basic input operations complex input operations€¦ · the advantages of these "flying...

7
11/12/03 LMU München Mensch-Maschine-Interaktion WS03/04 Schmidt/Hußmann 1 Vorlesung Mensch-Maschine-Interaktion Input devices & technologies Ludwig-Maximilians-Universität München LFE Medieninformatik Heinrich Hußmann & Albrecht Schmidt WS2003/2004 http://www.medien.informatik.uni-muenchen.de/ 11/12/03 LMU München Mensch-Maschine-Interaktion WS03/04 Schmidt/Hußmann 2 Table of Content Input Devices Degree of Freedom 11/12/03 LMU München Mensch-Maschine-Interaktion WS03/04 Schmidt/Hußmann 3 Basic Input Operations Text Input Continuous - Keyboard and alike - Handwriting - Spoken Block - Scan/digital camera and OCR Pointing & Selection Degree of Freedom - 1, 2, 3, 6, <more> DOF Isotonic vs. Isometric Translation function Precision Technology Feedback Direct Mapped Controls Hard wired buttons/controls - On/off switch - Volume slider Physical controls that can be mapped - PalmPilot buttons - “internet-keyboard” buttons - Industrial applications Media capture Media type - Audio - Images - Video Quality/Resolution Technology 11/12/03 LMU München Mensch-Maschine-Interaktion WS03/04 Schmidt/Hußmann 4 Complex Input Operations Examples of tasks Filling a form = pointing, selection, and text input Annotation in photos = image capture, pointing, and text input Moving a group of files = pointing and selection Examples of operations Selection of objects Grouping of objects Moving of objects Navigation in space 11/12/03 LMU München Mensch-Maschine-Interaktion WS03/04 Schmidt/Hußmann 5 1D Pointing Device Example: Computer Rope Interface Interface to move up and down Visualisation of Rainforest vegetation at the selected height Exhibition scenario Users: kids 4-8 http://web.media.mit.edu/~win/Canopy%20Climb/Index.htm 11/12/03 LMU München Mensch-Maschine-Interaktion WS03/04 Schmidt/Hußmann 6 Example: Computer Rope Interface

Upload: others

Post on 30-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

1

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 1

Vorlesung Mensch-Maschine-Interaktion

Input devices amp technologies

Ludwig-Maximilians-Universitaumlt Muumlnchen LFE Medieninformatik

Heinrich Huszligmann amp Albrecht Schmidt WS20032004

httpwwwmedieninformatikuni-muenchende

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 2

Table of Content

Input DevicesDegree of Freedom

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 3

Basic Input OperationsText Inputbull Continuous

- Keyboard and alike- Handwriting- Spoken

bull Block- Scandigital camera

and OCR

Pointing amp Selectionbull Degree of Freedom

- 1 2 3 6 ltmoregt DOFbull Isotonic vs Isometricbull Translation functionbull Precisionbull Technologybull Feedback

Direct Mapped Controlsbull Hard wired buttonscontrols

- Onoff switch- Volume slider

bull Physical controls that can be mapped

- PalmPilot buttons- ldquointernet-keyboardrdquo buttons- Industrial applications

Media capturebull Media type

- Audio- Images- Video

bull QualityResolutionbull Technology

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 4

Complex Input OperationsExamples of tasksbull Filling a form = pointing

selection and text inputbull Annotation in photos =

image capture pointing and text input

bull Moving a group of files = pointing and selection

Examples of operationsbull Selection of objectsbull Grouping of objectsbull Moving of objectsbull Navigation in space

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 5

1D Pointing DeviceExample Computer Rope Interface

Interface to move up and downVisualisation of Rainforest vegetation at the selected heightExhibition scenarioUsers kids 4-8

httpwebmediamitedu~winCanopy20ClimbIndexhtm

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 6

Example Computer Rope Interface

2

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 7

Example Computer Rope Interface

Low tech implementationMouse scrolling

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 8

Rope Interface Video

httpwebmediamitedu~winCanopy20ClimbRope20Interface20Export2avihttpwebmediamitedu~winCanopy20ClimbTreemovieavi

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 9

Pointing Devices with 2DOF

Pointing devices such asbull Mousebull Track ballbull Touch screenbull (See last week)

Off the desktop other technologies and methods are requiredbull Virtual touch screenbull Converting surfaces into input devicesbull Human view

