basics of room acoustics

52
2018. november 20., Budapest Study aid to learn Communication acoustics, VIHIAM 000 BASICS OF ROOM ACOUSTICS Fülöp Augusztinovicz, professor Department of Networked Systems and Services [email protected]

Upload: others

Post on 03-Feb-2022

8 views

Category:

Documents


1 download

TRANSCRIPT

2018. november 20.,Budapest

Study aid to learn Communication acoustics,VIHIAM 000

BASICS OF ROOM ACOUSTICS

Fülöp Augusztinovicz, professorDepartment of Networked Systems and Services

[email protected]

Main issues

� Notion of small and large rooms (as compared towavelength)

� From reflections to reverberation� The notion and characteristics of reverberation� Direct and diffuse sound field� Notion and characteristics of sound absorption� Characteristics and parameters of sound absorbers� Relationship of sound absorption and reverberation� Reverberation time� Typical RTs, measurement and design

What is small, what is large ?

Various models in room acoustic s

� Low frequency: wave acoustics• dimensions comparable to wavelength

� Medium to high frequency: geometrical acoustics

� High frequency: statistical acoustics• dimensions much larger than the wavelength

Előadás címe 4© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Reflections

l1

l3

l4

l2

An important descriptor: the impulse response

τ

p

τ1 τ4τ3τ2

ii

l

cτ =

What is the effect of reflections ?

� Early reflections (< 50 ms, not too many)• one cannot distinguish between direct and reflected sound

> Haas-effect• increased loudness• advantageous, no amplification is needed

Előadás címe 7© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Masking time - ms

Mas

king

leve

l-

dB

What is the effect of reflections ?

� Medium reflections• still cannot be heard separately• generates spaciousness• make music performances more enjoyable• different pieces require different acoustic environment

� Late reflections• plenty of them, of more or less continuous (but not uniform!)

distribution• deteriorates or even hinders speech intelligibility

Előadás címe 8© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

The role of reflections in the ancient theatres

(Pierers Konversationslexikon, Stuttgart, 1891)

As imagined in the 19th century:

The role of reflections in the ancient theatres

And the reality: Ruins of the Dyonysos theatre at the foothill of Acropolis in Athens

Előadás címe 11© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

The throne of the priest ofDionysos Eleutherios (the god

of wine). 4th century B.C.

Marmor thrones, dedicated to nobilities

Elements of the ancient greek theatres

Amphytheatre [sound refraction and absorption]

Amphytheatre

� Orchestra (place of the dancers): floor reflection!

Masque� masque: a sound amplifying, impedance matching element

There is nothing new under the sun: the ancient Roman theat re

Előadás címe 16© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Thde odeion of Herodes Atticus in Athens

What is the essence of room acoustics ?

� The main difference: reflections� How to discribe the reflections?

• Impulse response: response to an ideal Dirac-impulse• Reverberation time: quantitative descriptor of energy decay

Előadás címe 17© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Impulse response measurements

� (in earlier times) by a handgun� by spark source� by continuous random noise� by swept sine

0 100 200 300 400 500 600 700 800-8

-6

-4

-2

0

2

4

6

8x 10

-5

Távolság [m]

Szi

nt (FS

:1)

Kossuth u.

Impulse response / 3

Measured impulse response

Echogram

Transition from direct to reverberant field

� Direct sound field• 6 dB / double distance rule

� Reverberant sound field• In principle spatially independent

� Influencing parameters• Room size• (Room shape, to some extent)• amount of sound absorption in the room

Előadás címe 22© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Energy considerations

• The source fills up the system with energy, the absorptionof the walls sinks

• After sufficient time energy balance is reached

What is sound absorption ?

� Conversion of energy: • from acoustic (movement of air particles due to wave

phenomena) • to mechanic (movement of solid structures) and• to heat (increased temperature of air particles and solid

structures, due to friction)

� Description: sound absorption coefficient

Előadás címe 24© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Energy balance at a reflection

Reflected power, Prefl

Absorbed power, Pabs

Impinging power, Pin

Transmitted power, Ptrans

1

in refl abs transP P P P= + +

= + +ρ α τ

Sound absorbing mechanisms / 1

2

4r

S s

s S

=

+

sS

1. The simplest model: Rayleigh’s porosity model

Sound absorbing mechanisms / 2

2. The structural frame (skeleton) is also set into motion:- extra energy deduction

3. Flow resistence- friction dissipation

Descriptors

� Makro level descriptors• Sound absorption coefficient, α• Weighted sound absorption coefficient, αw

� Influencing factors• Porosity• Flow resistence• Tortuosity

Typical sound absorbers

� Glasswool• made of super slender wool added with phenolic resin binder

by pressing, heating and solidifying. Can be covered with Pwccloth or aluinium foil.

� Rock wool• made of volcanic rock, typically basalt and/or dolomite

(nowadays also from recycled materials made from slag…)

� Plastic foam

Előadás címe 29© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Some typical sound absorption curves

The effect of flow resistence and thickness

Cloth covered glasswool plate of various thickness and flow resistance, measured in a reverberation room

Measurement of sound absorption / 1

� Reverberation chamber method

Measurement of sound absorption / 2

Impedancetube method

Sound absorption tables

Előadás címe 34© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Effect of air gap behind the absorber

Effect of perforation

Practical example: (sound absorbing) suspended ceiling

Spatial elements

Membrane resonator

Helmholtz -resonator

ma

ca

01

a am cω =

H-resonators in practice

Regions of the sound field

� Direct field and reverberant (or diffuse) field

21

4o

410l gp W R

Lr

= + +

-40

-35

-30

-25

-20

-15

-10

-5

0

1.0 10.0 100.0 1000.0

Távolság a forrástól [m]

Lp -

LW [

dB]

10

20

50

100

200

500

1000

2000

5000

10000

log r

Lp

Back to the description of the reverberant sound field

Notion of the reverberation time, T: time period, in which the energycontent of the sound field reduces to one millionth. Expressed in SPL this corresponds to 60 dB decrease.

The founder of modern room acoustics

W. C. Sabine (1868-1919)

Auditorium Fogg

Reverberation time

� Influencing parameters:• directly proportional to the volume V of the room, • inversely proportional to the average sound absorption and

the total surface of surrounding walls A

601 1 2 2

0.16 0.16 0.16... n n

V V VT

R A A A Aα α α α= ≅ =

+ + +

α

1 1 2 2 1

1 2

1

...

...

n

i in n i

nn

ii

AA A A

A A AA

αα α αα =

=

+ + += =+ + +

∑α

1A

R Aα αα

= ≅−

Room constants , typical values

1A

R Aα αα

= ≅−

Volume α=0,35 α=0,3 α=0,2 α=0,15 α=0,07

[m3] Auditorium CinemaThatre,

opera

Concert

hallChurch

Optimal reverberation time vs volume

Előadás címe 47© Előadó NeveBME Hálózati Rendszerek és Szolgáltatások Tanszék

Reverb (auralization )

„dryrecording”

Reverberated sound( )h τ

Reverberation of text

Quarry in West Hungary, Fertőrákos

Room acoustical modelling

Computer aided acoustical modelling

Computer aided acoustical modelling