bayesian perception

82
Bayesian Perception

Upload: ashton-douglas

Post on 02-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Bayesian Perception. General Idea. Ernst and Banks, Nature, 2002. General Idea. Bayesian formulation:. Conditional Independence assumption. noise. v=w+n. +. w. t=w+n. +. noise. General Idea. Generative model:. w?. Ernst and Banks, Nature, 2002. Bimodal - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bayesian Perception

Bayesian Perception

Page 2: Bayesian Perception

General Idea

Ernst and Banks, Nature, 2002

Page 3: Bayesian Perception

General Idea

• Bayesian formulation:

, || ,

,

| |

,

| |

P t v w P wP w t v

P t v

P t w P v w P w

P t v

P t w P v w P w

ConditionalIndependence assumption

ˆ arg max | ,w

w P w t v

Page 4: Bayesian Perception

General Idea

Ernst and Banks, Nature, 2002

w

v=w+n

t=w+n

+

+

noise

noise

w?

Generative model: , |P t v w

Page 5: Bayesian Perception

General Idea

Width

Prob

abil

ity

VisualP(v|w)

TouchP(t|w)

BimodalP(w|t,v)= P(v|w) P(t|w)

ˆ arg max | ,w

w P w t v

Page 6: Bayesian Perception

General Idea

2

2

2

2

2 2

2 2

2 22 2

2 2

2 2 2 2 2

2 2

2 22

2 2

2 2 2 2

2 2

2 2

| exp2

log |2

log | |2 2

2

2

2

2

2 /

v

v

v t

t v

v t

t v t v

v t

t v

t v

v t t v

t v

t v

v wP v w

v wP v w

v w t wP v w P t w

v w t w

w v t w C

v tw w C

v tw

2

2 2 2 22 /v t t v

C

Page 7: Bayesian Perception

General Idea

Mean and variance

2 2

2 2 2 2t v

t v t v

w v t

22 2

2 2

2 2 2 2log | ,

2 /

t v

t v

v t t v

v tw

P w v t

Page 8: Bayesian Perception

General Idea

Width

Prob

abil

ity

VisualP(v|w)

TouchP(t|w)

tv

2 2

2 2 2 2t v

t v t v

w v t

Page 9: Bayesian Perception

General Idea

Mean and variance

2 2

2 2 2 2t v

t v t v

w v t

22 2

2 2

2 2 2 2log | ,

2 /

t v

t v

v t t v

v tw

P w v t

2 2

2

2 2v t

w

t v

Page 10: Bayesian Perception

Optimal Variance

Variance

2 2 2

1 1 1

w v t

w v tI I I

22 2

2 2

2 2 2 2log | ,

2 /

t v

t v

v t t v

v tw

P w v t

Fisher information sums for independent signals

Page 11: Bayesian Perception

General Idea

0 67 133 2000

0.05

0.1

0.15

0.2

Th

resh

old

(S

TD

)

Visual noise level (%)

Measured bimodal STD

Predicted by the Bayesian model

Unimodal visual STD

Unimodal Tactile STD

Ernst and Banks, Nature, 2002 Note: unimodal estimates may not be optimal but the multimodal estimate is optimal

Page 12: Bayesian Perception

Adaptive Cue Integration

• Note: the reliability of the cue change on every trial

• This implies that the weights of the linear combination have to be changed on every trial!

• Or do they?

2 2

2 2 2 2t v

t v t v

w v t

Page 13: Bayesian Perception

General Idea

• Perception is a statistical inference

• The brain stores knowledge about P(I,V) where I is the set of natural images, and V are the perceptual variables (color, motion, object identity)

• Given an image, the brain computes P(V|I)

, ||

P P PP

P P

I V I V VV I

I I

Page 14: Bayesian Perception

General Idea

• Decisions are made by collapsing the distribution onto a single value:

• or

ˆ |P dV V I V V

ˆ arg max |PV

V V I

Page 15: Bayesian Perception

Key Ideas

• The nervous systems represents probability distributions. i.e., it represents the uncertainty inherent to all stimuli.

