bayesian methods for inverse problems of imaging systemsdjafari.free.fr/pdf/tu_seminar.pdf ·...

68
. Bayesian methods for Inverse problems of imaging systems Ali Mohammad-Djafari Laboratoire des Signaux et Syst` emes, UMR8506 CNRS-SUPELEC-UNIV PARIS SUD 11 SUPELEC, 91192 Gif-sur-Yvette, France http://lss.supelec.free.fr Email: [email protected] http://djafari.free.fr Seminar at EECE Dept of the Tehran University, December 8, 2014 A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 1/68

Upload: others

Post on 06-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

.

Bayesian methods for Inverse problems of imagingsystems

Ali Mohammad-DjafariLaboratoire des Signaux et Systemes,

UMR8506 CNRS-SUPELEC-UNIV PARIS SUD 11SUPELEC, 91192 Gif-sur-Yvette, France

http://lss.supelec.free.frEmail: [email protected]

http://djafari.free.frSeminar at EECE Dept of the Tehran University,

December 8, 2014

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 1/68

Page 2: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Content

1. Inverse problems examples in imaging science

2. Classical methods: Generalized inversion and Regularization

3. Bayesian approach for inverse problems

4. Prior modeling- Gaussian, Generalized Gaussian (GG), Gamma, Beta,- Gauss-Markov, GG-Marvov- Sparsity enforcing priors (Bernouilli-Gaussian, B-Gamma,Cauchy, Student-t, Laplace)

5. Full Bayesian approach (Estimation of hyperparameters)

6. Hierarchical prior models

7. Bayesian Computation and Algorithms for Hierarchical models

8. Gauss-Markov-Potts family of priors

9. Applications and case studies

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 2/68

Page 3: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Seeing outside of a body: Making an image with a camera,

a microscope or a telescope

f(x, y) real scene

g(x, y) observed image

Forward model: Convolution

g(x, y) =

∫∫f(x′, y′)h(x− x′, y − y′) dx′ dy′ + ǫ(x, y)

h(x, y): Point Spread Function (PSF) of the imaging system

Inverse problem: Image restoration

Given the forward model H (PSF h(x, y)))and a set of data g(xi, yi), i = 1, · · · ,Mfind f(x, y)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 3/68

Page 4: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Making an image with an unfocused cameraForward model: 2D Convolution

g(x, y) =

∫∫f(x′, y′)h(x− x′, y − y′) dx′ dy′ + ǫ(x, y)

f(x, y) h(x, y) +

ǫ(x, y)

g(x, y)

Inversion: Image Deconvolution or Restoration

?⇐=

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 4/68

Page 5: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Making an image of the interior of a body

Passive Imaging

object

r

rrr

r

r

r

r

rrrr

r

r

r

r

r

rrr

r

r

r

r

rrrr

r

r

r

r

object

waveIncident

Active Imaging

Measurement

waveIncident

object

Reflection

Measurement

waveIncident

object

Transmission

Forward problem: Knowing the object predict the dataInverse problem: From measured data find the object

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 5/68

Page 6: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Seeing inside of a body: Computed Tomography

f(x, y) a section of a real 3D body f(x, y, z)

gφ(r) a line of observed radiographe gφ(r, z)

Forward model:Line integrals or Radon Transform

gφ(r) =

Lr,φ

f(x, y) dl + ǫφ(r)

=

∫∫f(x, y) δ(r − x cosφ− y sinφ) dx dy + ǫφ(r)

Inverse problem: Image reconstruction

Given the forward model H (Radon Transform) anda set of data gφi

(r), i = 1, · · · ,Mfind f(x, y)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 6/68

Page 7: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Computed Tomography: Radon Transform

Forward: f(x, y) −→ g(r, φ)Inverse: f(x, y) ←− g(r, φ)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 7/68

Page 8: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Microwave or ultrasound imaging

Measurs: diffracted wave by the object g(ri)Unknown quantity: f(r) = k20(n

2(r)− 1)Intermediate quantity : φ(r)

g(ri) =

∫∫

D

Gm(ri, r′)φ(r′) f(r′) dr′, ri ∈ S

φ(r) = φ0(r) +

∫∫

D

Go(r, r′)φ(r′) f(r′) dr′, r ∈ D

Born approximation (φ(r′) ≃ φ0(r′)) ):

g(ri) =

∫∫

D

Gm(ri, r′)φ0(r

′) f(r′) dr′, ri ∈ S

Discretization :g= GmFφ

φ= φ0 +GoFφ−→

g = H(f )with F = diag(f)H(f) = GmF (I −GoF )−1φ0

Object

Incidentplane Wave

x

y

z

Measurementplane

rr'

r

r

r

r

r

r

r

r

r

r

rr

r

r

r

φ0 (φ, f)

g

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 8/68

Page 9: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Fourier Synthesis in different imaging systems

G(ωx, ωy) =

∫∫f(x, y) exp [−j (ωxx+ ωyy)] dx dy

v

u

v

u

v

u

v

u

X ray Tomography Diffraction Eddy current SAR & Radar

Forward problem: Given f(x, y) compute G(ωx, ωy)Inverse problem : Given G(ωx, ωy) on those algebraic lines,cercles or curves, estimate f(x, y)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 9/68

Page 10: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Invers Problems: other examples and applications

X ray, Gamma ray Computed Tomography (CT)

Microwave and ultrasound tomography

Positron emission tomography (PET)

Magnetic resonance imaging (MRI)

Photoacoustic imaging

Radio astronomy

Geophysical imaging

Non Destructive Evaluation (NDE) and Testing (NDT)techniques in industry

Hyperspectral imaging

Earth observation methods (Radar, SAR, IR, ...)

