beam-like photon pairs entangled in polarization

101
beam-like photon pairs entangled in polarization Takayoshi Kobayashi and Atsushi Yabushita Department of Electrophysics National Chiao-Tung University, Taiwan R.O.C. 1 BBO BBO Type-II H,λ 1 ,k 1 V,λ 2 ,k 2 entangle!

Upload: others

Post on 20-Nov-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: beam-like photon pairs entangled in polarization

beam-like photon pairs entangled in polarization

Takayoshi Kobayashi and Atsushi YabushitaDepartment of Electrophysics

National Chiao-Tung University, Taiwan R.O.C.

1

BBOBBO

Type-II H,λ1,k1

V,λ2,k2

entangle!

Page 2: beam-like photon pairs entangled in polarization

������������ �������������� �������������� �������������� ��

���������������������������� ��������������������������������������������

�������� �������� �������� ��������

������������������������

TaiwanR.O.C.

2

Page 3: beam-like photon pairs entangled in polarization

����������������������������������������

�� �� �� �� �� �� �� �� !"#$%&!"#$%&!"#$%&!"#$%&����

�������'����������������������'����������������������'����������������������'���������������

���'� ���'� ���'� ���'� ()*+,-.()*+,-.()*+,-.()*+,-.����

�Universities: NCTU (����), NTHU(����) �Research and develop centers: many companies�National Research Institute: ITRI(��� �)3

Page 4: beam-like photon pairs entangled in polarization

����������������������������������������

��/0����/��/0����/��/0����/��/0����/ �����'������� �����������'������� �����������'������� �����������'������� ������

time-resolved fluorescence (1ns-)

ultrafast time-resolved spectroscopy(visible 10fs)

THz spectroscopy

Quantum Information

by up-conversion (fs-1ns)

Low-temperature pump-probe

4

Page 5: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 6: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 7: beam-like photon pairs entangled in polarization

Introduction

�Frequency conversionSHG � SPDC

�Why SPDC?

�SPDC�OPA

�Why OPA?

Page 8: beam-like photon pairs entangled in polarization

Introduction

LightX-ray

crystal structuremedical diagnosis

UV-VIS-IRspectroscopyreaction mechanism

microwavecommunicationeasy to transfar

Page 9: beam-like photon pairs entangled in polarization

Introduction

Light-matter interactionElectric field make dielectric polarization

How to get double frequency?Emission from dipole

oscillating in vertical directionE : exp(-iωt)E*E : exp(-i2ωt)

Second harmonic generation (SHG)using a non-linear crystal

within some limitation from physical law…

Page 10: beam-like photon pairs entangled in polarization

Introduction (SHG)

energy / momentum conservation in frequency mixing

k2,ω

BBO crystalβ-BaB2O4

k1,ω

Page 11: beam-like photon pairs entangled in polarization

Introduction (SHG ���� SPDC)SHG (second harmonic generation)

ω � 2ω

Reversible? YES!

Reverse processspontaneous parametric down conversion (SPDC)

2ω=>ω+ω2ω=>0.8ω+1.2ω

2ω=>ω+ωoccur by itself

Page 12: beam-like photon pairs entangled in polarization

Introduction (SPDC)

How does SPDC occur?similar as OPA (optical parametric amplification)

signal SPDC starts with vacuum noise(no seed for signal)

process | difference frequency generationhνpump-hνsignal=hνidler

Energy conservationhνpump=hνsignal+hνidler

#signal=#idler

pump

idler

quite low efficiency ~10-10

Page 13: beam-like photon pairs entangled in polarization

Introduction

Why SPDC?