• The nervous system stores generative models, or forward models, of the world (P(I|V)), and prior knowlege about the state of the world (P(V))

• Biological neural networks can perform complex statistical inferences.

Page 16: Bayesian Perception

Motion Perception

Page 17: Bayesian Perception

The Aperture Problem

Page 18: Bayesian Perception

The Aperture Problem

Page 19: Bayesian Perception

The Aperture Problem

Page 20: Bayesian Perception

The Aperture Problem

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

Page 21: Bayesian Perception

The Aperture Problem

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

Page 22: Bayesian Perception

The Aperture Problem

Page 23: Bayesian Perception

The Aperture Problem

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

Page 24: Bayesian Perception

The Aperture Problem

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

Page 25: Bayesian Perception

The Aperture Problem

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

Page 26: Bayesian Perception

Standard Models of Motion Perception

• IOC: interception of constraints

• VA: Vector average

• Feature tracking

Page 27: Bayesian Perception

Standard Models of Motion Perception

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

IOCVA

Page 28: Bayesian Perception

Standard Models of Motion Perception

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

IOCVA

Page 29: Bayesian Perception

Standard Models of Motion Perception

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

VA

IOC

Page 30: Bayesian Perception

Standard Models of Motion Perception

Horizontal velocity (deg/s)V

erti

cal v

eloc

ity

(deg

/s)

IOCVA

Page 31: Bayesian Perception

Standard Models of Motion Perception

• Problem: perceived motion is close to either IOC or VA depending on stimulus duration, eccentricity, contrast and other factors.

Page 32: Bayesian Perception

Standard Models of Motion Perception

• Example: Rhombus

Horizontal velocity (deg/s)

Ver

tica

l vel

ocit

y (d

eg/s

) IOCVA

Horizontal velocity (deg/s)

Ver

tica

l vel

ocit

y (d

eg/s

) IOCVA

Percept: VAPercept: IOC

Page 33: Bayesian Perception

Moving Rhombus

Page 34: Bayesian Perception

Bayesian Model of Motion Perception

• Perceived motion correspond to the MAP estimate

* arg max |

|| |

, |i ii

P I

P I PP I P I P

P I

P P I x y

vv v

v vv v v

v v

Page 35: Bayesian Perception

Prior

• Human observers favor slow motions

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

2 2exp / 2 pP v v

Page 36: Bayesian Perception

Likelihood

• Weiss and Adelson

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

, , |i i iP I x y t v

Page 37: Bayesian Perception

Likelihood

, , , ,

, , , ,

x y

x y

I x y t I x t y t t t

I x y t I x t y t t t

v v

v v

, , , ,

, , , ,

i x i y i i x x y y t

i i i x i y x x y y t

x x y y t

I x t y t t t I x y t I t I t I t

I x y t I x t y t t t I t I t I t

I I I t

v v v v

v v v v

v v

2

2

, , , ,, , | exp

2

i i x y

i i

I x y t I x t y t t tP I x y t

v vv

2

2, , | exp

2x x y y t

i i

I I IP I x y t

v vv

Page 38: Bayesian Perception

Likelihood

2

2

2

2,

, , | , , |

1exp

2

1exp ,

2

i ii

x x y y ti

x x y y t

x y

P I x y t P I x y t

I I I

w x y I I I dxdy

v v

v v

v v

Binary maskPresumably, this is set by segmentation cues

Page 39: Bayesian Perception

Posterior

2 2 22 2

,

log | , , log , , | log

1 1

2 2x x y y t x yx y p

P I x y t P I x y t P

I I I

v v v

v v v v

Page 40: Bayesian Perception

Bayesian Model of Motion Perception

• Perceived motion corresponds to the MAP estimate

*

22

2

*

22

2

arg max | , | , |ii

i

x x yp x t

y tx y y

p

P I P I P P I x y

I I II I

I II I I

vv v v v v

v

Only one free parameter

Page 41: Bayesian Perception

Likelihood

2 2 22 2

, ,

, ,

2 2

,,

22

2, ,

2 22

2, ,

1 1( )

2 2

2 2( ) 1 1

2 2 22

1

x x y y t x yx y x yp

x x y y t x xx y x y

p yx x y y t yx yx y

x y x tx y x yp

y x yx y x y p

L I I I

I I I IL

I I I I

I I I I I

I I I

v v v v v

v v vv

v vv v

v,

,

0

xx y

t yx y

I I

Page 42: Bayesian Perception

Motion through an Aperture

• Humans perceive the slowest motion.

