪⎪ = −⎪⎪⎪⎪⎩

    T=00

    0 0.1630.686

    0.3120.591

    F

    F

    E N

    E Nµ

    ⎧⎪⎪ = −⎪⎪⎪⎪⎨⎪⎪ = −⎪⎪⎪⎪⎩

  • Results: TC, µC off the unitarity

    1/N to βC (1/TC)

    1/N to TC

    NSR LO (MFA)

    • Chemical potential in the BCS limit coincides with perturbativeresult: Reproduces second-order analytic formula

    c.f. Fetter, Walecka’s textbook

    1st

    2nd

    0.23

    BEC BCS

    ( )224(11 2 log2)

    15 Fk a

    π−+

    413 sFF

    k aEµ

    π= +

    BEC BCS

  • Summary of 1/N to Nonrelativistic Fermi gas

    Extrapolation to N=1 is troublesome: Final predictions depend on which observable is chosen to perform the expansion

    TC useless at unitarity, even negative!Only qualitative conclusion: fluctuation lowers TC

    On the other hand, β=1/TC-based extrapolation yields TC/EF=0.14, close to MC result 0.152(7):E. Burovski et al., PRL96 (2006) 160402

    Expansion about MF fails in molecular BEC regime

    1/N expansion may still give useful prediction in the BCS region

  • Summary of 1/N to Nonrelativistic Fermi gas

    Extrapolation to N=1 is troublesome: Final predictions depend on which observable is chosen to perform the expansion

    TC useless at unitarity, even negative!Only qualitative conclusion: fluctuation lowers TC

    On the other hand, β=1/TC-based extrapolation yields TC/EF=0.14, close to MC result 0.152(7):E. Burovski et al., PRL96 (2006) 160402

    Expansion about MF fails in molecular BEC regime

    1/N expansion may still give useful prediction in the BCS region

  • Summary of 1/N to Nonrelativistic Fermi gas

    Extrapolation to N=1 is troublesome: Final predictions depend on which observable is chosen to perform the expansion

    TC useless at unitarity, even negative!Only qualitative conclusion: fluctuation lowers TC

    On the other hand, β=1/TC-based extrapolation yields TC/EF=0.14, close to MC result 0.152(7):E. Burovski et al., PRL96 (2006) 160402

    Expansion about MF fails in molecular BEC regime

    1/N expansion may still give useful prediction in the BCS region

  • Summary of 1/N to Nonrelativistic Fermi gas

    Extrapolation to N=1 is troublesome: Final predictions depend on which observable is chosen to perform the expansion

    TC useless at unitarity, even negative!Only qualitative conclusion: fluctuation lowers TC

    On the other hand, β=1/TC-based extrapolation yields TC/EF=0.14, close to MC result 0.152(7):E. Burovski et al., PRL96 (2006) 160402

    Expansion about MF fails in molecular BEC regime

    1/N expansion may still give useful prediction in the BCS region

  • Summary of 1/N to Nonrelativistic Fermi gas

    Extrapolation to N=1 is troublesome: Final predictions depend on which observable is chosen to perform the expansion

    TC useless at unitarity, even negative!Only qualitative conclusion: fluctuation lowers TC

    On the other hand, β=1/TC-based extrapolation yields TC/EF=0.14, close to MC result 0.152(7):E. Burovski et al., PRL96 (2006) 160402

    Expansion about MF fails in molecular BEC regime

    1/N expansion may still give useful prediction in the BCS region

  • 1/N expansion in dense, relativistic Fermi system: Color superconductivity

    Impact of fluctuation on the (µ, Τ)-plane?Several strong coupling effects discussed:

    M. Matsuzaki (00), Abuki-Hatsuda-Itakura (02), Kitazawa, Koide, Kunihiro, Nemoto (02)Kitazawa, Rischke, Shovkovy (08)

    NSR scheme also applied: no change in (µ, Τ)-phase diagram:

    Nishida-Abuki (05), Abuki (07)

    Are fluctuation effects different for several pairing patterns? (2SC, CFL, etc…)

    Lets try 1/N expansion!

  • 1/N expansion in dense, relativistic Fermi system: Color superconductivity

    take the simplest NJL (4-Fermi) model

    Several species but with equal mass, equal chemical potentialqq pairing in total spin zero, positive parityFor color-flavor structure:

    2SC:

    CFL:

    ( ) ( )( )5 5014

    BNC CGL q i m q q F q q F qα α

    αµγ γ γ +

    =

    = ∂ + − + ∑

    [ ] 1 ( , , )2

    ij ija bc abcF ra g bε ε= =

    1 (( ( , ),...,( , ))2

    , )jk ijk

    ai abcbcF u r sa i bε ε⎡ ⎤ = =⎣ ⎦

    3 diquark “flavors”

    9 diquark “flavors”

  • Introduce a new flavor “taste” of quarks q qA (A=1,2,3,…,N)

    SU(3)C×(flavor group)×SO(N)Assume SO(N)-singlet pair field, then

    No unwanted NG bosons. We make a systematic expansion in 1/N and set N=1 at the end of calculation