�interesting characterentanglement

Alice Bob

entangled

�never broken securityquantum communicationq

http://physicsworld.com/cws/article/news/44775

�easy to transfervia optical fiber

http://alby13.blogspot.com/2009/04/fiber-optics-future-of-internet.html©tECHNICAL dESIGN

13

Page 14: beam-like photon pairs entangled in polarization

Introduction (SPDC ���� OPA)

OPA (optical parametric amplification)…what is OPA?

similar as SPDC, much higher efficiencySignal(amplified)

seed | w/o amp

signal | amplified

process | difference frequency generationhνpump-hνsignal=hνidler

Energy conservationhνpump=hνsignal+hνidler

pump

idler

pump

seed

Page 15: beam-like photon pairs entangled in polarization

Introduction (Why OPA?)How to get other wavelength?

self phase modulation (SPM)but too weak for non-linear spectroscopy...

3

ts)

4 0 0 6 0 0 8 0 00

1

2

w a v e l e n g t h ( n m )

inte

nsity

(ar

b. u

nit

OPAincrease power by amplification

for ultrafast spectroscopy

Page 16: beam-like photon pairs entangled in polarization

16

Page 17: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 18: beam-like photon pairs entangled in polarization

Time-resolved spectroscopytime-resolved absorption change

λ0

λ1

w/o pump 0fs (with pump) ~ps (with pump) ∞ (with pump)

PBSE

IA

λ0

abso

rptio

n

λ1

ΔA

0fs delay (after pump)

abso

rptio

nλ0 λ1

abso

rptio

n

λ0 λ1

abso

rptio

n

λ0 λ1

PB: photo-bleaching

SE: stimulated emissionIA: induced absorption

Page 19: beam-like photon pairs entangled in polarization

ultrafast electronic dynamicscan be studied to ~100fs

Ultrashort pulse generationelectronic and vibrational dynamics

ultrafast dynamics of vibration?Not Available: typical vibration period = ~20 fs

requires much higher resolutionNoncollinear OPA (NOPA)

broadband amplification � ultrashort pulse (~5fs)

pump

seed

pump

seed

Page 20: beam-like photon pairs entangled in polarization

non-degenerate

Application | ultrafast spectroscopy

Optical parametric amplifier (OPA) Non-collinear OPA (NOPA)

Broadband generation | for short pulse

degenerate

Page 21: beam-like photon pairs entangled in polarization

Application | ultrafast spectroscopyBroadband generation | for short pulse

WLC OPA (OPG with WLC)

Spectrum diffracted by gratingVisible broadband

��� ��� ��� ��� � �� �� �� ��

���

���

���

���

���

���

����

��

����

���

����

������������ ������

��������

������ ����

������� �

pulse width<10fs=1×10-14s (ultrashort)

Page 22: beam-like photon pairs entangled in polarization

Ultrashort pulse generationelectronic and vibrational dynamics

����� ����� ����� �����

���

���

�����������

�����

����� �����������������

��� �� ��� ��� ��� ��� �� ���

���

��

� ������������

��������

� ��� ��� ��� ���

������

������

������

������

�����

�����

�����

�� ������

Δ

Page 23: beam-like photon pairs entangled in polarization

real-time frequency change is observed

Real-time change of vibration(photo-isomerization of retinal)

Page 24: beam-like photon pairs entangled in polarization

24

Page 25: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 26: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 27: beam-like photon pairs entangled in polarization

Quantum lithography

Let’s remind “Young’s double slit”photon comes one by oneif you block one of the slits…

I t f l if th i kInterference only if path is unknownpath entanglement

Interference of “probability”, “wavefunction”statistics of classical phenomena?

http://micro.magnet.fsu.edu/primer/java/interference/doubleslit/

27

Page 28: beam-like photon pairs entangled in polarization

Quantum lithography

Let’s remind “Young’s double slit”photon comes one by oneif you block one of the slits…

I t f l if th i kInterference only if path is unknownpath entanglement

Interference of “probability”, “wavefunction”statistics of classical phenomena � quantum

What happens if you use SPDC photon pairs?quantum lithography

http://micro.magnet.fsu.edu/primer/java/interference/doubleslit/

28

Page 29: beam-like photon pairs entangled in polarization

quantum lithography | wave vector

resolution 2times higher ((((~ λλλλp= λ /λ /λ /λ /2)2)2)2)

(cf. classical: ~λλλλ)

Schematic set up

Y. Shih, J. Mod. Opt. 49, 2275 (2002)Application | quantum

“SPDC photon pairs” v.s. “classical light”

Schematic set-up

SPDC

SPDCphoton1: path A?B?photon2: path A?B?