• More generally: we tend to perceive the most likely interpretation of an image

Page 43: Bayesian Perception

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

Motion through an Aperture

ML

MAP

Prior Posterior

Likelihood

Page 44: Bayesian Perception

Motion and Constrast

• Humans tend to underestimate velocity in low contrast situations

Page 45: Bayesian Perception

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

Motion and Contrast

ML

MAP

Prior Posterior

HighContrast

Likelihood

Page 46: Bayesian Perception

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

Motion and Contrast

ML

MAP

Prior Posterior

LowContrast

Likelihood

Page 47: Bayesian Perception

Motion and Contrast

• Driving in the fog: in low contrast situations, the prior dominates

Page 48: Bayesian Perception

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

Moving Rhombus

IOC

MAP

Prior Posterior

HighContrast

Likelihood

Page 49: Bayesian Perception

Moving Rhombus

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

-50 0 50

-50

0

50

Horizontal Velocity

Ver

tica

l Ve

loci

ty

IOC

MAP

Prior Posterior

LowContrast

Likelihood

Page 50: Bayesian Perception

Moving Rhombus

Page 51: Bayesian Perception

Moving Rhombus

• Example: Rhombus

Horizontal velocity (deg/s)

Ver

tica

l vel

ocit

y (d

eg/s

) IOCVA

Horizontal velocity (deg/s)

Ver

tica

l vel

ocit

y (d

eg/s

) IOCVA

Percept: VAPercept: IOC

Page 52: Bayesian Perception

Barberpole Illusion

Page 53: Bayesian Perception

Plaid Motion: Type I and II

Page 54: Bayesian Perception

Plaids and Contrast

Lower contrast

Page 55: Bayesian Perception

Plaids and Time

• Viewing time reduces uncertainty

Page 56: Bayesian Perception

Ellipses

• Fat vs narrow ellipses

Page 57: Bayesian Perception

Ellipses

• Fat vs narrow ellipses

• All motions agree

Page 58: Bayesian Perception

Ellipses

Page 59: Bayesian Perception

Ellipses

• Adding unambiguous motion

Page 60: Bayesian Perception

Ellipses

• Adding unambiguous motion

Page 61: Bayesian Perception

Other Prior

• Prior on direction of lightning

Page 62: Bayesian Perception

Generalization

• All computation are subject to uncertainty (ill-posed)

• This includes syntax processing, language acquisition… etc.

• Solution: compute with probability distributions

Page 63: Bayesian Perception

Binary Decision Making

Shadlen et al.

Page 64: Bayesian Perception

Race Model

• Standard theory: some signal is accumulated (or integrated) to a bound. Also known as race models.

• The signal to be integrated could be the response of sensory neurons.

Page 65: Bayesian Perception

Bayesian Strategy

• The ‘diffusion to bound’ model of Shadlen et al.

Page 66: Bayesian Perception

High motion strength

High m

otion stre

ngth

Low motion strength

Time

~1 secStimulus

onStimulus

off

Spikes/s

Time

~1 secStimulus

onStimulus

off

Spikes/s

Low motion strength

A Neural Integrator for Decisions?

MT: Sensory Evidence

Motion energy

“step”

LIP: Decision Formation

Accumulation of evidence

“ramp”

Threshold

Page 67: Bayesian Perception

Diffusion to bound model

Positive bound

Negative bound

Page 68: Bayesian Perception

Proposed by Wald, 1947 and Turing (WW II, classified); Stone, 1960; then Laming, Link, Ratcliff, Smith, . . .

