baxter (flo-gard 6201) volumetric infusion pump flow rate accuracy - test design and performance...

21
1 UNIVERSITY OF BRITISH COLUMBIA BMEG 550 GRADUATE PROJECT WRITTEN FINAL REPORT APRIL 3, 2013 ______________________________________ BAXTER (FLOGARD 6201) VOLUMETRIC INFUSION PUMP FLOW RATE ACCURACY: TEST DESIGN AND PERFORMANCE VERIFICATION ______________________________________ Soheil Haji Mohammadi Hanieh Kamelian Kousha Talebian

Upload: kousha-talebian

Post on 31-Oct-2015

380 views

Category:

Documents


3 download

DESCRIPTION

In the clinical settings, continuous monitoring the fluid line (e.g. saline, medications, antiseptic drugs) is critical for quality control and safety purposes. Thus, there is a serious need for a reliable infusion pump that is sensitive, electrically safe and patient safe. One of the most important factors impacting a pump performance is its flow rate. Subsequently, there are various methods to verify the degree to which the flow rate is accurate. At times, depending on the application of the infusion therapy (in anesthesia or for the purpose of medication administration), accuracy of the flow rate can critically endanger both the safety of the user and the patient. This report presents five methods to examine the accuracy of the Baxter (Flo-Gard 6201) infusion pump.

TRANSCRIPT

Page 1: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

1  

UNIVERSITY  OF  BRITISH  COLUMBIA      

   

BMEG  550  GRADUATE  PROJECT  WRITTEN  FINAL  REPORT  

APRIL  3,  2013      

______________________________________    

BAXTER  (FLO-­‐GARD  6201)  VOLUMETRIC  INFUSION  PUMP  

FLOW  RATE  ACCURACY:  TEST  DESIGN  AND  PERFORMANCE  VERIFICATION  

 

 

______________________________________    

Soheil  Haji  Mohammadi  Hanieh  Kamelian  Kousha  Talebian  

         

Page 2: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

2  

Abstract  In  the  clinical  settings,  continuous  monitoring  the  fluid  line  (e.g.  saline,  medications,  antiseptic  drugs)  is  critical  for  quality  control  and  safety  purposes.  Thus,  there  is  a  serious   need   for   a   reliable   infusion   pump   that   is   sensitive,   electrically   safe   and  patient  safe.  One  of  the  most  important  factors  impacting  a  pump  performance  is  its  flow  rate.  Subsequently,  there  are  various  methods  to  verify  the  degree  to  which  the  flow  rate  is  accurate.  At  times,  depending  on  the  application  of  the  infusion  therapy  (in  anesthesia  or  for  the  purpose  of  medication  administration),  accuracy  of  the  flow  rate  can  critically  endanger  both  the  safety  of  the  user  and  the  patient.  This  report  presents   five   methods   to   examine   the   accuracy   of   the   Baxter   (Flo-­‐Gard   6201)  infusion  pump.    

Page 3: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

3  

Table  of  Content  Abstract  ..........................................................................................................................................................  2  1.  Scope  ..........................................................................................................................................................  4  2.  Objective  ...................................................................................................................................................  4  3.  Introduction  ............................................................................................................................................  5  3.1.  Baxter  Infusion  Pump  .................................................................................................................  5  3.2.  Flow  Rate  Calculation  .................................................................................................................  5  3.3.  Clinical  Consideration  While  Setting  the  Flow  Rate  ......................................................  6  3.4.  Flow  Rate  Accuracy  .....................................................................................................................  6  3.5.  Functional  Block  Diagram  ........................................................................................................  7  

4.  Methods  to  Test  the  Flow  Rate  Accuracy  ...................................................................................  8  4.1.  Test  Parameters  ............................................................................................................................  8  4.2.  Criteria  to  be  Considered  During  Testing  ..........................................................................  8  4.3.  Instruments  Needed  ....................................................................................................................  8  4.4.  Test  Setup  ........................................................................................................................................  8  4.5.  Test  Procedures  .........................................................................................................................  10  4.5.1.  Method  1  -­‐  Measurement  by  Weight  per  Time  ....................................................  10  4.5.2.  Method  2  -­‐  Measurement  by  Volume  per  Time  ...................................................  10  4.5.3.  Method  3  -­‐  Measurement  by  Time  per  Volume  ...................................................  11  4.5.4.  Method  4  -­‐  Measurement  Incorporating  VTBI  Option  ......................................  11  4.5.5.  Method  5  -­‐  One-­‐Hour  Accuracy  Test  ........................................................................  11  