29

Page 30: beam-like photon pairs entangled in polarization

Experimental result (quantum lithograph)

quantum

classical

Y. Shih, J. Mod. Opt. 49, 2275 (2002)

30

Page 31: beam-like photon pairs entangled in polarization

31

Page 32: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 33: beam-like photon pairs entangled in polarization

SPDC for quantum information

ghost imaging (wave vector)

coincidence countBBOBBOBBO

CC1 CC2 CC3

CC1

CC2

CC3

CC1

CC2

CC3

CC1

CC2

CC3

Page 34: beam-like photon pairs entangled in polarization

ghost imaging (wave vector)

BBOBBOBBO

coincidence count

SPDC for quantum information

CC1

CC2

CC3

CC1

CC2

CC3

CC1

CC2

CC3CC1 CC2 CC3

Page 35: beam-like photon pairs entangled in polarization

ghost imaging (wave vector)measure the shape of an objectDetector does NOT scan after object

classical

SPDC for quantum information

ω p , k p

ω s , k s

ω i , k iNLC

Y. Shih, J. Mod. Opt. 49, 2275 (2002)

Page 36: beam-like photon pairs entangled in polarization

36

Page 37: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 38: beam-like photon pairs entangled in polarization

ghost spectroscopy? (frequency)

BBO

coincidence count

BBOBBO

SPDC for quantum information

CC1

CC2

CC3

CC1 CC2 CC3CC1

CC2

CC3

CC1

CC2

CC3

Page 39: beam-like photon pairs entangled in polarization

BBO

ghost spectroscopy! (frequency)

coincidence count

BBOBBO

SPDC for quantum information

CC1

CC2

CC3

CC1 CC2 CC3CC1

CC2

CC3

CC1

CC2

CC3

Page 40: beam-like photon pairs entangled in polarization

experiment setup BBO : non-linear crystal

M1 : parabolic mirror

M2,3 : plane mirror

P1 : prism (remove pump)

P2 : prism (compensate angular dispersion)PBS : polarizing beam splitter

G : diffraction grating

L2,3 : fiber coupling lens

S : sample ������������������������������� �������� �������� �������� �

L1 : focusing lens(f=100mm, 8mm)

OF : optical fiber

SPCM : single photoncounting module

TAC : time-to-amplitudeconverter

Delay : delay modulePC : computer

Page 41: beam-like photon pairs entangled in polarization

result : absorption spectrum

� agree with the result by a spectrometercalculate absorption spectrum from the ratio

Page 42: beam-like photon pairs entangled in polarization

Spectrum of photon pairsand absorption spectrum of the sample

pump focusing lens (f=100mm)

more absorption in longer wavelength

Page 43: beam-like photon pairs entangled in polarization

result : absorption spectrum1. Broadband photon pairs

agree with the result by a spectrometer

Page 44: beam-like photon pairs entangled in polarization

spherical lens � objective lens(f=100 � 8mm)

spectrum was broadened (11,11�63,69nm)3

spectrum of SPDC photon pairs

Nd3+ -doped glass ( in the idler light path)

� absorption spectrum was measured

without resolving the frequency of photon transmitted through the sample

fit well with the result measured by a spectrometer

coincidence resolving signal light’s frequency

A. Yabushita et. al., Phys. Rev. A 69, 013806 (2004)

Page 45: beam-like photon pairs entangled in polarization

45

Page 46: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 47: beam-like photon pairs entangled in polarization

Quantum information experiments

Quantum Key Distribution (QKD)

�E91 protocolby polarization entangled photon pair� l i ti t l t?�polarization entanglement?�how it works�can it be safe?

entangledQuantum Cryptography and Secret-Key Distillation, © Cambridge University Press

47

Page 48: beam-like photon pairs entangled in polarization

EPR-Bellsource

Alice

Bob

polarization-entangled photon pairs

1. Broadband photon pairs

[ ]212112

2

1−=Ψ

[ ]21212

1−=

( )+=2

1 ( )−=2

148

Page 49: beam-like photon pairs entangled in polarization

Application | quantum

Outline for “Quantum Key Distribution (QKD)”�BB84 protocol | single photon

�how it works�can it be safe?

