beating heart simulation driven by three dimensional molecular … · 2019-04-19 · beating heart...

13
Beating heart simulation driven by three dimensional molecular dynamics model Takumi Washio (UT-Heart Inc.) Ryo Kanada (RIKEN) Xiaoke Cui (UT-Heart Inc.) Seiryo Sugiura (UT-Heart Inc.) Yasushi Okuno (Kyoto Univ.) Toshiaki Hisada (UT-Heart Inc.)

Upload: others

Post on 12-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Beating heart simulation driven by three dimensional molecular

    dynamics model

    Takumi Washio (UT-Heart Inc.) Ryo Kanada (RIKEN)

    Xiaoke Cui (UT-Heart Inc.) Seiryo Sugiura (UT-Heart Inc.)

    Yasushi Okuno (Kyoto Univ.) Toshiaki Hisada (UT-Heart Inc.)

  • Pflop/s % of peak model∖#nodes 20736 41472 82944 20736 41472 82944

    49KDOF 0.72 1.39 2.74 28.10 27.43 27.72

    macro #myocardial elements 659456 micro #myofibril elements of a cell 5796

    NDOF of a cell 49245 NDOF of a z disk 230

    #motor proteins 160

    Heart + Cell + Motor proteins Multiscale Challenge on K-computer (2012) FEM FEM MonteCarlo Model size

    Performance

    600K elements

    5K elements 50K #DOF

    160 motor proteins

  • Fiber direction f

    Contraction force

    Length change in the fiber direction f

    XxF

    ∂∂

    =t

    t Fftt SLSL 0=

    Sarcomere model

    Strain tensor Sarcomere length

    Ttt

    Sact

    t TC FffFf

    Π ⋅⊗=

    Stress tensor

    ∑=

    =n

    ii

    tMiAS

    t xkT1

    Conventional Multiscale Approach Heart –Sarcomere Coupling Model

    Filament sliding changes the mechanical load, thereby affects the lever arm swing and the detachment .

  • Research directions for Post-K : from 1d MC to 3d MD

    Cafemol (Takada Lab., Kyoto Univ.) Focusing on inside of the molecular motor

    Super Coarse grained (UT-Heart Inc. ) Focusing on 3D sarcomere structure

    K

    Post-K

    1D Monte Carlo Load dependent state Transition

    3D Molecular Dynamics Deformation potentials

    -40 -20 0 20 400

    50

    100

    150

    Lever arm angle [degree]pow

    er s

    troke

    ene

    rgy

    [pN

    nm

    ]

    Thin filament (modeled by a rigid bar)

    Switch the potentials at the state transitions

  • 0 50 100 mmHg

    Preliminary test using Cafemol-Ring Coupling model

    Blood pressure

  • Micro-Macro interaction through the thin filament sliding

    0.2 0.21 0.22 0.23100

    110

    120

    130

    140

    150

    160

    Time [s]

    Thin

    fila

    men

    t slid

    ing

    dist

    ance

    [Å]

  • Time[s]

    sw1-

    sw2[

    A]

    ploo

    p-sw

    1[A]

    For

    ce[p

    N]

    LA-s

    win

    g[A]

    Rigor ADP Pi-release ADP・Pi (weak bind) ATP (detachment)

    No contribution

    Behavior of the molecular motor under physiological condition

    -202468

    050100

    0 0.1 0.2 0.3102030

  • sw1-sw2distance [Å]

    ploo

    p-sw

    1 di

    stan

    ce [Å

    ]

    Increase the rate ADP=>Pi-release by 10

    Verification of Pocket Deformation Feedback Model

    ADP・Pi (Detachment)

    Pi-release (Weak bind)

    Pi-release ADP Rigor (Strong bind)

    ATP bind

    Red: : successful cycles Blue : unsuccessful cycles

    Contour of the pocket deformation of the basic model

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30

  • 60 80 100 120 1400

    50

    100

    0 0.1 0.2 0.3 0.4 0.50

    500

    1000

    Time[s] Volume[ml]

    Bloo

    d pr

    essu

    re[m

    mHg

    ]