Survey and tracking in security systems

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 10/68

Page 11: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

3. General formulation of inverse problems and classical

methods

General non linear inverse problems:

g(s) = [Hf(r)](s) + ǫ(s), r ∈ R, s ∈ S

Linear models:

g(s) =

∫∫f(r)h(r, s) dr + ǫ(s)

If h(r, s) = h(r − s) −→ Convolution.

Discrete data:

g(si) =

∫∫h(si, r) f(r) dr + ǫ(si), i = 1, · · · ,m

Inversion: Given the forward model H and the datag = g(si), i = 1, · · · ,m) estimate f(r)

Well-posed and Ill-posed problems (Hadamard):existance, uniqueness and stability

Need for prior information

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 11/68

Page 12: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Inverse problems: Discretization

g(si) =

∫∫h(si, r) f(r) dr + ǫ(si), i = 1, · · · ,M

f(r) is assumed to be well approximated by

f(r) ≃N∑

j=1

fj bj(r)

with bj(r) a basis or any other set of known functions

g(si) = gi ≃N∑

j=1

fj

∫∫h(si, r) bj(r) dr, i = 1, · · · ,M

g = Hf + ǫ with Hij =

∫∫h(si, r) bj(r) dr

H is huge dimensional

LS solution : f = argminf Q(f) withQ(f) =

∑i |gi − [Hf ]i|

2 = ‖g −Hf‖2

does not give satisfactory result.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 12/68

Page 13: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Inverse problems: Deterministic methodsData matching

Observation modelgi = hi(f) + ǫi, i = 1, . . . ,M −→ g = H(f ) + ǫ

Misatch between data and output of the model ∆(g,H(f ))

f = argminf∆(g,H(f ))

Examples:

– LS ∆(g,H(f )) = ‖g −H(f )‖2 =∑

i

|gi − hi(f)|2

– Lp ∆(g,H(f )) = ‖g −H(f )‖p =∑

i

|gi − hi(f)|p , 1 < p < 2

– KL ∆(g,H(f )) =∑

i

gi lngi

hi(f)

In general, does not give satisfactory results for inverseproblems.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 13/68

Page 14: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Inverse problems: Regularization theory

Inverse problems = Ill posed problems−→ Need for prior information

Functional space (Tikhonov):

g = H(f) + ǫ −→ J(f) = ||g −H(f)||22 + λ||Df ||22

Finite dimensional space (Philips & Towmey): g = H(f ) + ǫ

• Minimum norme LS (MNLS): J(f) = ||g −H(f )||2 + λ||f ||2

• Classical regularization: J(f) = ||g −H(f )||2 + λ||Df ||2

• More general regularization:

J(f) = Q(g −H(f)) + λΩ(Df)or

J(f) = ∆1(g,H(f )) + λ∆2(f ,f∞)Limitations:• Errors are considered implicitly white and Gaussian• Limited prior information on the solution• Lack of tools for the determination of the hyperparameters

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 14/68

Page 15: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Deconvolution example

50 100 150 200 250 300−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50 100 150 200 250 300−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Forward: f(t) −→ g(t) = h(t) ∗ f(t) + ǫ(t)

Inverse: f(t) ←− g(t)

50 100 150 200 250 300−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50 100 150 200 250 300−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50 100 150 200 250 300−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Inverse Filtering Wiener Regularization

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 15/68

Page 16: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Image restoration examplef f g

original f PSF h Blurred & noisy gfh fh fh

Wiener f Quadratic reg. f L1 reg. f

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 16/68

Page 17: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Inversion: Probabilistic methods

Taking account of errors and uncertainties −→ Probability theory

Maximum Likelihood (ML)

Minimum Inaccuracy (MI)

Probability Distribution Matching (PDM)

Maximum Entropy (ME) and Information Theory (IT)

Bayesian Inference (Bayes)

Advantages:

Explicit account of the errors and noise

A large class of priors via explicit or implicit modeling

A coherent approach to combine information content of thedata and priors

Limitations:

Practical implementation and cost of calculation

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 17/68

Page 18: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

4. Bayesian inference for inverse problems

M : g = Hf + ǫ

Observation modelM + Hypothesis on the noise ǫ −→p(g|f ;M) = pǫ(g −Hf)

A priori information p(f |M)

Bayes : p(f |g;M) =p(g|f ;M) p(f |M)

p(g|M)

Link with regularization :

Maximum A Posteriori (MAP) :

f = argmaxfp(f |g) = argmax

fp(g|f) p(f)

= argminf− ln p(g|f)− ln p(f)

with Q(g,Hf ) = − ln p(g|f) and λΩ(f) = − ln p(f)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 18/68

Page 19: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Case of linear models and Gaussian priorsg = Hf + ǫ

Hypothesis on the noise: ǫ ∼ N (0, σ2ǫ I)

p(g|f) ∝ exp

[−

1

2σ2ǫ

‖g −Hf‖2]

Hypothesis on f : f ∼ N (0, σ2fI)

p(f) ∝ exp

[−

1

2σ2f

‖f‖2

]

A posteriori:

p(f |g) ∝ exp

[−

1

2σ2ǫ

(‖g −Hf‖2 +

σ2ǫ

σ2f

‖f‖2

)]

MAP : f = argmaxf p(f |g) = argminf J(f)

with J(f) = ‖g −Hf‖2 + λ‖f‖2, λ = σ2ǫ

σ2f

Advantage : characterization of the solution

f |g ∼ N (f , P ) with f =(HtH + λI

)−1Htg, P = σ2

ǫ

(HtH + λI

)−1

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 19/68

Page 20: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

MAP estimation with other priors:

f = argminfJ(f ) with J(f ) = ‖g −Hf‖2 + λΩ(f)