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 10

Virtual Touch Screen

Surfaces are converted into touch screensImagevideo is projected onto the surfaceUsing a camera (or other tracking technology) gestures are recognizedInterpretation by software

bull simple ndash where is someone pointing to

bull complex ndash gestures sign language

applicationbull Kiosk application where vandalism

is an issuebull Research prototypes hellip

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 11

Example Window Tap Interfacelocates the position of knocks and taps atop a large sheet of glasspiezoelectric pickups

bull located near the sheets corners bull record the structural-acoustic wavefrontbull relevant characteristics from these

signals - amplitudes - frequency components - differential timings

bull to estimate the location of the hitbull simple hardwarebull no special adaptation of the glass panebull knock position resolution of about s=2

cm across 15 meters of glass

httpwwwmediamiteduresenvTapper

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 12

Example Window Tap Interface

httpwwwmediamiteduresenvTapper

3

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 13

Example Window Tap Interface

httpwwwmediamiteduresenvTapper

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 14

Example Vision-Based Face Tracking System for Large Displays

stereo-based face tracking system can track the 3D positionand orientation of a user in real-timeapplication for interactionwith a large display

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 15

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 16

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 17

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 18

Smart-Board

Large touch sensitive surfaceFront or back projectionInteractive screen

4

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 19

Smart-BoardDViT (digital vision touch)

Vision based 4 cameras 100FPSNearly on any surfaceMore than one pointershttpwwwsmarttechcomdvitindexasp

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 20

Capture InteractionMimiobull Tracking of flip chart makers bull Capture writing and drawaing on a

large scale

PC Notes Takerbull Capture drawing and handwriting on

small scale

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 21

Photo CaptureWrite on traditional surfaces eg blackboard white board napkinCapture with digital camera

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 22

3D Input6 DOF Interfaces

3D input is common and required in many different domainsbull Creation and manipulation of 3D models (creating animations)bull Navigation in 3D information (eg medical images)

Can be simulated with standard input devicesbull Keyboard and text input (6 values)bull 2DOF pointing device and modesbull Gestures

Devices that offer 6 degrees of freedombull Criteria

- Speed- Accuracy- Ease of learning- Fatigue- Coordination- Device persistence and acquisition

bull Little common understanding

Translation rotation

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 23

6DOFTransfer functionbull Position control

- Free moving (isotonic) devices ndash device displacement is mappedscaled to position

bull Rate control- Force or displacement is mapped onto cursor velocity- Integration of input over time -gt first order control

Controller resistancebull Isotonic

- Displacement of device is mapped to displacement of the cursorbull Elasticbull Isometric

- Force is mapped to rate control

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 24

Analysis of Position versus Rate Control

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

5

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 25

Performance depends on transfer function and resistance

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 26

Controller resistanceIsotonicbull pressure devices force devices bull Infinite resistancebull device that senses force but does not

perceptibly move Isometricbull displacement devices free moving devices

or unloaded devices bull zero or constant resistance

Elastic Devicersquos resistive force increases with displacement also called spring-loaded Viscous resistance increases with velocity of movementInertial resistance increases with acceleration

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 27

Flying Mice (I)a mouse that can be moved and rotated in the air for 3D object manipulationMany different typeshellipflying mouse is a free-moving ie isotonic device displacement of the device is typically mapped to a cursor displacement Such type of mapping (transfer function) is also called position control

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 28

Flying Mice (II)The advantages of these flying mice devices are bull Easy to learn because of the natural direct

mapping bull Relatively fast speed

disadvantages to this class of devices bull Limited movement range Since it is position

control hand movement can be mapped to only a limited range of the display space

bull Lack of coordination In position control object movement is directly proportional to handfinger movement and hence constrained to anatomical limitations joints can only rotate to certain angle

bull Fatigue This is a significant problem with free moving 6 DOF devices because the users arm has to be suspended in the air without support

bull Difficulty of device acquisition The flying mice lack persistence in position when released

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

The form factor of devices has a significant impact on the pointing performance Eg Fingerball vs glove

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 29

Stationary devices (I)devices that are mounted on stationary surface Have a self-centering mechanismThey are either isometric devices that do not move by a significantly perceptible magnitude or elasticdevices that are spring-loaded Typically these devices work in rate control mode ie the input variable either force or displacement is mapped onto the velocity of the cursor The cursor position is the integration of input variable over time