5.  Results  ....................................................................................................................................................  12  6.  Discussion  .............................................................................................................................................  14  7.  Factors  Affecting  Test  Results  &  Accuracy  ..............................................................................  15  8.  Conclusion  .............................................................................................................................................  16  9.  Recommendation  /  Future  Work  ................................................................................................  16  10.  Bibliography  ......................................................................................................................................  17  Appendix  A:  Method  1  Data  ................................................................................................................  18  Appendix  B:  Method  2  ..........................................................................................................................  19  Appendix  C:  Method  3  &  Method  4  .................................................................................................  20  Appendix  D:  Method  5  ..........................................................................................................................  21  

Page 4: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

4  

1.  Scope  This   report   introduces   five  methods   to  measure   and   examine   the   accuracy   of   the  Baxter   Single   Channel   (Flo-­‐Gard   6201)   Infusion   Pump   flow   rate.   The   report   is  partitioned  to  the  following  sections:  Objective,  Introduction  (i.e.  Types  of  Infusion,  Baxter   Infusion   Pump,   Flow  Rate   Calculation,   Clinical   Consideration  While   Setting  the  Flow  Rate,  Flow  Rate  Accuracy  and  Functional  Block  Diagram),  Methods,  Results,  Discussion,  Factors  Affecting  the  Accuracy  of  the  Flow  Rate  and,  Conclusion.    

2.  Objective  As   mentioned   previously   in   the   Abstract,   inaccuracy   and   malfunction   of   infusion  pumps   can   result   in   serious   and   critical   complications   and   harm   to   the   patient.  Accordingly,  our  aim  from  this  project  was  to  design  test  methods  to  measure  and  verify  the  Baxter  infusion  pump  flow  rate  accuracy.    

Page 5: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

5  

3.  Introduction  Infusion  pumps  are  electronic  devices  used  to  control  administration  of  intravenous  fluids  in  very  small  amounts  and  at  a  carefully  regulated  rate  over  selected  period  of  time.  They  are  classified  based  on  their  volume  capacity  (i.e.  small  or  large),  type  of  pump  (i.e.  volumetric  or  syringe)  and  flow  rate  mechanisms  (i.e.  through  gravity  or  roller   pump).   According   to   FDA,   an   infusion   pump   is   a   Class   II   device.   However,  Health  Canada  has  classified   it  as  a  Class   III  device  by  (Rule  11  and  Sub  Rule  (1)),  where  it  is  described  as  an  active,  therapeutic  and  surgically  invasive  device  (Chan,  2013).      

3.1.  Baxter  Infusion  Pump  The   Baxter   (Flo-­‐Gard   6201)   infusion   pump   is   an   electromechanical   type   pump.  Similar  to  any  other  infusion  type,   it   is  used  for  the  intravenous  infusion  of   liquids  such   as  medications,   nutrients   and   antiseptic   administrations;   the   user   can   select  the   rate.   The   pump   is   composed   of   a   linear   peristaltic   pump   head,   which   is  programmable  (MadWrench,  LCC,  2011)  (Systems  Integrated  Medical,  2011).      The   pump  uses  Volume-­‐Time  Programming.   This   technology   allows   us   to   select   a  volume-­‐to-­‐be-­‐infused  (VTBI)  and  the  amount  of   time  over  which  the   infusion   is   to  take  place.  Then,  the  pump  automatically  calculates  the  flow  rate  required  to  deliver  the   desired   VTBI   in   that   specific   time   period.   If   the   calculated   flow   rate   is   higher  than  the  pump’s  capabilities,  the  pump  will  display  the  message  “Hi”;  similarly,  if  the  calculated  flow  rate  is  lower  than  the  pump’s  capabilities,  the  pump  will  display  the  message   “Lo”   There   are   currently   5   applicable   methods   to   test   for   the   flow   rate  accuracy  of  the  Baxter  infusion  pump  (MadWrench,  LCC,  2011)  (Systems  Integrated  Medical,  2011).    