Separable priors:

Gaussian:p(fj) ∝ exp

[−α|fj|

2]−→ Ω(f) = ‖f‖2 = α

∑j |fj |

2

Gamma:p(fj) ∝ fα

j exp [−βfj] −→ Ω(f) = α∑

j ln fj + βfj Beta:

p(fj) ∝ fαj (1− fj)

β −→ Ω(f) = α∑

j ln fj +β∑

j ln(1− fj)

Generalized Gaussian:p(fj) ∝ exp [−α|fj|

p] , 1 < p < 2→ Ω(f) = α∑

j |fj|p,

Markovian models:

p(fj|f) ∝ exp

−α

i∈Nj

φ(fj, fi)

−→ Ω(f) = α

j

i∈Nj

φ(fj , fi),

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 20/68

Page 21: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

MAP estimation and Compressed Sensing

g = Hf + ǫ

f = Wz

W a code book matrix, z coefficients

Gaussian:

p(z) = N (0, σ2zI) ∝ exp

[− 1

2σ2z

∑j |zj|

2]

J(z) = − ln p(z|g) = ‖g −HWz‖2 + λ∑

j |zj |2

Generalized Gaussian (sparsity, β = 1):

p(z) ∝ exp[−λ∑

j |zj |β]

J(z) = − ln p(z|g) = ‖g −HWz‖2 + λ∑

j |zj |β

z = argminz J(z) −→ f = Wz

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 21/68

Page 22: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Bayesian Estimation: Two simple priors

Example 1: Linear Gaussian case:

p(g|f , θ1) = N (Hf , θ1I)p(f |θ2) = N (0, θ2I)

−→ p(f |g,θ) = N (f , P )

with f = (H ′H + λI)−1H ′g

P = θ1(H′H + λI)−1, λ = θ1

θ2

f = argminfJ(f) with J(f) = ‖g −Hf‖22 + λ‖f‖22

Example 2: Double Exponential prior & MAP:

f = argminfJ(f) with J(f) = ‖g −Hf‖22 + λ‖f‖1

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 22/68

Page 23: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Deconvolution example

0 20 40 60 80 100 120 140 160 180 200−10

−8

−6

−4

−2

0

2

4

6

8

10

f(t)

0 20 40 60 80 100 120 140 160 180 200−10

−8

−6

−4

−2

0

2

4

6

8

10

g(t)

Forward: f(t) −→ g(t) = h(t) ∗ f(t) + ǫ(t)

Inverse: f(t) ←− g(t)

0 20 40 60 80 100 120 140 160 180 200−10

−8

−6

−4

−2

0

2

4

6

8

10

fh(t)fh(t)abs(fh)>tsh

0 20 40 60 80 100 120 140 160 180 200−10

−8

−6

−4

−2

0

2

4

6

8

10

fh(t)fh(t)abs(fh)>tsh

Quadratic Reg. (Gaussian) L1 Reg. (Laplace)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 23/68

Page 24: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Main advantages of the Bayesian approach

MAP = Regularization

Posterior mean ? Marginal MAP ?

More information in the posterior law than only its mode orits mean

Meaning and tools for estimating hyper parameters

Meaning and tools for model selection

More specific and specialized priors, particularly through thehidden variables

More computational tools: Expectation-Maximization for computing the maximum

likelihood parameters MCMC for posterior exploration Variational Bayes for analytical computation of the posterior

marginals ...

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 24/68

Page 25: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Two main steps in the Bayesian approach Prior modeling

Separable:Gaussian, Gamma,Sparsity enforcing: Generalized Gaussian, mixture ofGaussians, mixture of Gammas, ...

Markovian:Gauss-Markov, GGM, ...

Markovian with hidden variables(contours, region labels)

Choice of the estimator and computational aspects MAP, Posterior mean, Marginal MAP MAP needs optimization algorithms Posterior mean needs integration methods Marginal MAP and Hyperparameter estimation need

integration and optimization Approximations:

Gaussian approximation (Laplace) Numerical exploration MCMC Variational Bayes (Separable approximation)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 25/68

Page 26: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

5. Prior modeling of signals

Gaussian Generalized Gaussianp(fj) ∝ exp

[−α|fj |

2]

p(fj) ∝ exp [−α|fj|p] , 1 ≤ p ≤ 2

Gamma Betap(fj) ∝ fα

j exp [−βfj] p(fj) ∝ fαj (1− fj)

β

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 26/68

Page 27: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Sparsity enforcing prior models Sparse signals: Direct sparsity

0 20 40 60 80 100 120 140 160 180 200−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 2000

0.5

1

1.5

2

2.5

3

Sparse signals: Sparsity in a Transform domaine

0 20 40 60 80 100 120 140 160 180 200−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200−6

−4

−2

0

2

4

6

0 20 40 60 80 100 120 140 160 180 200−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

1

2

3

4

5

6

7

8

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 27/68

Page 28: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Sparsity enforcing prior models

Simple heavy tailed models: Generalized Gaussian (particular case: Double Exponential) Student-t (particular case: Cauchy) Elastic net

Symmetric Weibull, Symmetric Rayleigh Generalized hyperbolic

Hierarchical mixture models: Mixture of Gaussians Bernoulli-Gaussian

Mixture of Gammas Bernoulli-Gamma Mixture of Dirichlet Bernoulli-Multinomial

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 28/68

Page 29: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Simple heavy tailed models

• Generalized Gaussian ((particular case: Double Exponential)

p(f |γ, β) =∏

j

GG(f j |γ, β) ∝ exp

−γ

j

|f j|β

β = 1 Double exponential or Laplace.0 < β ≤ 1 are of great interest for sparsity enforcing.