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 30

Stationary devices (II)isometric device (used with rate control) offers the following advantages bull Reduced fatigue since the users arm can be rested on the desktop bull Increased coordination The integral transformation in rate control

makes the actual cursor movement a step removed from the hand anatomy

bull Smoother and more steady cursor movement The rate control mechanism (integration) is a low pass filter reducing high frequency noises

bull Device persistence and faster acquisition Since these devices stay stationary on the desktop they can be acquired more easily

isometric rate control devices may have the following disadvantages bull Rate control is an acquired skill A user typically takes tens of minutes

to gain controllability of isometric rate control devicesbull Lack of control feel Since an isometric device feels completely rigid

6

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 31

Multi DOF Armaturesmulti DOF input devices are mechanical armatures the armature is actually a hybrid between a flying-mouse type of device and a stationary device Can be seen as a are near isotonic - with exceptional singularity positions -position control device (like a flying mouse)has the following particular advantages

bull Not susceptible to interference bull Less delay response is usually better than most flying mouse technologybull Can be configured to stay put when friction on joints is adjusted and therefore

better for device acquisition

drawbacks bull Fatigue as with flying mouse bull Constrained operation The user has to carry the mechanical arm to operate At

certain singular points positionorientation is awkward

This class of devices can also be equipped with force feedback see later Phantom Device

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 32

Technology ExamplesData Glove

Data glove to input information about

bull Orientation (roll pitch)bull Angle of jointsbull Sometimes position (external

tracking)

Time resolutionabout 150200 Hz

Precision (price dependent)bull Up to 05 deg for expensive

devices(gt 10000 euro)

bull Cheap devices (euro100) much less

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 33

Technology Examples3D-Mouse

Spacemouse und Spaceballbull Object (eg Ball) is elastically mountedbull Pressure pull torsion are measuredbull Dynamic positioning

6DOF

httpwwwalsoscomProductsDevicesSpaceBallhtml111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 34

Technology Examples3D-Graphic Tablet

Graphic tablets with 3 dimensionsTracking to aquire spacialposition (eg using Ultrasound)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 35

Basic Problem with a single 2DOF Pointing Device

With 2DOF most often time multiplexing is impliedOne operation at the time (eg slider can be only be moved sequentially with the mouse)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 36

Interactive Modelling(Merl)

httpwwwmerlcompapersTR2000-13

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm

Page 2: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

2

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 7

Example Computer Rope Interface

Low tech implementationMouse scrolling

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 8

Rope Interface Video

httpwebmediamitedu~winCanopy20ClimbRope20Interface20Export2avihttpwebmediamitedu~winCanopy20ClimbTreemovieavi

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 9

Pointing Devices with 2DOF

Pointing devices such asbull Mousebull Track ballbull Touch screenbull (See last week)

Off the desktop other technologies and methods are requiredbull Virtual touch screenbull Converting surfaces into input devicesbull Human view

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 10

Virtual Touch Screen

Surfaces are converted into touch screensImagevideo is projected onto the surfaceUsing a camera (or other tracking technology) gestures are recognizedInterpretation by software

bull simple ndash where is someone pointing to

bull complex ndash gestures sign language

applicationbull Kiosk application where vandalism

is an issuebull Research prototypes hellip

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 11

Example Window Tap Interfacelocates the position of knocks and taps atop a large sheet of glasspiezoelectric pickups

bull located near the sheets corners bull record the structural-acoustic wavefrontbull relevant characteristics from these

signals - amplitudes - frequency components - differential timings

bull to estimate the location of the hitbull simple hardwarebull no special adaptation of the glass panebull knock position resolution of about s=2

cm across 15 meters of glass

httpwwwmediamiteduresenvTapper

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 12

Example Window Tap Interface

httpwwwmediamiteduresenvTapper

3

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 13

Example Window Tap Interface

httpwwwmediamiteduresenvTapper

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 14

Example Vision-Based Face Tracking System for Large Displays

stereo-based face tracking system can track the 3D positionand orientation of a user in real-timeapplication for interactionwith a large display

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 15

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 16

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 17

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 18

Smart-Board

Large touch sensitive surfaceFront or back projectionInteractive screen

4

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 19

Smart-BoardDViT (digital vision touch)

Vision based 4 cameras 100FPSNearly on any surfaceMore than one pointershttpwwwsmarttechcomdvitindexasp

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 20

Capture InteractionMimiobull Tracking of flip chart makers bull Capture writing and drawaing on a

large scale

PC Notes Takerbull Capture drawing and handwriting on

small scale

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 21

Photo CaptureWrite on traditional surfaces eg blackboard white board napkinCapture with digital camera

