basics of vehicle dynamics lateral dynamics: steady-state...

40
Lateral dynamics: steady Lateral dynamics: steady-state state cornering cornering Basics of Vehicle Dynamics Basics of Vehicle Dynamics cornering cornering

Upload: truongthuan

Post on 07-Mar-2018

225 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Lateral dynamics: steadyLateral dynamics: steady--state state corneringcornering

Basics of Vehicle DynamicsBasics of Vehicle Dynamics

corneringcornering

Page 2: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Introduction: steering with and w/o tyre side slip

Instantaneous centre changes place due to tyre side slip.

Page 3: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Introduction: kinematic (“Ackermann”) steering

Cornering at low speed, negligible side forces (and therefore side slip)

Steering mechanism configuration named after Rudolph Ackermann(patent agent), invented by Georg Lankensperger XIX century (Germany)

Page 4: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Introduction: high speed cornering

Tyre side forces introduce side slipModifying motion direction

Migration of instantaneous centre changes curvature radius and therefore cornering “sharpness”.

Page 5: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Introduction: “bicycle model”

“Effective wheel” front

“Effective wheel” rear

CM CM

Page 6: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Cornering at low speed

C

AA

R

)θ2/sin(β)sin(θ

π

a OCA:

KRsinβ

b OCB:

C

AAA

R

cosθsinβcosθcosβsinθ

a Acosθ

a

CA

Rsinβcosβtgθ

a

CRsinβ

b

CA

Rcosβtgθ

l

+

Page 7: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Cornering at low speed

Further we assume:Further we assume:

•• RRCC >> >> ll

CA

Rcosβtgθ

l

•• angles angles AA, , are small are small tgtgAA AA ((radians!radians!), ), coscos 11

CA

l

Wheelbase of the vehicleWheelbase of the vehicle

CM’s trajectory curvature radiusCM’s trajectory curvature radius

Required steering angle

Page 8: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Cornering at high speed

C

ff

R

))δ(θ/sin(β))δsin((θ

2

a

C

fr

R

)δ2/sin(β)sin(δ

b+

sin (/2– x) = cosxSmall angles: sinxx, cosx1

rfC

δδR

θ l

Page 9: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Cornering at high speed

• Three types os steering behavior

rfC

δδR

θ l

CA

l To achieve the same RC, driver

has to turn the steering wheel:C

f > r

f = r

f < r

UNDERSTEER

NEUTRAL STEER

OVERSTEER

has to turn the steering wheel:

MORE

EQUAL

LESS

Page 10: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Cornering at high speed

• Three types os steering behavior

autozine.org

pussiriot.wordpress.com

Page 11: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Basic analysis of steering behavior

• Assumption: small angles, large curve radius

• Constant velocity v, constant constant RC

CM

CMFyf

Fyf Fyr

Fyr

vfvr

FC

FC

RC

C

2

CR

vmF "centrifugal force“

(D'Alembert's principle of inertial forces)

f

r

Page 12: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Basic analysis of steering behavior

CMFyf Fyr

FC

C

2

YZYPR

vmFF

aFYP = bFYZa b

a + b = l -- wheelbasewheelbase

C

2

yr

C

2

yf

R

vmaF

R

vmbF

l

l

Further we apply:

Wb

Wf l

Wa

Wr l

W

Wb fl

W

Wa rl

C

2r

yr

C

2f

yf

R

vm

W

WF

R

vm

W

WF

Finaly:

Important:Important:W

W

F

Ff

C

yf W

W

F

Fr

C

yr f

r

yf

yr

W

W

F

F

Page 13: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Basic analysis of steering behavior

For moderate Fy (small ): Fy = c

2r

C

2f

yf

vmWF

R

vm

W

WF

Fyf = cff

Fyr = crr

Linear approximation:FY = c

C

ryr

RWF Fyr = crr

gRC

vW

gRC

vW

Cr

2

rr

Cf

2

ff

δ

δ

δ

δ

rfC

δδR

θ l

Required steering angle

gRC

vW

gRC

vW

Cr

2r

Cf

2f

C

δδ

l

Page 14: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Basic analysis of steering behavior

C

2

r

r

f

f

C Rg

v

C

W

C

W

R

δδ

K – UNDERSTEER GRADIENTg

aK

R

y

C

l

θr

r

f

f

C

W

C

WK

δδ

Solution for most simple model – comprises most fundamental factors

Further factors affecting steering behavior:

Wheel alignment and elastokinematics of the wheel suspension

Distribution of vertical loads amongst wheels at the same axle

Non-linear tyre behavior

Presence of driving/braking torque (i.e. longitudinal tyre force)

Page 15: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

Basic analysis of steering behavior

1

1,2

1,4

1,6

1,8

2

g

aK

R

y

C

l

θ

K > 0 - UNDERSTEER

Req

uir

ed s

teer

ing

angl

e o

f th

e r

oad

wh

eel

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100 120

Velocity (km/h)

K = 0 - NEUTRAL

K < 0 - OVERSTEER

Req

uir

ed s

teer

ing

angl

e o

f th

e r

oad

wh

eel

Oversteer vehicle is unstable by nature above critical speed!

Drift video

Page 16: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Steady-state cornering

• Cornering at high speed: impact of load distribution –“steering by gas-pedal”

Basic analysis of steering behavior

r

r

f

f

C

W

C

WK

δδ

WW

Braking/accelerating: redistribution of WBraking/accelerating: redistribution of Wff / W/ Wrr

Tyre load (WTyre load (WTT) influences c) influences c (larger (larger WWTT larger larger cc))

Influence is degressive!Influence is degressive!