3.2.  Flow  Rate  Calculation  Fluid   flow   rate   (FR)   occurs   as   a   result   of   the   relationship   of   pressure   (P)   and  resistance  (R).    

𝐹𝑅 =𝑃𝑅  

 Flow   rate   impacts   resistance   and   resistance   impacts   the   amount   of   pressure  required  to  achieve  the  flow  rate  (Mocklin,  2011).            

Page 6: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

6  

3.3.  Clinical  Consideration  While  Setting  the  Flow  Rate  The  following  principles  apply  to  flow  rates  (Mocklin,  2011):    

• High-­‐resistance  systems  require  the  most  amount  of  pressure  (e.g.,   infusing  into  a  hypertensive  patient  with   left  ventricular  hypertrophy  or  pulmonary  hypertension).  

• High  flow  rates   in   low  resistance  systems  will  require   less  pressure  than  in  high  resistance  systems  (e.g.,  infusing  fluid  rapidly  into  a  hypotensive  patient  in  shock).  

• Low   flow   rates   in   high   resistance   systems   will   require   less   pressure   than  high   flow   rates   (e.g.,   infusing   at   the   Keep   Vein   Open   [KVO]   rate   into   the  hypertensive  patient).  

• Low   flow   rates   in   low   resistance   systems  will   require   the   least   amount   of  pressure.  For  example,  KVO  rate  into  a  hypotensive  patient.  

3.4.  Flow  Rate  Accuracy  Most   infusion   pump  manufacturers   state   the   accuracy   of   the   delivered   dose   as   a  percentage.   A   user  manual  may   read   ‘accuracy:   ±5%’.     Ideally,   this   should   be   the  flow  rate  accuracy,  meaning  that  over  the  complete  period  of  infusion,  the  flow  rate  (in  mL/hour)  will  not  vary  beyond  these  limits.  Such  pumps  should  have  a  smooth  and  steady  delivery.  Sometimes,  however,  the  quoted  accuracy  may  refer  to  the  total  volume  delivered  by  the  end  of  the  infusion  period.  In  such  cases,  the  final  dose  will  be  within  the  specified  limits,  but  no  indication  is  given  on  how  constant  or  smooth  the  flow  has  been  during  infusion.    For   syringe   pumps,   which   make   use   of   single-­‐use   syringes,   many   manufacturers  define  the  accuracy  of  the  linear  displacement  of  the  plunger.  This  is  the  mechanical  accuracy   of   the   pump   itself   and   excludes   the   additional   error   caused   by   the  inconsistency   of   single-­‐use   syringes.   The   user   should   be   aware   that   single   use  syringes  might  cause  flow  deviations  up  to  4%  greater  than  those  specified  for  the  linear  displacement.    As   the  maintenance   of   constant   blood   levels  may   be   critical   for   some   drugs,   it   is  important   to   search   the   user   manual   or   any   accompanying   literature   for   further  references  to  accuracy  (Ferrari  &  Beech,  1995).                  

Page 7: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

7  

3.5.  Functional  Block  Diagram  Figure  1  shows  the  functional  block  diagram  for  a  generic  volumetric  infusion  pump.  On   the   left  hand  side,   the  user   input   (e.g.  VTBI)/output   interface   is  shown.  On   the  right  hand  side,  the  internal  block  diagrams  of  the  pump  are  shown.              

 Figure  1:  Functional  block  diagram  of  an  infusion  pump  

Page 8: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

8  

4.  Methods  to  Test  the  Flow  Rate  Accuracy  

4.1.  Test  Parameters  ● Weight  (g)  ● Volume  to  be  Infused  (VTBI)  (mL)  ● Time  (s)  

4.2.  Criteria  to  be  Considered  During  Testing  The  following  assumptions  and  factors  were  considered  during  the  testing:  ● The  infusion  set  is  correctly  primed  and  used.  ● There  are  no  structural  and  functional  defects  in  the  infusion  pump.  ● The  infusion  line  is  good  for  the  repetition  of  tests.  ● There  is  no  movement  in  the  line  as  the  water  is  passed  through.  ● The  height  at  which  the  line  is  set  at  is  the  same  as  the  one  set  for  patient’s  

infusion  therapy.  