Diffusion to bound model

Positive bound or Criterion to answer “1”

Negative bound or Criterion to answer “2”

Page 69: Bayesian Perception

Momentary evidencee.g.,

∆Spike rate:MTRight– MTLeft

Accumulated evidencefor Rightward

andagainst Leftward

Criterion to answer “Right”

Criterion to answer “Left”

Diffusion to bound model

Shadlen & Gold (2004)Palmer et al (2005)

kC

C is motion strength (coherence)Seems arbitrary but why not?

Page 70: Bayesian Perception

MT responses

60

40

20

0

Firi

ng r

ate

Direction (deg)

Height scales with coherence

MT MTRight Leftr r

Right Left

Page 71: Bayesian Perception

Diffusion to bound model

• Performance reaction time trade-off

Page 72: Bayesian Perception

Best fitting chronometric function“Diffusion to bound”

t(C) B

kCtanh(BkC) tnd

Page 73: Bayesian Perception

Predicted psychometric function “Diffusion to bound”

P 1

1 e 2k C B

Page 74: Bayesian Perception

Average LIP activity in RT motion task

Roitman & Shadlen, 2002 J. Neurosci.

choose Tin

choose Tout

Note the clear asymmetry

Page 75: Bayesian Perception

Bayesian Strategy

• The Bayesian strategy in this case consists in computing the posterior distribution given all activity patterns from MT up to the current time,

MT:1MT

:1 MT:1

MT

MT MT MT1:1 1:1

MT MT1:1

MT MT1:1

||

|

| , |

| |

| |

t

t

t

t

t t t

t t

t t

p s p sp s

p

p s p s

p s p s p s

p s p s p s

p s p s

rr

r

r

r r r

r r

r r

Page 76: Bayesian Perception

Bayesian Strategy

• Race models and Bayesian approach

MT MT MT:1 1:1

MT MT MT:1 1:1

MT

1

| | |

log | log | log |

log |

t t t

t t t

t

p s p s p s

p s p s p s

p s

r r r

r r r

r

Temporal sum

Unless is related to …

But not over rMT, or MT MTRight Leftr r

MTlog |p srMT MTRight Leftr r

Page 77: Bayesian Perception

Bayesian Strategy

• Are neurons computing log likelihood?

• The difference of activity between two neurons with preferred directions 180 deg away is proportional to a log likelihood ratio.

Page 78: Bayesian Perception

Bayesian Strategy

• Log likelihood ratio:

MT MT:1

MT MT1:1

| |log log

| |

tt

t

p s R p s R

p s L p s L

r r

r r

LR MT MTR, L,L r r

MT:1 MT MT

R, L,MT1:1

|log

|

tt

t

p s R

p s L

r

r rr

MT

LR

MT

|log

|

p s RL

p s L

r

r

Page 79: Bayesian Perception

Bayesian Strategy

• Is the log likelihood ration proportional to ?

2MT MTR L R LMT MT

R L 2

2MT MTR L R LMT MT

R L 2

R R| exp

2

L L| exp

2

p R

p L

r rr r

r rr r

MT MTR, L, r r

Coherence level

MT MT2 2R L MT MT MT MT

R L R L R L R LMT MTR L

|log R R L L

|

p R

p L

r rr r r r

r r

MT MTR L R LR R r r

MT MTR LC r r

Page 80: Bayesian Perception

Bayesian Strategy

• Note that if you know , you still don’t know the log likelihood ration unless you’re given the coherence level.

• Therefore, the animal can’t know its confidence level (the log likelihood ratio) unless it estimates C…

• Another important point: if we stop the race at a fixed level of we stop at different levels of log likelihood ratio depending on the coherence. This is why performance gets better when coherence increases, even though we always stop at the same activity threshold.

MT MTR, L, r r

MT MTR, L, r r

Page 81: Bayesian Perception

Decision Making

• Does that mean the animal does not know how much to trust its own decision?

• Does that mean the brain does not encode uncertainty or probability distribution?

• Seems unlikely…

Page 82: Bayesian Perception

• To be continued…