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 22

3D Input6 DOF Interfaces

3D input is common and required in many different domainsbull Creation and manipulation of 3D models (creating animations)bull Navigation in 3D information (eg medical images)

Can be simulated with standard input devicesbull Keyboard and text input (6 values)bull 2DOF pointing device and modesbull Gestures

Devices that offer 6 degrees of freedombull Criteria

- Speed- Accuracy- Ease of learning- Fatigue- Coordination- Device persistence and acquisition

bull Little common understanding

Translation rotation

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 23

6DOFTransfer functionbull Position control

- Free moving (isotonic) devices ndash device displacement is mappedscaled to position

bull Rate control- Force or displacement is mapped onto cursor velocity- Integration of input over time -gt first order control

Controller resistancebull Isotonic

- Displacement of device is mapped to displacement of the cursorbull Elasticbull Isometric

- Force is mapped to rate control

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 24

Analysis of Position versus Rate Control

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

5

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 25

Performance depends on transfer function and resistance

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 26

Controller resistanceIsotonicbull pressure devices force devices bull Infinite resistancebull device that senses force but does not

perceptibly move Isometricbull displacement devices free moving devices

or unloaded devices bull zero or constant resistance

Elastic Devicersquos resistive force increases with displacement also called spring-loaded Viscous resistance increases with velocity of movementInertial resistance increases with acceleration

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 27

Flying Mice (I)a mouse that can be moved and rotated in the air for 3D object manipulationMany different typeshellipflying mouse is a free-moving ie isotonic device displacement of the device is typically mapped to a cursor displacement Such type of mapping (transfer function) is also called position control

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 28

Flying Mice (II)The advantages of these flying mice devices are bull Easy to learn because of the natural direct

mapping bull Relatively fast speed

disadvantages to this class of devices bull Limited movement range Since it is position

control hand movement can be mapped to only a limited range of the display space

bull Lack of coordination In position control object movement is directly proportional to handfinger movement and hence constrained to anatomical limitations joints can only rotate to certain angle

bull Fatigue This is a significant problem with free moving 6 DOF devices because the users arm has to be suspended in the air without support

bull Difficulty of device acquisition The flying mice lack persistence in position when released

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

The form factor of devices has a significant impact on the pointing performance Eg Fingerball vs glove

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 29

Stationary devices (I)devices that are mounted on stationary surface Have a self-centering mechanismThey are either isometric devices that do not move by a significantly perceptible magnitude or elasticdevices that are spring-loaded Typically these devices work in rate control mode ie the input variable either force or displacement is mapped onto the velocity of the cursor The cursor position is the integration of input variable over time

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 30

Stationary devices (II)isometric device (used with rate control) offers the following advantages bull Reduced fatigue since the users arm can be rested on the desktop bull Increased coordination The integral transformation in rate control

makes the actual cursor movement a step removed from the hand anatomy

bull Smoother and more steady cursor movement The rate control mechanism (integration) is a low pass filter reducing high frequency noises

bull Device persistence and faster acquisition Since these devices stay stationary on the desktop they can be acquired more easily

isometric rate control devices may have the following disadvantages bull Rate control is an acquired skill A user typically takes tens of minutes

to gain controllability of isometric rate control devicesbull Lack of control feel Since an isometric device feels completely rigid

6

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 31

Multi DOF Armaturesmulti DOF input devices are mechanical armatures the armature is actually a hybrid between a flying-mouse type of device and a stationary device Can be seen as a are near isotonic - with exceptional singularity positions -position control device (like a flying mouse)has the following particular advantages

bull Not susceptible to interference bull Less delay response is usually better than most flying mouse technologybull Can be configured to stay put when friction on joints is adjusted and therefore

better for device acquisition

drawbacks bull Fatigue as with flying mouse bull Constrained operation The user has to carry the mechanical arm to operate At

certain singular points positionorientation is awkward

This class of devices can also be equipped with force feedback see later Phantom Device

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 32

Technology ExamplesData Glove

Data glove to input information about

bull Orientation (roll pitch)bull Angle of jointsbull Sometimes position (external

tracking)

Time resolutionabout 150200 Hz

Precision (price dependent)bull Up to 05 deg for expensive

devices(gt 10000 euro)

bull Cheap devices (euro100) much less

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 33

Technology Examples3D-Mouse

Spacemouse und Spaceballbull Object (eg Ball) is elastically mountedbull Pressure pull torsion are measuredbull Dynamic positioning