4.3.  Instruments  Needed  ● Baxter  (Flo-­‐Gard  6201)  volumetric  infusion  pump  ● A  crystal  bowl  ● A  calibrated  scale  with  a  resolution  of  at  least  0.1  grams  ● ASTM  Class  A  25mL  graduated  cylinder  with  a  resolution  of  at  least  0.2mL  ● Baxter  Continu-­‐Flo  solution  set  ● Solution  fluid  (i.e.  distilled  water)  

4.4.  Test  Setup  The  following   four  steps  are  required   for   the  preparation  of   the  test  (MadWrench,  LCC,  2011)  (Systems  Integrated  Medical,  2011).  The  experimental  setup  is  shown  in  Figure  2:    

1.  Using  a  solution  container  (distilled/sterile  water,  0.9%  sodium  chloride,  or  D5W)   and   a   Baxter   Continu-­‐Flo   administration   set   with   at   least   one   Y-­‐site,  prepare  the  administration  set  according  to  the  instructions  accompanying  the  set.    2.  Spike   the  solution  container  and   fully  prime  the  set.  Remove  all   trapped  air  bubbles  from  all  components.  Hang  the  solution  container,  and  ensure  the  fluid  level  is  at  least  18”  above  the  top  of  the  pump  handle  throughout  the  test.  

 

Page 9: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

9  

Note:  The  tubing  must  be  clean  and  dry  before  it  is  inserted  into  the  pump.  Make  sure  that  the  tubing  is  placed  and  seated  properly  in  the  guide  channel,  pump  mechanism,  sensors,  and  safety  clamp.  Ensure  that  there  is  no  slack  in  the  tubing  and  that  it  is  not  kinked  or  pinched  before  closing  the  pump  door.    

3.   Load   the   set   into   the   pump.   Close   the   pump   door.   There   should   be   no  excessive  resistance.  Never  use  tools  or  excessive  force  to  close  a  pump  door.    4.  Place  the  distal  end  of  the  administration  set  in  a  container  or  sink  to  dispose  of  pumped  solution.  

     Note:  Do  NOT  reuse  a  tubing  segment  once  it  has  been  used.    

 Figure  2:  Experimental  setup.  

Page 10: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

10  

4.5.  Test  Procedures  Below  represents  four  short  time  accuracy  tests,  as  well  as  a  one-­‐hour  long  accuracy  test  for  the  Baxter  infusion  pump.  The  four  short  tests  compute  the  infusion  rate  by  measuring  weight  per  time,  volume  per  time,  time  per  volume,  and  VTBI  (Volume  to  Be  Infused).  At  the  end  of  this  document,  five  data-­‐collection  charts  are  included  to  referring   to   the   five   tests.  All  methods   are  used   to   calculate   the   infusion   rate,   but  only  M1,  M2  and  M5  are  used  to  measure  the  accuracy  of  the  infusion  rate.  And  for  validating  the  accuracy  of  each  of  three  methods  better,  there  are  two  approaches  to  M1,   M2   and   M5:   one   is   measuring   the   infusion   rate   by   plotting   the   result   and  calculating  the  slope  and  the  other  one  is  dividing  the  final  volume  by  the  total  time  to  get  the  average   infusion  rate.  The  following  five  methods  have  been  taken  from  the  operation  manual  (MadWrench,  LCC,  2011)  (Systems  Integrated  Medical,  2011).  As   such,   the   content   has   been   modified,   but   may   still   contain   phrases   from   the  original  script.  

4.5.1.  Method  1  -­‐  Measurement  by  Weight  per  Time    1. Program  a  PRI  VTBI  of  at  least  500mL  and  start  the  pump  at  200  mL/hr.  2. Place   a   container   on   a   calibrated   scale   with   a   resolution   of   0.1   grams   or  

better  and  zero  the  scale.  3. Measure   the   weight   of   the   container   every   30   seconds   ±   3   seconds   for  

duration  of  10  minutes  and  30  seconds.  4. Divide  the  weight  by  specific  gravity  of  the  solution  (water’s  specific  gravity  

is  0.998  g/mL  at  room  temperature)  and  plot  the  results.  The  slope  of  the  line  is  the  infusion  rate.  