�E91 protocol | polarization entangled photon pair�E91 protocol | polarization entangled photon pair�polarization entanglement?�how it works�can it be safe?

Page 50: beam-like photon pairs entangled in polarization

Application | quantum

�BB84 protocol | single photon�Purpose : to share a secret key�how it works?

•key at random 0 1 0 1 1 0•base at random + × + × + +

0 1

+

×

•base at random × × + + × +

0 1 0 0 1 0

Page 51: beam-like photon pairs entangled in polarization

Application | quantum

�BB84 protocol | single photon�Purpose : to share a secret key�how it works?

•key at random 0 1 0 1 1 0•base at random + × + × + +

50% of keys can be shared(shared keys are same)

complicated…But secure!How can it be secure??

0 1

+

×

•base at random × × + + × +

0 1 0 0 1 0

Page 52: beam-like photon pairs entangled in polarization

Application | quantum�BB84 protocol | single photon

�Can it be secure?•key at random 0 1 0 1 1 0•base at random + × + × + +

base? (random try) + × × × + ×

0 1 1 1 1 0

0 1

+

×

•base at random × × + + × +

0 1 1 0 1 1

base? (random try) + × × × + ×

0 1 1 1 1 0result(bit)copy

Page 53: beam-like photon pairs entangled in polarization

�BB84 protocol | single photon�Can it be secure?

•key at random 0 1 0 1 1 0•base at random + × + × + +

Application | quantum

base? (random try) + × × × + ×

Security can be checked!

•base at random × × + + × +0 1

+

×

0 1 0 0 1 1

base? (random try) + × × × + ×

0 1 1 1 1 0

Error!

result(bit)copy

Page 54: beam-like photon pairs entangled in polarization

EPR-Bellsource

Alice

Bob

polarization-entangled photon pairs

1. Broadband photon pairs

[ ]212112

2

1−=Ψ

[ ]21212

1−=

( )+2

1 ( )−2

1

Page 55: beam-like photon pairs entangled in polarization

HV and VH(50%-50%)

Alice

Bob

Mixed state (statistical mixture)

1. Broadband photon pairs

?

?

Page 56: beam-like photon pairs entangled in polarization

EPR-pair

QKD example (without Eve)

Baseselect

Baseselect

Alice Bob

H V0 0

HV1 1

… …If they use the same base,“100%” correlation(quantum key distributed!)

R LRL

0 0

1 1

HV1 1

H V0 0

Page 57: beam-like photon pairs entangled in polarization

EPR-pair

QKD example (with Eve)

Baseselect

Baseselect

Alice Bob

H0 V V

?

V 0base/ get/ copy

V1 H

… …HHV…

Eve also share the key (NOT secure QKD…)How can it be improved?

V H1

H V0

H 1HV…

1

0

Page 58: beam-like photon pairs entangled in polarization

EPR-pair

Ekert91 protocol

Baseselect

Baseselect

Alice Bob

H V0 0Base information

LR0 0

VR0 0

V L 01

HL1 1

V H1 1

L R1 1

H R0 1

Base information(classical communication)

“100%” correlation

Page 59: beam-like photon pairs entangled in polarization

EPR-pair

Ekert91 protocol

Baseselect

Baseselect

Alice Bob

V 0H0 R RBase information OKbase/ get/ copy

L 0

R 0

V 0

H 1

H 1

L 0

R 1

L1 V

V1 H

H0 V

L1 H

R0 L

R0 L

V1 R

V

H

V

H

L

L

R

OK

OK

NG!Bob candetect Eve(secure!)