6DOF

httpwwwalsoscomProductsDevicesSpaceBallhtml111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 34

Technology Examples3D-Graphic Tablet

Graphic tablets with 3 dimensionsTracking to aquire spacialposition (eg using Ultrasound)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 35

Basic Problem with a single 2DOF Pointing Device

With 2DOF most often time multiplexing is impliedOne operation at the time (eg slider can be only be moved sequentially with the mouse)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 36

Interactive Modelling(Merl)

httpwwwmerlcompapersTR2000-13

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm

Page 3: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

3

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 13

Example Window Tap Interface

httpwwwmediamiteduresenvTapper

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 14

Example Vision-Based Face Tracking System for Large Displays

stereo-based face tracking system can track the 3D positionand orientation of a user in real-timeapplication for interactionwith a large display

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 15

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 16

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 17

Example Vision-Based Face Tracking System for Large Displays

httpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 18

Smart-Board

Large touch sensitive surfaceFront or back projectionInteractive screen

4

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 19

Smart-BoardDViT (digital vision touch)

Vision based 4 cameras 100FPSNearly on any surfaceMore than one pointershttpwwwsmarttechcomdvitindexasp

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 20

Capture InteractionMimiobull Tracking of flip chart makers bull Capture writing and drawaing on a

large scale

PC Notes Takerbull Capture drawing and handwriting on

small scale

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 21

Photo CaptureWrite on traditional surfaces eg blackboard white board napkinCapture with digital camera

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 22

3D Input6 DOF Interfaces

3D input is common and required in many different domainsbull Creation and manipulation of 3D models (creating animations)bull Navigation in 3D information (eg medical images)

Can be simulated with standard input devicesbull Keyboard and text input (6 values)bull 2DOF pointing device and modesbull Gestures

Devices that offer 6 degrees of freedombull Criteria

- Speed- Accuracy- Ease of learning- Fatigue- Coordination- Device persistence and acquisition

bull Little common understanding

Translation rotation

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 23

6DOFTransfer functionbull Position control

- Free moving (isotonic) devices ndash device displacement is mappedscaled to position

bull Rate control- Force or displacement is mapped onto cursor velocity- Integration of input over time -gt first order control

Controller resistancebull Isotonic

- Displacement of device is mapped to displacement of the cursorbull Elasticbull Isometric

- Force is mapped to rate control

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 24

Analysis of Position versus Rate Control

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

5

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 25

Performance depends on transfer function and resistance

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 26

Controller resistanceIsotonicbull pressure devices force devices bull Infinite resistancebull device that senses force but does not

perceptibly move Isometricbull displacement devices free moving devices

or unloaded devices bull zero or constant resistance

Elastic Devicersquos resistive force increases with displacement also called spring-loaded Viscous resistance increases with velocity of movementInertial resistance increases with acceleration

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 27

Flying Mice (I)a mouse that can be moved and rotated in the air for 3D object manipulationMany different typeshellipflying mouse is a free-moving ie isotonic device displacement of the device is typically mapped to a cursor displacement Such type of mapping (transfer function) is also called position control

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 28

Flying Mice (II)The advantages of these flying mice devices are bull Easy to learn because of the natural direct

mapping bull Relatively fast speed

disadvantages to this class of devices bull Limited movement range Since it is position

control hand movement can be mapped to only a limited range of the display space

bull Lack of coordination In position control object movement is directly proportional to handfinger movement and hence constrained to anatomical limitations joints can only rotate to certain angle

bull Fatigue This is a significant problem with free moving 6 DOF devices because the users arm has to be suspended in the air without support

bull Difficulty of device acquisition The flying mice lack persistence in position when released

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

The form factor of devices has a significant impact on the pointing performance Eg Fingerball vs glove

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 29

Stationary devices (I)devices that are mounted on stationary surface Have a self-centering mechanismThey are either isometric devices that do not move by a significantly perceptible magnitude or elasticdevices that are spring-loaded Typically these devices work in rate control mode ie the input variable either force or displacement is mapped onto the velocity of the cursor The cursor position is the integration of input variable over time