5. Divide  the  final  weight  from  the  total  time  and  by  the  specific  gravity  to  get  the  average  infusion  rate.  

6. The   total   solution   collected   at   the   10-­‐minute   deadline   should   be   between  32.5mL  to  37.5mL.  

4.5.2.  Method  2  -­‐  Measurement  by  Volume  per  Time  1. Program  a  PRI  VTBI  of  20mL  and  start  the  pump  at  200mL/hr.  2. Collect   the   solution   in   an   ASTM   Class   A   25mL   graduated   cylinder,   with   a  

resolution  of  0.2mL  or  better.  3. Monitor   and   measure   the   collected   volute   for   6   minutes   and   30   seconds  

using   30   seconds   ±   3   seconds   interval,   or   until   the   pump   switches   to   KVO  mode.    Note:  Stop  the  pump  within  10  seconds  after  the  KVO  alert,  since  fluid  delivered  after  the  KVO  alert  adds  to  the  test  error  

4. Plot  the  results.  The  slope  of  the  line  is  the  infusion  rate.    5. Divide  the  final  volume  from  the  total  time  to  get  the  average  infusion  rate.  6. The   total   solution   collected   at   the   6-­‐minute   deadline   should   be   between  

18.6mL  to  21.4mL.  

Page 11: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

11  

4.5.3.  Method  3  -­‐  Measurement  by  Time  per  Volume  1. Program  a  PRI  RATE  of  200mL/hr  and  a  PRI  VTBI  greater  than  35mL.  2. Collect   the   solution   in   an   ASTM   Class   A   25mL   graduated   cylinder,   with   a  

resolution  of  0.2mL  or  better.  3. Measure  the  time  within  3  seconds  that  it  takes  to  collect  25mL  ±  0.2mL.  4. Calculate   the   flow   rate   in   mL/hr   by   dividing   35mL   by   the   measured   time  

converted  to  hours.    5. The  flow  rate  should  be  between  186.0mL/hr  and  214.0  mL/hr.  

4.5.4.  Method  4  -­‐  Measurement  Incorporating  VTBI  Option  1. Program  a  PRI  RATE  of  200mL/hr  and  a  PRI  VTBI  of  35mL.  2. Start  the  pump  and  collect  the  solution  in  a  container  of  known  weight.  When  

the  pump  goes  into  KVO  alert  mode,  stop  the  pump  within  20  seconds.  3. Use  a  calibrated  scale  with  a  resolution  of  0.1  grams  or  better   to  weigh  the  

container   and   solution.   Then   divide   the   solution   weight   by   the   specific  gravity   of   the   solution   (water’s   specific   gravity   is   0.998   g/mL   at   room  temperature).  

4. The  solution  collected  should  be  between  32.5mL  and  37.5mL.  

4.5.5.  Method  5  -­‐  One-­‐Hour  Accuracy  Test  1. Program  a  PRI  RATE  of  125mL/hr  with  a  PRI  VTBI  of  1000mL.  2. Place   a   container   on   a   calibrated   scale   with   a   resolution   of   0.1   grams   or  

better  and  zero  the  scale.  3. Place   the   distal   end   of   the   infusion   set   into   a   container,   and   place   the  

container   on   a   calibrated   scale   with   a   resolution   of   0.1   grams   or   better.  Record  the  weight  of  the  container.  

4. Simultaneously,  start  a  timer  and  press  the  START  key.  5. Measure   the   weight   of   the   container   every   3   minutes   ±   3   seconds   for  

duration  of  1  hour.    6. Divide  the  weight  by  specific  gravity  of  the  solution  (water’s  specific  gravity  

is  0.998  g/mL  at  room  temperature)  and  plot  the  results.  The  slope  of  the  line  is  the  infusion  rate.  

7. Divide  the  final  weight  from  the  total  time  and  by  the  specific  gravity  to  get  the  average  infusion  rate.  