• Student-t ((particular case: Cauchy models)

p(f |ν) =∏

j

St(f j|ν) ∝ exp

−ν + 1

2

j

log(1 + f2

j/ν)

Cauchy model is obtained when ν = 1.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 29/68

Page 30: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Mixture models• Mixture of two Gaussians (MoG2) model

p(f |λ, v1, v0) =∏

j

(λN (f j|0, v1) + (1− λ)N (f j |0, v0)

)

• Bernoulli-Gaussian (BG) model

p(f |λ, v) =∏

j

p(f j) =∏

j

(λN (f j |0, v) + (1− λ)δ(f j)

)

• Mixture of Gammas

p(f |λ, v1, v0) =∏

j

(λG(f j |α1, β1) + (1− λ)G(f j|α2, β2)

)

• Bernoulli-Gamma model

p(f |λ, α, β) =∏

j

[λG(f j |α, β) + (1− λ)δ(f j)

]

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 30/68

Page 31: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

6. Full Bayesian approachM : g = Hf + ǫ

Forward & errors model: −→ p(g|f ,θ1;M) Prior models −→ p(f |θ2;M) Hyperparameters θ = (θ1,θ2) −→ p(θ|M)

Bayes: −→ p(f ,θ|g;M) = p(g|f ,θ;M) p(f |θ;M) p(θ|M)p(g|M)

Joint MAP: (f , θ) = argmax(f ,θ)p(f ,θ|g;M)

Marginalization 1:

p(f |g;M) =

∫∫p(f ,θ|g;M) dθ −→ f

Marginalization 2:

p(θ|g;M) =

∫∫p(f ,θ|g;M) df −→ θ

Approximate p(f ,θ|g;M) by a separable oneq(f ,θ) = q1(f)q2(θ) and then use them separatelyto find f and θ.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 31/68

Page 32: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Summary of Bayesian estimation 1

Simple Bayesian Model and Estimation

θ2

p(f |θ2)

Prior

θ1

p(g|f ,θ1)

Likelihood

−→ p(f |g,θ)

Posterior

−→ f

Full Bayesian Model and Hyperparameter Estimation

↓ α,β

Hyperpraram. model p(θ|α,β)

p(θ2)

p(f |θ2)

Prior

p(θ1)

p(g|f ,θ1)

Likelihood

−→p(f ,θ|g,α,β)

Joint Posterior

−→ f

−→ θ

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 32/68

Page 33: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Summary of Bayesian estimation 2

Marginalization 1

p(f ,θ|g)

Joint Posterior

−→ p(θ|g)

Marginalize over θ

−→ f

Marginalization 2

p(f ,θ|g)

Joint Posterior

−→ p(θ|g)

Marginalize over f

−→ θ −→ p(f |θ,g) −→ f

Variational Bayesian Approximation

p(f ,θ|g) −→VariationalBayesian

Approximation

−→ q1(f) −→ f

−→ q2(θ) −→ θ

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 33/68

Page 34: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Variational Bayesian Approximation

Full Bayesian: p(f ,θ|g) ∝ p(g|f ,θ1) p(f |θ2) p(θ)

Approximate p(f ,θ|g) by q(f ,θ|g) = q1(f |g) q2(θ|g)and then continue computations.

Criterion KL(q(f ,θ|g) : p(f ,θ|g))

KL(q : p) =

∫ ∫q ln q/p =

∫ ∫q1q2 ln

q1q2p

Iterative algorithm q1 −→ q2 −→ q1 −→ q2, · · ·

q1(f) ∝ exp[〈ln p(g,f ,θ;M)〉q2(θ)

]

q2(θ) ∝ exp[〈ln p(g,f ,θ;M)〉q1(f)

]

p(f ,θ|g) −→VariationalBayesian

Approximation

−→ q1(f) −→ f

−→ q2(θ) −→ θ

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 34/68

Page 35: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

7. Hierarchical models and hidden variables All the mixture models and some of simple models can be

modeled via hidden variables z.

p(f) =K∑

k=1

αkpk(f) −→

p(f |z = k) = pk(f),P (z = k) = αk,

∑k αk = 1

Example 2: Student-t model

St(f |ν) ∝ exp

[−ν + 1

2log(1 + f2/ν

)]

Infinite mixture

St(f |ν) ∝=

∫ ∞

0N (f |, 0, 1/z)G(z|α, β) dz, with α = β = ν/2

p(f |z) =∏

j p(fj|zj) =∏

j N (fj|0, 1/zj) ∝ exp[−1

2

∑j zjf

2j

]

p(z|α, β) =∏

j G(zj |α, β) ∝∏

j zj(α−1) exp [−βzj ]

∝ exp[∑

j(α− 1) ln zj − βzj

]

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 35/68

Page 36: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Summary of Bayesian estimation 3• Full Bayesian Hierarchical Model with Hyperparameter Estimation

↓ α,β,γ

Hyper prior model p(θ|α,β,γ)

p(θ3)

p(z|θ3)

Hidden variable

p(θ2)

p(f |z,θ2)

Prior

p(θ1)

p(g|f ,θ1)

Likelihood

−→ p(f ,z,θ|g)

Joint Posterior

−→ f

−→ z

−→ θ

• Full Bayesian Hierarchical Model and Variational Approximation

↓ α,β,γ

Hyper prior model p(θ|α,β,γ)

p(θ3)

p(z|θ3)

Hidden variable

p(θ2)

p(f |z, θ2)

Prior

p(θ1)

p(g|f , θ1)

Likelihood

−→ p(f , z, θ|g)

Joint Posterior

−→

VBAq1(f )q2(z)q3(θ)

−→ f

−→ z

−→ θ

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 36/68

Page 37: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

8. Bayesian Computation and Algorithms for Hierarchical

models

Often, the expression of p(f ,z,θ|g) is complex.