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 30

Stationary devices (II)isometric device (used with rate control) offers the following advantages bull Reduced fatigue since the users arm can be rested on the desktop bull Increased coordination The integral transformation in rate control

makes the actual cursor movement a step removed from the hand anatomy

bull Smoother and more steady cursor movement The rate control mechanism (integration) is a low pass filter reducing high frequency noises

bull Device persistence and faster acquisition Since these devices stay stationary on the desktop they can be acquired more easily

isometric rate control devices may have the following disadvantages bull Rate control is an acquired skill A user typically takes tens of minutes

to gain controllability of isometric rate control devicesbull Lack of control feel Since an isometric device feels completely rigid

6

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 31

Multi DOF Armaturesmulti DOF input devices are mechanical armatures the armature is actually a hybrid between a flying-mouse type of device and a stationary device Can be seen as a are near isotonic - with exceptional singularity positions -position control device (like a flying mouse)has the following particular advantages

bull Not susceptible to interference bull Less delay response is usually better than most flying mouse technologybull Can be configured to stay put when friction on joints is adjusted and therefore

better for device acquisition

drawbacks bull Fatigue as with flying mouse bull Constrained operation The user has to carry the mechanical arm to operate At

certain singular points positionorientation is awkward

This class of devices can also be equipped with force feedback see later Phantom Device

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 32

Technology ExamplesData Glove

Data glove to input information about

bull Orientation (roll pitch)bull Angle of jointsbull Sometimes position (external

tracking)

Time resolutionabout 150200 Hz

Precision (price dependent)bull Up to 05 deg for expensive

devices(gt 10000 euro)

bull Cheap devices (euro100) much less

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 33

Technology Examples3D-Mouse

Spacemouse und Spaceballbull Object (eg Ball) is elastically mountedbull Pressure pull torsion are measuredbull Dynamic positioning

6DOF

httpwwwalsoscomProductsDevicesSpaceBallhtml111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 34

Technology Examples3D-Graphic Tablet

Graphic tablets with 3 dimensionsTracking to aquire spacialposition (eg using Ultrasound)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 35

Basic Problem with a single 2DOF Pointing Device

With 2DOF most often time multiplexing is impliedOne operation at the time (eg slider can be only be moved sequentially with the mouse)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 36

Interactive Modelling(Merl)

httpwwwmerlcompapersTR2000-13

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm

Page 4: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

4

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 19

Smart-BoardDViT (digital vision touch)

Vision based 4 cameras 100FPSNearly on any surfaceMore than one pointershttpwwwsmarttechcomdvitindexasp

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 20

Capture InteractionMimiobull Tracking of flip chart makers bull Capture writing and drawaing on a

large scale

PC Notes Takerbull Capture drawing and handwriting on

small scale

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 21

Photo CaptureWrite on traditional surfaces eg blackboard white board napkinCapture with digital camera

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 22

3D Input6 DOF Interfaces

3D input is common and required in many different domainsbull Creation and manipulation of 3D models (creating animations)bull Navigation in 3D information (eg medical images)

Can be simulated with standard input devicesbull Keyboard and text input (6 values)bull 2DOF pointing device and modesbull Gestures

Devices that offer 6 degrees of freedombull Criteria

- Speed- Accuracy- Ease of learning- Fatigue- Coordination- Device persistence and acquisition

bull Little common understanding

Translation rotation

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 23

6DOFTransfer functionbull Position control

- Free moving (isotonic) devices ndash device displacement is mappedscaled to position

bull Rate control- Force or displacement is mapped onto cursor velocity- Integration of input over time -gt first order control

Controller resistancebull Isotonic

- Displacement of device is mapped to displacement of the cursorbull Elasticbull Isometric

- Force is mapped to rate control

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 24

Analysis of Position versus Rate Control

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

5

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 25

Performance depends on transfer function and resistance

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 26

Controller resistanceIsotonicbull pressure devices force devices bull Infinite resistancebull device that senses force but does not

perceptibly move Isometricbull displacement devices free moving devices

or unloaded devices bull zero or constant resistance

Elastic Devicersquos resistive force increases with displacement also called spring-loaded Viscous resistance increases with velocity of movementInertial resistance increases with acceleration

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 27

Flying Mice (I)a mouse that can be moved and rotated in the air for 3D object manipulationMany different typeshellipflying mouse is a free-moving ie isotonic device displacement of the device is typically mapped to a cursor displacement Such type of mapping (transfer function) is also called position control