8. The  solution  collected  should  be  between  116.25mL  and  133.75mL.  9. If  the  volume  of  solution  collected  is  NOT  between  the  mentioned  range  

a Verify  proper  test  technique  b Check  for  a  loose  belt  c Check  for  a  properly  moving  backplate  or  damaged  backplate  springs  d Replace  the  pump  head  assembly  

Page 12: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

12  

5.  Results  Table  1   summarizes   the   results  of   the   five  measurement  methods  performed.  The  raw  data   is   included   in   the  appendix   for  reference  (Appendix  A:  Method  1  Data   to  Appendix  D:  Method  5).  Rate   is   in  mL/hr.  Average  measured   rate   is   calculated  by  dividing   the   final   volume   value   by   the   total   time,  where   the   slope   (the  measured  rate)   is   calculated   by   fitting   a   linear   line   to   the   measured   data.   From   here   on,  methods   are   referred   to   as   M1   through   M5   for   ease   of   reference.   Similarly,   the  average  percent  error  is  referred  to  as  APE,  and  the  slope  percent  error  is  referred  to  as  SPE.      

Table  1:  Results  obtained  from  the  five  accuracy  tests.  

    M1:  Weight  per  

Time  Method  

M2:  Volume  per  Time  Method    

M3:    Time  per  Volume  Method  

M4:    VTBI  Method  

M5:  One-­‐Hour  Accuracy  Test  

Target  Rate  (mL/hr)    

200.0   200.0   200.0   200.0   125.0  

Measured  Infusion  Rate    (mL/hr)  

Average     206.9   209.7   209.8   204.5   128  

Slope   205.1   208.0   N/A   N/A   127.7  

 The   fit   line   for  M1,  M2  and  M5  are  shown  below  respectively.  They  are   labeled  as  “Weight  per  Time”  (Figure  3),   “Volume  per  Time”  (Figure  4),  and  “One-­‐Hour  Test”  (Figure   5)   respectively.   The   chi-­‐squared   value   of   .9999   (about   1)   for   all   three  methods   suggests   a   very   uniform   infusion   rate   and   a   high   quality   data.   It   is  important   to   note   that   M3   and   M4   are   single   data   measurements   and   therefore,  there  are  no  corresponding  graphs  for  them.    

Page 13: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

13  

 Figure  3:  Weight  per  time  test  method.  

 

 Figure  4:  Volume  per  time  test  method.  

 

 Figure  5:  One-­‐Hour  Test  measurement  method.  

y  =  3.4486x  -­‐  0.3963  R²  =  0.99998  

0  

10  

20  

30  

40  

0   5   10   15  

Volume  (mL)  

Time  (min)  

Weight  per  Time  

Series1  

Linear  (Series1)  

y  =  3.4951x  -­‐  0.1424  R²  =  0.99995  

0  

5  

10  

15  

20  

25  

0   2   4   6   8  

Volume  (mL)  

Time  (min)  

Volume  per  Time  

Series1  

Linear  (Series1)  

y  =  2.1332x  -­‐  0.0804  R²  =  1  

0  

50  

100  

150  

0   20   40   60   80  

Volume  (mL)  

Time  (min)  

One-­‐Hour  Test  

Series1  

Linear  (Series1)  

Page 14: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

14  

6.  Discussion  According   to   the   collected   data,   all   methods   were   within   the   acceptable   range  suggested  by  the  manufacturer  (this  refers  to  the  last  bullet  point  of  each  method).      Comparing  M1,  M2  and  M5,  M5  percent  error  (%  2.2  ±  .2)  shows  that  it  is  the  most  accurate   method.   This   also   shows   that   the   longer   the   infusion   time,   the   more  accurate  the  results  would  be.    In  addition,  chi-­‐squared  value  for  all  three  calculated  to   be   .9999;   this   shows   that   the   data   for   all   is   of   good   quality   and   that   all   three  methods  are  accurate.        

Table  2:  Error  percentages  of  Method  1,  2  and  5.  