Page 60: beam-like photon pairs entangled in polarization

Experimental example of QKD

T. Jennewein et. al., PRL 84, 4729 (2000)

Page 61: beam-like photon pairs entangled in polarization

61

Page 62: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 63: beam-like photon pairs entangled in polarization

Generation of photon pairs entangled in their frequencies and polarizations (for WDM-QKD)

BBO(type-II)

2ωω − δω

ω + δω

frequency-entangled

e o/e

e/opolarization-entangled

polarization-entangled pairat many wavelength combinations

light source for WDM-QKD

Page 64: beam-like photon pairs entangled in polarization

epolarization-entangled

l i ti t l d

o/e

Standard :

Multiplex :

epolarization-entangledo/e

polarization-entangled

polarization-entangled

o/e

o/e

Page 65: beam-like photon pairs entangled in polarization

experimental setup L1 : focusing lens

BBO : non-linear crystal

M1 : parabolic mirror

M2,3 : plane mirror

P1 : prism (remove pump)

P2 : prism (compensate angular dispersion)

G : diffraction grating

L2,3 : fiber coupling lens

OF : optical fiber

SPCM : single photoncounting module

TAC : time-to-amplitudeconverterDelay : delay modulePC : computer

IRIS : iris ��������

POL1,2 : linear polarizer

BS : non-polarizing beam splitter

Page 66: beam-like photon pairs entangled in polarization

simulationis

i

isHVefVH αψ ⋅+=

f=1α=0o

0

0.5

1

coin

cide

nce

cou

nts

(arb

.uni

ts)

f=1α=60o

0

0.5

1

coin

cide

nce

cou

nts

(arb

.uni

ts)0o

90o

135o45o 0o

90o

135o45o

1. Broadband photon pairs

0 60 120 180

i (degree)θ

f=1α=180o

0 60 120 180

i (degree)θ

0 60 120 180

0.5

1

i (degree)

coin

cide

nce

cou

nts

(arb

.uni

ts)

θ

f=1.732α=0o

0 60 120 180

1

2

3

i (degree)co

inci

denc

eco

unt

s(a

rb.u

nits

0o

90o

135o 45o 0o

90o

135o45o

Page 67: beam-like photon pairs entangled in polarization

polarization correlation (1st diffraction@870nm)

phase shift (866nm)< h hift (870 )

is

i

isHVefVH αψ ⋅+=

0o

45o

135o

1. Broadband photon pairs

< phase shift (870nm)

visibility < 100%

17.1 →=f

o180,0≠α

90o

Page 68: beam-like photon pairs entangled in polarization

polarization correlation (1st diffraction@870nm)

is

i

isHVefVH αψ ⋅+=

visibility relative phase

0o 0.75

0o

45o

135o

phase shift (866nm)< phase shift (870nm)

visibility<100%

17.1 →=f

o180,0≠α

45o 0.43 -25o

135o 0.31 35o

90o 0.50 -81o

90o

Page 69: beam-like photon pairs entangled in polarization

entangled ����iris 1mm����

phase shift (866nm) < phase shift (870nm) 17.1 →=f�

no entanglement ����iris open����

but phase shift<45o to improve : walk-off compensation

visibility<100% (866nm, 870nm)o180,0≠α�

to improve : group velocity compensation

frequency resolved photon pairs are entangled in polarization

(light source for WDM-QKD)

future : compensations of walk-off and group velocity (improve pol-entanglement)

A. Yabushita et. al, J. Appl. Phys., 99, 063101 (2006)

Page 70: beam-like photon pairs entangled in polarization

70

Page 71: beam-like photon pairs entangled in polarization

Outline Our work

�Introduction�Optical parametric processes

�Spontaneous parametric down conv. (SPDC)�Optical parametric amplifier (OPA)