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 28

Flying Mice (II)The advantages of these flying mice devices are bull Easy to learn because of the natural direct

mapping bull Relatively fast speed

disadvantages to this class of devices bull Limited movement range Since it is position

control hand movement can be mapped to only a limited range of the display space

bull Lack of coordination In position control object movement is directly proportional to handfinger movement and hence constrained to anatomical limitations joints can only rotate to certain angle

bull Fatigue This is a significant problem with free moving 6 DOF devices because the users arm has to be suspended in the air without support

bull Difficulty of device acquisition The flying mice lack persistence in position when released

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

The form factor of devices has a significant impact on the pointing performance Eg Fingerball vs glove

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 29

Stationary devices (I)devices that are mounted on stationary surface Have a self-centering mechanismThey are either isometric devices that do not move by a significantly perceptible magnitude or elasticdevices that are spring-loaded Typically these devices work in rate control mode ie the input variable either force or displacement is mapped onto the velocity of the cursor The cursor position is the integration of input variable over time

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 30

Stationary devices (II)isometric device (used with rate control) offers the following advantages bull Reduced fatigue since the users arm can be rested on the desktop bull Increased coordination The integral transformation in rate control

makes the actual cursor movement a step removed from the hand anatomy

bull Smoother and more steady cursor movement The rate control mechanism (integration) is a low pass filter reducing high frequency noises

bull Device persistence and faster acquisition Since these devices stay stationary on the desktop they can be acquired more easily

isometric rate control devices may have the following disadvantages bull Rate control is an acquired skill A user typically takes tens of minutes

to gain controllability of isometric rate control devicesbull Lack of control feel Since an isometric device feels completely rigid

6

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 31

Multi DOF Armaturesmulti DOF input devices are mechanical armatures the armature is actually a hybrid between a flying-mouse type of device and a stationary device Can be seen as a are near isotonic - with exceptional singularity positions -position control device (like a flying mouse)has the following particular advantages

bull Not susceptible to interference bull Less delay response is usually better than most flying mouse technologybull Can be configured to stay put when friction on joints is adjusted and therefore

better for device acquisition

drawbacks bull Fatigue as with flying mouse bull Constrained operation The user has to carry the mechanical arm to operate At

certain singular points positionorientation is awkward

This class of devices can also be equipped with force feedback see later Phantom Device

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 32

Technology ExamplesData Glove

Data glove to input information about

bull Orientation (roll pitch)bull Angle of jointsbull Sometimes position (external

tracking)

Time resolutionabout 150200 Hz

Precision (price dependent)bull Up to 05 deg for expensive

devices(gt 10000 euro)

bull Cheap devices (euro100) much less

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 33

Technology Examples3D-Mouse

Spacemouse und Spaceballbull Object (eg Ball) is elastically mountedbull Pressure pull torsion are measuredbull Dynamic positioning

6DOF

httpwwwalsoscomProductsDevicesSpaceBallhtml111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 34

Technology Examples3D-Graphic Tablet

Graphic tablets with 3 dimensionsTracking to aquire spacialposition (eg using Ultrasound)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 35

Basic Problem with a single 2DOF Pointing Device

With 2DOF most often time multiplexing is impliedOne operation at the time (eg slider can be only be moved sequentially with the mouse)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 36

Interactive Modelling(Merl)

httpwwwmerlcompapersTR2000-13

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm

Page 5: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

5

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 25

Performance depends on transfer function and resistance

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 26

Controller resistanceIsotonicbull pressure devices force devices bull Infinite resistancebull device that senses force but does not

perceptibly move Isometricbull displacement devices free moving devices

or unloaded devices bull zero or constant resistance

Elastic Devicersquos resistive force increases with displacement also called spring-loaded Viscous resistance increases with velocity of movementInertial resistance increases with acceleration

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 27

Flying Mice (I)a mouse that can be moved and rotated in the air for 3D object manipulationMany different typeshellipflying mouse is a free-moving ie isotonic device displacement of the device is typically mapped to a cursor displacement Such type of mapping (transfer function) is also called position control

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 28

Flying Mice (II)The advantages of these flying mice devices are bull Easy to learn because of the natural direct

mapping bull Relatively fast speed

disadvantages to this class of devices bull Limited movement range Since it is position

control hand movement can be mapped to only a limited range of the display space

bull Lack of coordination In position control object movement is directly proportional to handfinger movement and hence constrained to anatomical limitations joints can only rotate to certain angle

bull Fatigue This is a significant problem with free moving 6 DOF devices because the users arm has to be suspended in the air without support

bull Difficulty of device acquisition The flying mice lack persistence in position when released

httpwwwalmadenibmcomuzhaipaperssiggraphfinalhtml

The form factor of devices has a significant impact on the pointing performance Eg Fingerball vs glove