    Basic model Feedback model

    Basic model Feedback model A

    TP c

    onsu

    mpt

    ion

    Benefits of the feedback mechanism

    Pressure Volume loop Energy consumption

    1. 3% increase of blood ejection 2. 10% reduction of ATP consumption

    Verification of Pocket Deformation Feedback Model

  • Time

    ∆𝑡𝑡 ∶ micro step

    ∆𝑇𝑇: macro step

    100 101 102 1030

    100

    200

    300

    ∆𝑇𝑇/∆𝑡𝑡

    Elap

    sed

    time(

    s)/0

    .1M

    mic

    ro st

    eps

    Time average of contraction force and stiffness ∆𝑇𝑇 ∆𝑡𝑡

    Macro Micro

    Overhead reduction

    Coupling technique : Efficiency & Stability 1. Reduction of communication overheads by the multiple time step method 2. Stability by taking the active stiffness

    Strain in the fiber direction

  • Passive stiffness

    Active stiffness

    Passive stiffness

    Active stiffness

    Relaxation phase

    Contraction phase

    Micro Macro

    Force 𝑭𝑭�𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇,∆𝑇𝑇 Stiffness 𝑲𝑲�𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇,∆𝑇𝑇

    Strain in the fiber direction 𝜖𝜖𝑇𝑇

    𝑪𝑪 𝒖𝒖𝑇𝑇+∆𝑇𝑇 − 𝒖𝒖𝑇𝑇

    ∆𝑇𝑇= 𝑭𝑭𝑝𝑝𝑎𝑎𝑝𝑝( 𝒖𝒖𝑇𝑇+∆𝑇𝑇 )+𝑭𝑭𝑎𝑎𝑎𝑎𝑎𝑎( 𝒖𝒖𝑇𝑇+∆𝑇𝑇 )

    𝑭𝑭𝑎𝑎𝑎𝑎𝑎𝑎 𝒖𝒖𝑇𝑇+∆𝑇𝑇 = 𝑭𝑭�𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇,∆𝑇𝑇 + 𝑲𝑲�𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇,∆𝑇𝑇 𝒖𝒖𝑇𝑇+∆𝑇𝑇 − 𝒖𝒖𝑇𝑇

    𝑧𝑧 =𝑇𝑇−Δ𝑇𝑇+𝜔𝜔∆𝑇𝑇𝑆𝑆𝑆𝑆0

    21 − 𝜔𝜔 𝜖𝜖𝑇𝑇−∆𝑇𝑇 + 𝜔𝜔 𝜖𝜖𝑇𝑇

    𝑧𝑧 =𝑇𝑇+𝜔𝜔∆𝑇𝑇𝑆𝑆𝑆𝑆0

    21 − 𝜔𝜔 𝜀𝜀𝑇𝑇 + 𝜔𝜔 𝜖𝜖𝑇𝑇+∆𝑇𝑇

    Time

    𝑇𝑇

    𝑇𝑇 + Δ𝑇𝑇 Strain in the fiber direction 𝜖𝜖𝑇𝑇+∆𝑇𝑇

    𝑇𝑇 + 2Δ𝑇𝑇

    Coupling technique : Efficiency & Stability 1. Reduction of communication overheads by the multiple time step method 2. Stability by taking the active stiffness

    𝑧𝑧

  • 0 0.01 0.02 0.03 0.04 0.05-0.0100.010.020.030.040.05

    0 0.01 0.02 0.03 0.04 0.050

    10

    20

    30

    Stra

    in in

    the

    fiber

    dire

    ctio

    n

    時間[秒]

    ATP

    cons

    umpt

    ion

    Explicit ∆𝑇𝑇 ∆𝑡𝑡⁄ = 1 Explicit ∆𝑇𝑇 ∆𝑡𝑡⁄ = 1000 Implicit ∆𝑇𝑇 ∆𝑡𝑡⁄ = 1000

    Oscillation from the instability

    Extreme energy consumption

    Coupling technique : Efficiency & Stability 1. Reduction of communication overheads by the multiple time step method 2. Stability by taking the active stiffness

  • Concluding Remarks We constructed a multiscale platform that enables us to analyze the stochastic dynamics of motor proteins under the condition : that is generated by the protein motors themselves that can’t be made from artificial boundary conditions

    Big data & AI Huge numerical simulation data of the

    molecular behavior Seeking correlations between the

    functional parts in the protein motors Optimization of parameters of

    numerical models

    Central-Body Converter

    Lever-arm

    Upper-50K

    Thin filament

    Lower-50K

    Beating heart simulation driven by three dimensional molecular dynamics model�スライド番号 2スライド番号 3スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14