�Application | ultrafast spectroscopy�Broadband generation | for short pulse

�Application | Quantum Information�lithography/ imaging / spectroscopy�communication (QKD) / multiplex QKD�Entangled photon beam

Page 72: beam-like photon pairs entangled in polarization

Quantum information experimentsentangled photon beam

SPDC has two types

Type-IType-II

BBO BBO

V����H+H(parallel polarizations)

V����H+V(orthogonal polarizations)

How to get polarization entanglement?...72

Page 73: beam-like photon pairs entangled in polarization

BBO1

BBO2

H-polarized fromBBO1Entangled photon pair

by type-I BBO *2

P.G. Kwiat et al., Phys. Rev. A, 60, R773 (1999)

V-polarized fromBBO2BBO1

BBO2

H-polarized fromBBO1

V-polarized fromBBO2

Side view

V����H+Hor

H����V+V

not for entangled beams 73

Page 74: beam-like photon pairs entangled in polarization

photon pairs fromthe crossing points

H + Vor

Entangled photon pair

by a type-II BBO

BBO

Type-IIH

V + HV

polarization entangled!only at crossing points

V����H+V

(2ωωωω����ωωωω+ωωωω)

What a large loss... 74

Page 75: beam-like photon pairs entangled in polarization

How about beam-like pairs?if entangled, all pairs can be usedbut no polarization entanglement� Can we entangle them?

75

Page 76: beam-like photon pairs entangled in polarization

We have developed two new schemes

scheme #1 (path overlap)for two-photon interference

2 times higher resolution than classical limit (λ)for polarization entanglement

all photon pairs are polarization entangled

scheme #2 (2x2 fiber)easy to get entangled beams

76

Page 77: beam-like photon pairs entangled in polarization

���������� ���

H: Horizontal

��� ��������������

H: Horizontal

V: vertical

]HVVH[2

12121 +=Ψ

Polarization Entangled photon pair

V: vertical

Crystal optic axis

V: vertical

77

Page 78: beam-like photon pairs entangled in polarization

� ���� ��� � ���

���� ���

�����

�entangle polarization

����������� ����� ��!"

2 photon interference

�# �

BBO

Mp

Ms

Mi

I2, �

S2, � S1, �

I1, �

�# �

BBO

Mp

Ms

Mi

I2, �

S2, � S1, �

I1, � $%��

$%��

I1, �

S1, �

need to adjust timing between two photon pairs!78

Page 79: beam-like photon pairs entangled in polarization

��&#��� ���� �������'������ ������� ���#�� ���

�interference only in coherence length�φφφφ=0 or ππππ for max entangle

(a) (c)��

at same timing

only (b)&(d):bunching

���� fine adjustment is needed ! but how ?

C. K. Hong, Z. Y. Ou, and L. Mandel,Phys. Rev. Lett. 59, 2044 (1987).

(d)(b)

Beam splitterBeam splitter

Beam splitterBeam splitter� (

only (b)&(d):bunching

���� no coincidence

-150 -100 -50 0 50 100 1500

100

200

300

400

500

600

Co

inci

den

ce c

ou

nts

(1/s

)

Delay (μμμμm)

check whether the photons are coming coincidently79

Page 80: beam-like photon pairs entangled in polarization

�'������ ������� ���#�� �����&#������������

)���������#���*����������������������

��������#���(��#�������ππππ �� �+��������

QWP

HWPPol.