    5( , ) 2a AC

    AA

    aGx q qN

    Fφ τ γ= ∑

    ( ) ( )( )5 50 4 B BA A AC C

    a aa

    A

    GL q i m q q F q q F qN

    µγ γ γ += ∂ + − + ∑

  • 1/N expansion to shift of TCInterested in shift of TC in (µ,T)-plane:Not interested in bulk (µ, ρ)-relation since density can not be controlled(µ is fundamental in equilibrium)

    Approach from normal phase T TC +0

    Then consider Thouless criterion alone

    (0) 1 (1/ ) 11( 0) ( 0) 0NB BG P G PNµ µδ− −= + = =

    Pair fluctuation becomes massless at TC

    2 2

    ( 1/ )0) (( , ) ( , ) 0NN T Tδ µµ∆ ∆

    Ω∂ Ω + ∂ =

  • 1/N expansion to inverse boson propagator, NLO Thouless criterion

    Boson propagator at LO:

    NLO correction: Boson self energy

    (0) 1 (1/ ) 11( 0) ( 0) 0NB BG P G PNµ µδ− −= + = =

    φaχpair : Cooperon

    (1/ ) 11 ( 0)NBG PN µδ −= =

    (0) 1( )1 ( )B

    GN

    G PG Pµ µχ

    = ≡− pair

    (0)( ) 1/BG Q Nµ ∼

    Pµ=0

    LO ∼ O(N) NLO ∼ O(1)

    ∼ O(1)

    N∼vertex:

    ∼ O(1/N)

  • Color-Flavor structure of vertexes in loop gives

    Information of color/flavor structure of pairing pattern condenses in simple algebraic factor NB/NF

    NLO correction to boson self energy

    0

    (1/ ) 1 (0)

    2

    3 0+,

    1 ( 0) ( ) ( )

    ( ) ( , , , ; )(2 )

    NB B

    Q nT

    e e

    B

    efe f

    F

    G P dQNG Q F Q

    dF Q I e f Q

    NNN µ π

    δ

    ξ ξπ

    =

    = =

    ≡ +

    ∑ ∫

    ∑ ∫ k k qk k k q

    Tr BF

    NF F F F

    Nα γγδ β δ αβδ δ+ +⎡ ⎤ =⎢ ⎥⎣ ⎦∼γδ

    α

    (0)( )BG Qµ γδδ

    β

  • NLO fluctuation effect in CFL is twice as large as 2SC one

    Mean field Tc’s split at NLO

    Phase dependent algebraic factor

    199CFL

    1/2632SC

    111“BCS”

    NB/NFNFNBpairing

  • Caveat: NLO integral badly divergentTake the advantage of HDET (µ ∆)

    Only degrees of freedom close to Fermi surface are relevant for pairing physicsRenormalize the bare coupling G in favor of mean field Tc(0) : TC(0)/µ parameterize the strength of coupling

    In the weak coupling limit TC(0)=0.567∆0(0)

    High density approximation

    (1)2

    (0)11 (0)

    2B

    F

    CNLO

    FB

    NN N

    fk

    GTµ

    δπ µ

    − ⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

    (0) 12 (0)(0) log2F

    BC

    kG N T

    Tµπ

    − ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠∼O(N): textbook

    material

    ∼ O(1)

  • f NLO

    TC(0) /µ

    Numerical result for NLO function(0)

    (0)(0) (0) 1

    CN

    B

    FLO

    NN B

    Tf

    CC C C NL

    N

    FO

    TT T e T

    Nf

    NNµ

    µ

    ⎛ ⎞⎟⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜= ≈ − ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎟⎜⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

    strong

    Fluctuation suppressesTC significantly

    Phenomenologicallyinteresting couplingregion

    15-30% supressionof critical TCweak

  • Implication to QCD phase diagram

    Suppression of TC is phase dependent: CFL TC is more suppressed than 2SC one

    There may be afluctuation driven2SC windoweven when Ms=0

    Suppression of TC is order of 15-30% :

    Non-negligible!

    T

    µ

    mu,d,s = 0

    CFLNG

    NOR

    2SC

    Tc(MF)

  • Summary of 2nd part

    1/N expansion to TC at/off the unitarityAvoids problems with self-consistency

    Only reliable when the NLO corrections are small (in BCS, not in molecular BEC region)

    Color superconducting quark matterFluctuation corrections non-negligible

    Suppressions of TC different according to pairing patterns Various phases!

    OutlookImprovement: Color neutrality, etc.

  • Outlook (for 1st part of talk)General Ginzburg-Landau (GL) analysis

    What if mu,d ms ? Neutrality condition?

    Coupling with the density

    Full NJL analysiswith flavor asymmetric matter with vector interaction & KMT term & neutralityPolyakov loop? PNJL

    Nucleon (b-f) formation due to diquark-quark residual interaction

    c.f. talk: T. Kunihiro 3/10, Zhang, Kunihiro (09)Zhang, Kunihiro, Fukushima (08)

    c.f. Fukushima, PLB04, Ratti, Thaler, Weise, PRD06Roessner, Ratti, Weise, PRD07, Abuki, Ruggieri et al., PRD08

    c.f. talk: T. Hatsuda 3/10, Maeda,, Baym, Hatsuda, PRL103 (09)