Its optimization (for Joint MAP) orits marginalization or integration (for Marginal MAP or PM)is not easy

Two main techniques:MCMC and Variational Bayesian Approximation (VBA)

MCMC:Needs the expressions of the conditionalsp(f |z,θ,g), p(z|f ,θ,g), and p(θ|f ,z,g)

VBA: Approximate p(f ,z,θ|g) by a separable one

q(f ,z,θ|g) = q1(f) q2(z) q3(θ)

and do any computations with these separable ones.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 37/68

Page 38: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Which images I am looking for?

50 100 150 200 250 300

50

100

150

200

250

300

350

400

450

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 38/68

Page 39: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Which image I am looking for?

Gauss-Markov Generalized GM

Piecewize Gaussian Mixture of GM

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 39/68

Page 40: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

9. Gauss-Markov-Potts prior models for images

f(r) z(r) c(r) = 1− δ(z(r)− z(r′))

p(f(r)|z(r) = k,mk, vk) = N (mk, vk)

p(f(r)) =∑

k

P (z(r) = k)N (mk, vk) Mixture of Gaussians

Separable iid hidden variables: p(z) =∏

r p(z(r)) Markovian hidden variables: p(z) Potts-Markov:

p(z(r)|z(r′), r′ ∈ V(r)) ∝ exp

γ

r′∈V(r)

δ(z(r) − z(r′))

p(z) ∝ exp

γ∑

r∈R

r′∈V(r)

δ(z(r) − z(r′))

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 40/68

Page 41: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Four different cases

To each pixel of the image is associated 2 variables f(r) and z(r)

f |z Gaussian iid, z iid :Mixture of Gaussians

f |z Gauss-Markov, z iid :Mixture of Gauss-Markov

f |z Gaussian iid, z Potts-Markov :Mixture of Independent Gaussians(MIG with Hidden Potts)

f |z Markov, z Potts-Markov :Mixture of Gauss-Markov(MGM with hidden Potts)

f(r)

z(r)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 41/68

Page 42: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Application of CT in NDTReconstruction from only 2 projections

g1(x) =

∫f(x, y) dy, g2(y) =

∫f(x, y) dx

Given the marginals g1(x) and g2(y) find the joint distributionf(x, y).

Infinite number of solutions : f(x, y) = g1(x) g2(y)Ω(x, y)Ω(x, y) is a Copula:

∫Ω(x, y) dx = 1 and

∫Ω(x, y) dy = 1

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 42/68

Page 43: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Application in CT

20 40 60 80 100 120

20

40

60

80

100

120

g|f f |z z c

g = Hf + ǫ iid Gaussian iid c(r) ∈ 0, 1g|f ∼ N (Hf , σ2

ǫ I) or or 1− δ(z(r) − z(r′))Gaussian Gauss-Markov Potts binary

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 43/68

Page 44: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Proposed algorithm

p(f ,z,θ|g) ∝ p(g|f ,z,θ) p(f |z,θ) p(θ)

General scheme:

f ∼ p(f |z, θ,g) −→ z ∼ p(z|f , θ,g) −→ θ ∼ (θ|f , z,g)

Iterative algorithme:

Estimate f using p(f |z, θ,g) ∝ p(g|f ,θ) p(f |z, θ)Needs optimisation of a quadratic criterion.

Estimate z using p(z|f , θ,g) ∝ p(g|f , z, θ) p(z)Needs sampling of a Potts Markov field.

Estimate θ usingp(θ|f , z,g) ∝ p(g|f , σ2

ǫ I) p(f |z, (mk, vk)) p(θ)Conjugate priors −→ analytical expressions.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 44/68

Page 45: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Results

Original Backprojection Filtered BP LS

Gauss-Markov+pos GM+Line process GM+Label process

20 40 60 80 100 120

20

40

60

80

100

120

c 20 40 60 80 100 120

20

40

60

80

100

120

z 20 40 60 80 100 120

20

40

60

80

100

120

c

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 45/68

Page 46: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Application in Microwave imaging(Linearized Spectral method: Fourier Synthesis)

g(ω) =

∫f(r) exp [−j(ω.r)] dr + ǫ(ω)

g(u, v) =

∫∫f(x, y) exp [−j(ux+ vy)] dx dy + ǫ(u, v)

g = Hf + ǫ

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

f(x, y) g(u, v) f IFT f Proposed method

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 46/68

Page 47: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Color (Multi-spectral) image deconvolution

fi(x, y) h(x, y) +

ǫi(x, y)

gi(x, y)

Observation model : gi = Hfi + ǫi, i = 1, 2, 3

?