Deccelerating (braking) in the curve Deccelerating (braking) in the curve car behavior changes towards more oversteercar behavior changes towards more oversteer

Aeccelerating in the curve Aeccelerating in the curve car behavior changes towards more understeercar behavior changes towards more understeer

WWrrWWff

“Lift-off oversteer” video

Page 17: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Lateral dynamics: transient Lateral dynamics: transient maneuversmaneuvers

Basics of Vehicle DynamicsBasics of Vehicle Dynamics

maneuversmaneuvers

Page 18: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Equations of motion

iC FΣam

(1,2)

iFCCz ΣMJ (3)

• General equations of planar motion

NTCIN amamamFD'Alembert's principle:

0FΣamam0FΣFΣ iCNCTINi

CyCxCNTCC aaaaa

Vector equation to scalar (axes: T/N or x/y)

ρ

va

2

CN vdt

dvaCT

Page 19: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Equations of motion

• Kinematic parameters and forces

)β(ρRv C

f

C

fv l

r

C

rv l

Page 20: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Equations of motion

0FFsinθFcosθFsinβρ

vmcosβvm Wxryfxf

2

(1,2)

0FFcosθFsinθFcosβρ

vmsinβvm Ayyryfxf

2

x:

y:ρ

(3) 0FlFcosθFsinθFJ AyAyrryfxffCz ll

FY = FY()

= (t)

FX, v(t) – assumptions...

Page 21: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

• Special case for constant velocity:

• d/dt and d/dt are directly related

• One ODE remains in the form of:

Equations of motion

θkθkβCβBβA 21

0βCβBβA

With homogenwous part:

Vehicle can undergo damped angular oscillationsVehicle can undergo damped angular oscillations

Page 22: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

• Harmonic input

• Steering ramp

• Steering pulse

Some typical transient maneuvers

• Braking in the curve

• “Scandinavian flick”

• Sudden side wind gust

• etc.

Page 23: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Steering ramp

Steering ramp @ 1 sec

Page 24: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Braking in the curve

15 sec:Steering ramp

30 sec:Brake on

10 sec:Throttle off

Page 25: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Braking in the curve – impact of wheel lock

2vm

Front wheel lock UNSTEERABLE, STABLE VEHICLE

Rear wheel lockSTEERABLE, UNSTABLE VEHICLE!

couple

CR

vm VEHICLE

More favorable situation for untrained driver!

(Higher probability of avoiding the accident)

Lateral forces at both axles – STEERABLE AND STABLE VEHICLE

Page 26: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

Sudden side wind with steering

Sudden wind gust @ 2 sec

Page 27: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Transient maneuvers

“Scandinavian flick”

Caranddriver.com

“Scandinavian flick” video

Page 28: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations and vertical Vehicle vibrations and vertical dynamicsdynamics

Basics of Vehicle DynamicsBasics of Vehicle Dynamics

dynamicsdynamics

Page 29: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Basic modelling approaches

scielo.br intechopen.com

sharetechnote.com

Page 30: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Topics of interest

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Page 31: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Equations for quarter-car model

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Natural frequency

Damped frequency

Page 32: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Equations for quarter-car model

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Page 33: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Main I/O relations

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Page 34: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Main I/O relations

Body natural frequency: 1.5 HzWheel natural frequency: 1015 Hz

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Page 35: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Impact of stiffness

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Page 36: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Impact of damping

From: Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

Page 37: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Vehicle vibrations

Impact of suspension and tyre elasticity on dynamic axle load gain

EVERYTHING RIGID

RIGID WHEEL

Lecture notes FHTW Berlin

RIGID SUSPENSION (e.g. tractor)

EVERYTHING ELASTIC(road vehicle)

Page 38: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Further readingFurther reading

Basics of Vehicle DynamicsBasics of Vehicle Dynamics

Further readingFurther reading

Page 39: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

Further reading

• Thomas D. Gillespie: Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, 1992, ISBN 1560911999

• Georg Rill: Road Vehicle Dynamics - Fundamentals and Modeling, CRC Press, 2012, ISBN 978-1-4398-3898-3

• Masato Abe: Vehicle Handling Dynamics - Theory and Application, Butterworth-Heinemann, 2nd Edition 2015, ISBN 9780081003909

If this was interesting for you...

Heinemann, 2nd Edition 2015, ISBN 9780081003909

• William F. Milliken, Douglas L. Milliken: Race Car Vehicle Dynamics, SAE International, 1994, ISBN of 978-1-56091-526-3

• Mitschke M., Wallentowitz H.: Dynamik der Kraftfahrzeuge, VDI-Buch 2004, 2014

• Hans Pacejka: Tire and Vehicle Dynamics, Butterworth-Heinemann, 3rd Edition 2012, ISBN 9780080970165

•• ...and plenty more!...and plenty more!

Page 40: Basics of Vehicle Dynamics Lateral dynamics: steady-state ...mehanizacija.ftn.uns.ac.rs/wp-content/uploads/2017/07/Part-22.pdf · Steady-state cornering Introduction: high speed cornering

THE ENDTHE ENDTHANKS FOR YOUR ATTENTIONTHANKS FOR YOUR ATTENTION

[email protected]@UNS.AC.RS