  M1:    Weight  per  Time  Method  

M2:    Volume  per  Time  Method    

M5:  One-­‐Hour  

Accuracy  Test  

%  Error  Average  (APE)   3.45   4.85   2.39  

Slope  (SPE)   2.54   4.00   2.20  

  %  Error  Avg  of  APE  &  SPE  

3.00  ±  0.45   4.43  ±  .43   2.2  ±  .2  

Chi-­‐Squared   0.9999   0.9999   0.9999  

 As  mentioned  in  the  previous  paragraph  and  as  shown  in  Table  1,  there  are  different  targeted  infusion  rates  for  M1,  M2  and  M5.  Therefore,  the  normalized  percent  error  is  used  as  a  matric  for  analysis.      The  APE  and  SPE  of  M1,  M2  and  M5  are  then  analyzed.  For  M1,  the  average  of  the  two  approaches  yields  3.00%  ±  0.45%.  M2  yields  4.43%  ±  0.43%.  M5  yields  2.20%  ±  0.2%.  As  expected,  the  One-­‐hour  test  (M5)  results  in  a  more  accurate  measurement  of  the  rate,  as  evident  by  the  error  in  APE  vs  SPE  measurements.    

Page 15: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

15  

7.  Factors  Affecting  Test  Results  &  Accuracy  In   general,   the   following   factors   can   influence   the   flow   rate   measurement   and  performance  of  an  infusion  pump:      ● Air  trapped  in  the  Continu-­‐Flo  solution  set  ● Non-­‐sterile  fluid  path  ● Solution  set  stored  in  temperatures  less  than  15  C  or  more  than  30  C  ● Leakage  or  occlusion  in  the  IV  tube  ● Disrupt  or  malfunctioned  electrical  connections  

 From   the   manufacturing   recommendation,   the   resolution   of   the   scale   and   the  graduated  cylinder  need  to  be  0.1g  and  0.2mL  respectively.  The  scale  used  for  this  setup   had   a   resolution   of   0.01g,   which   has   a   higher   resolution   than   the  manufacture’s  recommendation.  The  graduated  cylinder,  however,  had  a  resolution  of   0.2mL,   which   was   the   same   as   the   manufacture’s   recommendation.   Therefore,  method  1,  and  method  5  are  better  test  procedures.        The   same   infusion   line   was   used   for   all   five   tests.   The   pump   used   a   clamp   for  securing   the   infusion   line,   as   well   as   stopping   the   infusion.   As   a   result,   the   line  should   be   moved   for   each   test   as   to   move   the   clamping   location   of   the   line.  Otherwise,   the  clamping   location  can  become  a  bottleneck  which  would  ultimately  affect  the  infusion  rate.  Due  to  the  limitation  of  our  resources,  time  and  setup,  this  was  not  possible,  and  the  line  was  not  moved  after  each  test.    

Page 16: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

16  

8.  Conclusion  According   to   the   collected   data,   all   methods   were   within   the   acceptable   range  suggested  by  the  manufacturer  (this  refers  to  the  last  bullet  point  of  each  method).    This   implies   that   the   volume   to   be   infused   of   the   infusion   pump   was   measured  successfully   for   all   five   methods.     Method   3   &   4,   however,   were   not   used   for  accuracy  analysis  because  they  were  single  data  collection.    As  seen  in  the  results,  the  flow  rate  accuracy  is  dependent  on  the  length  of  the  test.  Method   1   (10.5   minutes)   had   an   experimental   to   target   error   of   3.0%   ±   0.45%.  Similarly,  Method  2  (6  minutes)  had  an  error  of  4.43%  ±  0.43%.  Finally,  Method  5  had  an  error  of  2.2%  ±  0.2%  (60  minutes).      Comparing  the  three  methods  illustrates  that  Method  5  is  the  most  accurate  of  the  three   tests,   and   it   is   due   its   longer   infusion   time.   Therefore,   the   accuracy   of   the  infusion  rate  of  the  Baxter  Flo-­‐Gard  6201  is  within  2.2%  ±  0.2%.  

9.  Recommendation  /  Future  Work  The   accuracy  measurement   for   infusion   rate   is   a   very   simple   procedure.   A   digital  scale  that  can  be  connected  to  the  pump  can  be  used  to  measure  the  weight  of  the  solution   to  be   collected   (as  done   in  Method  1  &  Method  5).     The   total  weight   can  then  be  fed  into  the  pump.  Using  the  data,  the  system  can  automatically  calculate  the  experimented   infusion   rate   and   compare   it   to   the   target   infusion   rate.  Using   such  closed   system  will   automate   the   validation  of   the   accuracy   test,   and   could  update  the  parameters  as  needed.    