⇐=

Same segmentation z for the three components fi, i = 1, 2, 3A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 47/68

Page 48: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Images fusion and joint segmentation(with O. Feron)

gi(r) = fi(r) + ǫi(r)p(fi(r)|z(r) = k) = N (mik, σ

2i k)

p(f |z) =∏

i p(fi|z)

p(z) ∝ exp[γ∑

r∈R

∑r′∈V(r) δ(z(r) − z(r′))

]

g1

g2

−→f1

f2

z

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 48/68

Page 49: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Data fusion in medical imaging(with O. Feron)

gi(r) = fi(r) + ǫi(r)p(fi(r)|z(r) = k) = N (mik, σ

2i k)

p(f |z) =∏

i p(fi|z)

p(z) ∝ exp[γ∑

r∈R

∑r′∈V(r) δ(z(r) − z(r′))

]

g1

g2

−→f1

f2

z

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 49/68

Page 50: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Super-Resolution(with F. Humblot)

gi(r) = [DMBfi(r) + ǫi(r)p(fi(r)|z(r) = k) = N (mik, σ

2i k)

p(f |z) =∏

i p(fi|z)

p(z) ∝ exp[γ∑

r∈R

∑r′∈V(r) δ(z(r) − z(r′))

]

?

=⇒

Low Resolution images High Resolution imageA. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 50/68

Page 51: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Joint segmentation of hyper-spectral images

(with N. Bali & A. Mohammadpour)

gi(r) = fi(r) + ǫi(r)p(fi(r)|z(r) = k) = N (mik, σ

2i k), k = 1, · · · ,K

p(f |z) =∏

i p(fi|z)

p(z) ∝ exp[γ∑

r∈R

∑r′∈V(r) δ(z(r) − z(r′))

]

mik follow a Markovian model along the index i

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 51/68

Page 52: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Segmentation of a video sequence of images(with P. Brault)

gi(r) = fi(r) + ǫi(r)p(fi(r)|zi(r) = k) = N (mik, σ

2i k), k = 1, · · · ,K

p(f |z) =∏

i p(fi|zi)

p(z) ∝ exp[γ∑

r∈R

∑r′∈V(r) δ(z(r) − z(r′))

]

zi(r) follow a Markovian model along the index i

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 52/68

Page 53: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Source separation: (with H. Snoussi & M. Ichir)

gi(r) =∑N

j=1Aijfj(r) + ǫi(r)

p(fj(r)|zj(r) = k) = N (mjk, σ2j k)

p(z) ∝ exp[γ∑

r∈R

∑r′∈V(r) δ(z(r) − z(r′))

]

p(Aij) = N (A0ij, σ20 ij)

f g f z

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 53/68

Page 54: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Microwave imaging for breast cancer detection

(with L. Gharsally and B. Duchene)

2 cm

" D$ %

" D& %

12.2 cm

receivers

10 cm

7.5 cm

D' D

breast

S

tumor

skin

" D) %

source

Breast model built up fromMRI scan [Zastrow et al.2008]

64 sources

64 receivers

6 frequencies in the band0.5− 3 GHz

D = Nx × Ny D1 (ǫ1, σ1(S/m)) D2 (ǫ2, σ2(S/m)) D3 (ǫ3, σ3(S/m)) D4 (ǫ3, σ3(S/m))

120 × 120 (10, 0.5) (6.12, 0.11) ([2.46, 60.6], [0.01, 2.28]) (55.3, 1.57)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 54/68

Page 55: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Microwave imaging for breast cancer detection

CSI: Contrast Source Inversion, VBA: Variational Bayesian Approach,MGI: Independent Gaussian mixture, MGM: Gauss-Markov mixture

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 55/68

Page 56: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Optical Diffraction Tomographic imaging

(with H. Ayasso and B. Duchene)

Ω

AAAAAAAAAA

AAAAAAA

AAA

x

y

θ

siliconD2

D1air

γ12

θ1incident wave

observation

D

AAAAAAAAγ12 silicon0.3 µm

0.2 µm

0.11 µmresin

AAAAAAAAγ12 silicon0.5 µm

1 µm

0.14 µmresin

0.5 µmO1

O2

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 56/68

Page 57: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Optical Diffraction Tomographic imaging(with H. Ayasso and B. Duchene)

0

0.05

0.1

0.15

0.2

-1.5 -0.5 0.5 1.5

y (µm)

x (µm)

0

0.05

0.1

0.15

0.2

-1.5 -0.5 0.5 1.5y (µm)

x (µm)

0

0.05

0.1

0.15

0.2

-1.5 -0.5 0.5 1.5y (µm)

x (µm)

AAAAAAAAA

0

0.5

1.0

1.5

2.0

0

0.3

0.6

0.9

1.8

1.2

1.5

0

0.2

0.4

0.6

0.8

0

0.4

0.8

1.2

2.4

1.6

2.0

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA

AAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAA

AAAAAAAAAA

AAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA

AAAAAA

AAAAAAAAAAAAAAAA0

0.5

1

1.5

2

-1.5 -0.5 0.5 1.5y (µm)

χ / k12

Real profile

Bayesian

CSIAA

0

0.05

0.1

0.15

-1 -0.5 0 0.5 1AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAA

-1 -0.5 0 0.5 1AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAA0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1AAAAAAAAAAAA

AAAAAAAAAAAAAA

AAAAAAAAAAAA

AAAAAAAAAAAAAAA

AAAAAAAAAAAA

AAAAAAAAAAAAAAA

0

0.05

0.1

0.15

AAAAAAAAAA

y (µm)

y (µm)

x (µm)

y (µm)

χ / k12

y (µm)

x (µm)

0

0.05

0.1

0.15

x (µm)

x”x”

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 57/68

Page 58: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Acoustic source localization [Ning CHU et al]

Vehicleacousticimagingat 2500Hz

Beamforming

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.5

1

−10

−8

−6

−4

−2

0

MAP

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.5

1

−10

−8

−6

−4

−2

0

0A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 58/68

Page 59: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Acoustic source localization (Simulation)