600 lI1

-150 -100 -50 0 50 100 1500

100

200

300

400

500

600

Co

inci

den

ce c

ou

nts

(1/

s)

Delay (μμμμm)

I1

lS1

lI1=lS1

lI2=lS2

lI2

lS2

80

Page 81: beam-like photon pairs entangled in polarization

81

Page 82: beam-like photon pairs entangled in polarization

�����������)�������� �������

�# �

BBO

Mp

Ms

Mi

I2, �

S2, � S1, �

I1, �

I1, �

S1, �

82

Page 83: beam-like photon pairs entangled in polarization

�����������)�������� �������

H

V H

V

VH

BBO

�L

l1’

l2’

l1

l2

BBO

BBO

lP1

lP2

lS1

lS2

lI1

lI2

� S1

� I1

� S2

� I2

� P1

� P2

1

2

pump

FCS

FCI

FCS

FCI

Page 84: beam-like photon pairs entangled in polarization

result: 2photon interference

400nm (λ/2)

classical lithographyresolution~ λ

2-photon interference (quantum lithography)2 times higher resolution : 400nm=λλλλ/2 84

Page 85: beam-like photon pairs entangled in polarization

85

Page 86: beam-like photon pairs entangled in polarization

����������������,����������� ���

�# �

BBO

Mp

Ms

Mi

I2, �

S2, � S1, �

I1, � $%��

$%��86

Page 87: beam-like photon pairs entangled in polarization

����������������,����������� ���

H

V H

V

λ/4

λ/4H

V

VH

]H)V(eVH[e2

121

i21

i ϕφ +=Ψ

]HVVH[2

12121 +=Ψ

adjust phase

Page 88: beam-like photon pairs entangled in polarization

result: polarization entanglement

rotate polarization 90 degrees by QWP plates

|H1>|V1>+eiφ|H2>|V2>

|V1>|H1>+eiφ|H2>|V2>

(max entangle at φ=nπ ���������)

measure coincidence scanning φvisibility = 0.90����0.05(highly entangled)

88

Page 89: beam-like photon pairs entangled in polarization

89

Page 90: beam-like photon pairs entangled in polarization

Our new scheme #1 to generate photon pair beamsfor two purposes

two-photon interferencepolarization entanglement

resolution of 2-photon interference (λ/2)λ

Summary for beam-like photon pairs generation

2 times higher than classical limit (λ)all photon pairs can be polarization entangled

efficient generation of polarization entangled pairs

cf.) traditional method : only crossing points of light cones

Hsin-Pin Lo et al., Beamlike photon-pair generation for two-photon interferenceand polarization entanglement, Phys. Rev. A 83, 022313 (2011)

90

Page 91: beam-like photon pairs entangled in polarization

You can find more detail information in this paper.91

Page 92: beam-like photon pairs entangled in polarization

92

Page 93: beam-like photon pairs entangled in polarization

Our new scheme #2 to entangle photon pair beams“2x2 fiber”

easy alignment & simple setup

93

Page 94: beam-like photon pairs entangled in polarization

Just adjust timingJust adjust timing

�High visibility (>0.9)

Photon pair beamshighly entangledIn polarization 94

Page 95: beam-like photon pairs entangled in polarization

95

Page 96: beam-like photon pairs entangled in polarization

96

Page 97: beam-like photon pairs entangled in polarization

���������������� (Prof. A. Yabushita)

������������ (Prof. C. W. Luo)

���� (P f P C Ch

Department of Electrophysics, National Chiao Tung University

Department of Electrophysics, National Chiao Tung University

������������ (Hsin-Pin Lo: Ph. D student) Department of Physics, NTHU

acknowledgement for the entangled beam generation

���� (Prof. P. C. Chen)Department of Physics, Nation Tsing Hua University

���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����

� ��� ��� ��� �� (Prof. T. Kobayashi)Department of Applied Physics and Chemistry and Institute for Laser Science

The University of Electro-Communications, Tokyo, Japan

97

Page 98: beam-like photon pairs entangled in polarization

Acknowledgement for $upport

MOE ATU plan, Taiwan, ROC.

National Science Council, Taiwan, ROC.

NSC 98-2112-M-009-001-MY3, NSC 99-2923-M-009-004-MY3

Page 99: beam-like photon pairs entangled in polarization

Thank you for your attention!

99

Page 100: beam-like photon pairs entangled in polarization

100

Page 101: beam-like photon pairs entangled in polarization

Unitary operator(beam splitter)

commutator of the two creation operators and vanishes

(beam splitter)

101