Page 17: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

17  

 

10.  Bibliography  Chan,  A.  (2013).  Infusion  Devices.  Retrieved  February  2013,  from  UBC  CHBE:  ww.chbe.ubc.ca:  https://courses.chbe.ubc.ca/manhat2012-­‐bin/send_file?crs=BMEG/BMEG530550&id=dmmpqywl9mSaH3&user=ac8994&fname=fil_01282013100001_9QgHhZ&info=inf_01282013100001_DI86nc&attach=1&grp=4&ext=.pdf      Ferrari,  R.,  &  Beech,  D.  R.  (1995).  Infusion  pumps:  guidelines  and  pitfalls.  Australian  Prescriber  ,  18,  49-­‐51.    MadWrench,  LCC.  (2011).  Service  Manual  Flo-­‐Gard  6201.  Retrieved  from  Service  Manual  Flo-­‐Gard  6201:  http://photos.medwrench.com/equipmentManuals/3191-­‐2396.pdf      Mocklin,  D.  (2011).  Infusion  Pump  Therapy  -­‐  A  Guide  For  Clinicians  and  Educators.  Lake  Forest:  Hospira.    Sabah  Jarjees,  M.  (2011).  Design  and  Implementation  of  Microcontroller  Based  Drug  Delivary  System.  Eng  &  Tech  J.  ,  2580  -­‐  2588.    Systems  Integrated  Medical.  (2011).  Operator's  Manual,  Flo-­‐Gard  6201.  Retrieved  from  Systems  Integrated  Medical,  Inc.:  http://www.integratedmedsys.com/customer/inmesy/manuals/Baxter-­‐6201-­‐Op-­‐Manual.pdf      Weitz  &  Luxenberg  P.C.  (n.d.).  Types  of  Infusion.  Retrieved  from  Weitz  &  Luxenberg  P.C.    

Page 18: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

18  

Appendix  A:  Method  1  Data    Time  (minute)   Weight  (g)   Volume  (mL)  

0.5   1.4   1.3972  1   3.15   3.1437  1.5   4.8   4.7904  2   6.49   6.47702  2.5   8.21   8.19358  3   9.85   9.8303  3.5   11.67   11.64666  4   13.41   13.38318  4.5   15.16   15.12968  5   16.85   16.8163  5.5   18.6   18.5628  6   20.36   20.31928  6.5   22.05   22.0059  7   23.76   23.71248  7.5   25.56   25.50888  8   27.31   27.25538  8.5   28.92   28.86216  9   30.72   30.65856  9.5   32.42   32.35516  10   34.12   34.05176  10.5   35.96   35.88808  

 

Page 19: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

19  

Appendix  B:  Method  2    Time  (minute)   Volume  (mL)  

0.5   1.6  1   3.4  1.5   5.1  2   6.8  2.5   8.6  3   10.4  3.5   12  4   13.8  4.5   15.6  5   17.4  5.5   19.1  6   20.8  

 

Page 20: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

20  

Appendix  C:  Method  3  &  Method  4    Method  3  Total  time  to  infuse  25mL  =  429  seconds    Method  4  Volume  to  be  infused  (Target)  =  35mL  Experimental  volume  infused  =  35.79mL  Time  to  infuse  =  630  seconds    

Page 21: Baxter (Flo-Gard 6201) Volumetric Infusion Pump Flow Rate Accuracy - Test Design and Performance Verification

21  

Appendix  D:  Method  5    Time  (minute)   Weight  (g)   Volume  (mL)  

3   6.32   6.30736  6   12.72   12.69456  9   19.1   19.0618  12   25.54   25.48892  15   31.88   31.81624  18   38.46   38.38308  21   44.82   44.73036  24   51.29   51.18742  27   57.65   57.5347  30   64.15   64.0217  33   70.47   70.32906  36   76.89   76.73622  39   83.3   83.1334  42   89.69   89.51062  45   96.1   95.9078  48   102.51   102.30498  51   108.96   108.74208  54   115.37   115.13926  57   121.8   121.5564  60   128   127.744