(a) x (m)

y (m

)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−8

−6

−4

−2

0

2

(b) x (m)

y (m

)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−4

−2

0

2

4

6

8

10

(c) x (m)

y (m

)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−12

−10

−8

−6

−4

−2

0

2

(d) x (m)

y (m

)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−12

−10

−8

−6

−4

−2

0

2

Simulation at 2500Hz, 0dB SNR in colored noises, 14dB display: (a)

Source powers (b) Beamforming powers (c) Bayesian MAP inversion and

(d) Proposed VBA inversionA. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 59/68

Page 60: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Conclusions

Bayesian Inference for inverse problems

Different prior modeling for signals and images:Separable, Markovian, without and with hidden variables

Sprasity enforcing priors

Gauss-Markov-Potts models for images incorporating hiddenregions and contours

Two main Bayesian computation tools: MCMC and VBA

Application in different CT (X ray, Microwaves, PET, SPECT)

Current Projects and Perspectives :

Efficient implementation in 2D and 3D cases

Evaluation of performances and comparison between MCMCand VBA methods

Application to other linear and non linear inverse problems:(PET, SPECT or ultrasound and microwave imaging)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 60/68

Page 61: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Current Applications and Perspectives

We use these models for inverse problems in different signal andimage processing applications such as:

Period estimation in biological time series

Signal deconvolution in Proteomic and molecular imaging

X ray Computed Tomography

Diffraction Optical Tomography

Microwave Imaging, Acoustic imaging and sources localization

Synthetic Aperture Radar (SAR) Imaging

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 61/68

Page 62: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Thanks to:Graduated PhD students:1. C. Cai (2013: Multispectral X ray Tomography)2. N. Chu (2013: Acoustic sources localization)3. Th. Boulay (2013: Non Cooperative Radar Target Recognition)4. R. Prenon (2013: Proteomic and Masse Spectrometry)5. Sh. Zhu (2012: SAR Imaging)6. D. Fall (2012: Emission Positon Tomography, Non Parametric

Bayesian)7. D. Pougaza (2011: Copula and Tomography)8. H. Ayasso (2010: Optical Tomography, Variational Bayes)9. S. Fekih-Salem (2009: 3D X ray Tomography)10. N. Bali (2007: Hyperspectral imaging)11. O. Feron (2006: Microwave imaging)12. F. Humblot (2005: Super-resolution)13. M. Ichir (2005: Image separation in Wavelet domain)14. P. Brault (2005: Video segmentation using Wavelet domain)15. H. Snoussi (2003: Sources separation)16. Ch. Soussen (2000: Geometrical Tomography)17. G. Montemont (2000: Detectors, Filtering)18. H. Carfantan (1998: Microwave imaging)19. S. Gautier (1996: Gamma ray imaging for NDT)20. M. Nikolova (1994: Piecewise Gaussian models and GNC)21. D. Premel (1992: Eddy current imaging)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 62/68

Page 63: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Thanks to:

Current PhD students: L. Gharsali (Microwave imaging for Cancer detection) M. Dumitru (Multivariate time series analysis for biological signals) S. AlAli (Electrical imaging of CO2 stocking under the earth)

Master students: A. Cai (Non-circular X ray Tomography) F. Fuc (Multi component signal analysis for biology applications)

Post-Docs: J. Lapuyade (2011: Dimentionality Reduction and multivariate

analysis) S. Su (2006: Color image separation) A. Mohammadpour (2004: HyperSpectral image segmentation)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 63/68

Page 64: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Thanks my colleagues and collaborators

B. Duchene & A. Joisel (L2S) (Inverse scattering and MicrowaveImaging)

N. Gac (L2S) (GPU Implementation) Th. Rodet (L2S) (Computed Tomography)

—————– A. Vabre & S. Legoupil (CEA-LIST), (3D X ray Tomography) E. Barat (CEA-LIST) (Positon Emission Tomography, Non

Parametric Bayesian) C. Comtat (SHFJ, CEA) (PET, Spatio-Temporal Brain activity) J. Picheral (SSE, Supelec) (Acoustic sources localization) D. Blacodon (ONERA) (Acoustic sources separation) J. Lagoutte (Thales Air Systems) (Non Cooperative Radar Target

Recognition) P. Grangeat (LETI, CEA, Grenoble) (Proteomic and Masse

Spectrometry) F. Levi (CNRS-INSERM, Hopital Paul Brousse) (Biological rythms

and Chronotherapy of Cancer)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 64/68

Page 65: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

References 11. A. Mohammad-Djafari, “Bayesian approach with prior models which enforce sparsity in signal and

image processing,” EURASIP Journal on Advances in Signal Processing, vol. Special issue on SparseSignal Processing, (2012).

2. A. Mohammad-Djafari (Ed.) Problemes inverses en imagerie et en vision (Vol. 1 et 2),Hermes-Lavoisier, Traite Signal et Image, IC2, 2009,

3. A. Mohammad-Djafari (Ed.) Inverse Problems in Vision and 3D Tomography, ISTE, Wiley and sons,ISBN: 9781848211728, December 2009, Hardback, 480 pp.

4. A. Mohammad-Djafari, Gauss-Markov-Potts Priors for Images in Computer Tomography Resulting toJoint Optimal Reconstruction and segmentation, International Journal of Tomography & Statistics 11:W09. 76-92, 2008.

5. A Mohammad-Djafari, Super-Resolution : A short review, a new method based on hidden Markovmodeling of HR image and future challenges, The Computer Journal doi:10,1093/comjnl/bxn005:,2008.

6. H. Ayasso and Ali Mohammad-Djafari Joint NDT Image Restoration and Segmentation usingGauss-Markov-Potts Prior Models and Variational Bayesian Computation, IEEE Trans. on ImageProcessing, TIP-04815-2009.R2, 2010.

7. H. Ayasso, B. Duchene and A. Mohammad-Djafari, Bayesian Inversion for Optical DiffractionTomography Journal of Modern Optics, 2008.

8. N. Bali and A. Mohammad-Djafari, “Bayesian Approach With Hidden Markov Modeling and MeanField Approximation for Hyperspectral Data Analysis,” IEEE Trans. on Image Processing 17: 2.217-225 Feb. (2008).

9. H. Snoussi and J. Idier., “Bayesian blind separation of generalized hyperbolic processes in noisy andunderdeterminate mixtures,” IEEE Trans. on Signal Processing, 2006.

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 65/68

Page 66: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

References 21. O. Feron, B. Duchene and A. Mohammad-Djafari, Microwave imaging of inhomogeneous objects made

of a finite number of dielectric and conductive materials from experimental data, Inverse Problems,21(6):95-115, Dec 2005.

2. M. Ichir and A. Mohammad-Djafari,Hidden markov models for blind source separation, IEEE Trans. on Signal Processing, 15(7):1887-1899,Jul 2006.

3. F. Humblot and A. Mohammad-Djafari,Super-Resolution using Hidden Markov Model and Bayesian Detection Estimation Framework,EURASIP Journal on Applied Signal Processing, Special number on Super-Resolution Imaging:Analysis, Algorithms, and Applications:ID 36971, 16 pages, 2006.

4. O. Feron and A. Mohammad-Djafari,Image fusion and joint segmentation using an MCMC algorithm, Journal of Electronic Imaging,14(2):paper no. 023014, Apr 2005.

5. H. Snoussi and A. Mohammad-Djafari,Fast joint separation and segmentation of mixed images, Journal of Electronic Imaging, 13(2):349-361,April 2004.

6. A. Mohammad-Djafari, J.F. Giovannelli, G. Demoment and J. Idier,Regularization, maximum entropy and probabilistic methods in mass spectrometry data processingproblems, Int. Journal of Mass Spectrometry, 215(1-3):175-193, April 2002.

7. H. Snoussi and A. Mohammad-Djafari, “Estimation of Structured Gaussian Mixtures: The Inverse EMAlgorithm,” IEEE Trans. on Signal Processing 55: 7. 3185-3191 July (2007).

8. N. Bali and A. Mohammad-Djafari, “A variational Bayesian Algorithm for BSS Problem with HiddenGauss-Markov Models for the Sources,” in: Independent Component Analysis and Signal Separation(ICA 2007) Edited by:M.E. Davies, Ch.J. James, S.A. Abdallah, M.D. Plumbley. 137-144 Springer(LNCS 4666) (2007).

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 66/68

Page 67: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

References 31. N. Bali and A. Mohammad-Djafari, “Hierarchical Markovian Models for Joint Classification,

Segmentation and Data Reduction of Hyperspectral Images” ESANN 2006, September 4-8, Belgium.(2006)

2. M. Ichir and A. Mohammad-Djafari, “Hidden Markov models for wavelet-based blind sourceseparation,” IEEE Trans. on Image Processing 15: 7. 1887-1899 July (2005)

3. S. Moussaoui, C. Carteret, D. Brie and A Mohammad-Djafari, “Bayesian analysis of spectral mixturedata using Markov Chain Monte Carlo methods sampling,” Chemometrics and Intelligent LaboratorySystems 81: 2. 137-148 (2005).

4. H. Snoussi and A. Mohammad-Djafari, “Fast joint separation and segmentation of mixed images”Journal of Electronic Imaging 13: 2. 349-361 April (2004)

5. H. Snoussi and A. Mohammad-Djafari, “Bayesian unsupervised learning for source separation withmixture of Gaussians prior,” Journal of VLSI Signal Processing Systems 37: 2/3. 263-279 June/July(2004)

6. F. Su and A. Mohammad-Djafari, “An Hierarchical Markov Random Field Model for Bayesian BlindImage Separation,” 27-30 May 2008, Sanya, Hainan, China: International Congress on Image andSignal Processing (CISP 2008).

7. N. Chu, J. Picheral and A. Mohammad-Djafari, “A robust super-resolution approach with sparsityconstraint for near-field wideband acoustic imaging,” IEEE International Symposium on SignalProcessing and Information Technology pp 286–289, Bilbao, Spain, Dec14-17,2011

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 67/68

Page 68: Bayesian methods for Inverse problems of imaging systemsdjafari.free.fr/pdf/TU_Seminar.pdf · 2014-12-19 · 1. Inverse problems examples in imaging science 2. Classical methods:

Current PhD’s and projects

PhD’s:

1. Microwave imaging: PhD Leila Gharsalli (co-supervising B.Duchene)

2. Multivariate and multicomponents biological data processing:PhD Mircea Dumitru (co-supervising F. Levi), ERASYSBIO

3. ANR: HONTOMIN, PhD Safa AlAli, (CO2 stock supervisingusing electrical imaging) (B. Duchne & G. Perruson)

4. New methods for reducing dose in Computed Tomography,PhD Li Wang (N. Gac)

5. Information fusion for radar target recognition, starting PhD,May Abou Chahine, Thales Systemes Aeroports

Post-docs

1. ANR: SURMITO (Optical imaging), S. Mehrab, (B. Duchene)

2. 3D Tomography (SAFRAN), Th. Boulay, (N. Gac)

A. Mohammad-Djafari, Bayesian methods for Inverse problems of imaging systems, Tehran Univ., EECE Dept., December 8, 2014, 68/68