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 29

Stationary devices (I)devices that are mounted on stationary surface Have a self-centering mechanismThey are either isometric devices that do not move by a significantly perceptible magnitude or elasticdevices that are spring-loaded Typically these devices work in rate control mode ie the input variable either force or displacement is mapped onto the velocity of the cursor The cursor position is the integration of input variable over time

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 30

Stationary devices (II)isometric device (used with rate control) offers the following advantages bull Reduced fatigue since the users arm can be rested on the desktop bull Increased coordination The integral transformation in rate control

makes the actual cursor movement a step removed from the hand anatomy

bull Smoother and more steady cursor movement The rate control mechanism (integration) is a low pass filter reducing high frequency noises

bull Device persistence and faster acquisition Since these devices stay stationary on the desktop they can be acquired more easily

isometric rate control devices may have the following disadvantages bull Rate control is an acquired skill A user typically takes tens of minutes

to gain controllability of isometric rate control devicesbull Lack of control feel Since an isometric device feels completely rigid

6

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 31

Multi DOF Armaturesmulti DOF input devices are mechanical armatures the armature is actually a hybrid between a flying-mouse type of device and a stationary device Can be seen as a are near isotonic - with exceptional singularity positions -position control device (like a flying mouse)has the following particular advantages

bull Not susceptible to interference bull Less delay response is usually better than most flying mouse technologybull Can be configured to stay put when friction on joints is adjusted and therefore

better for device acquisition

drawbacks bull Fatigue as with flying mouse bull Constrained operation The user has to carry the mechanical arm to operate At

certain singular points positionorientation is awkward

This class of devices can also be equipped with force feedback see later Phantom Device

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 32

Technology ExamplesData Glove

Data glove to input information about

bull Orientation (roll pitch)bull Angle of jointsbull Sometimes position (external

tracking)

Time resolutionabout 150200 Hz

Precision (price dependent)bull Up to 05 deg for expensive

devices(gt 10000 euro)

bull Cheap devices (euro100) much less

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 33

Technology Examples3D-Mouse

Spacemouse und Spaceballbull Object (eg Ball) is elastically mountedbull Pressure pull torsion are measuredbull Dynamic positioning

6DOF

httpwwwalsoscomProductsDevicesSpaceBallhtml111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 34

Technology Examples3D-Graphic Tablet

Graphic tablets with 3 dimensionsTracking to aquire spacialposition (eg using Ultrasound)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 35

Basic Problem with a single 2DOF Pointing Device

With 2DOF most often time multiplexing is impliedOne operation at the time (eg slider can be only be moved sequentially with the mouse)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 36

Interactive Modelling(Merl)

httpwwwmerlcompapersTR2000-13

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm

Page 6: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

6

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 31

Multi DOF Armaturesmulti DOF input devices are mechanical armatures the armature is actually a hybrid between a flying-mouse type of device and a stationary device Can be seen as a are near isotonic - with exceptional singularity positions -position control device (like a flying mouse)has the following particular advantages

bull Not susceptible to interference bull Less delay response is usually better than most flying mouse technologybull Can be configured to stay put when friction on joints is adjusted and therefore

better for device acquisition

drawbacks bull Fatigue as with flying mouse bull Constrained operation The user has to carry the mechanical arm to operate At

certain singular points positionorientation is awkward

This class of devices can also be equipped with force feedback see later Phantom Device

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 32

Technology ExamplesData Glove

Data glove to input information about

bull Orientation (roll pitch)bull Angle of jointsbull Sometimes position (external

tracking)

Time resolutionabout 150200 Hz

Precision (price dependent)bull Up to 05 deg for expensive

devices(gt 10000 euro)

bull Cheap devices (euro100) much less

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 33

Technology Examples3D-Mouse

Spacemouse und Spaceballbull Object (eg Ball) is elastically mountedbull Pressure pull torsion are measuredbull Dynamic positioning

6DOF

httpwwwalsoscomProductsDevicesSpaceBallhtml111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 34

Technology Examples3D-Graphic Tablet

Graphic tablets with 3 dimensionsTracking to aquire spacialposition (eg using Ultrasound)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 35

Basic Problem with a single 2DOF Pointing Device

With 2DOF most often time multiplexing is impliedOne operation at the time (eg slider can be only be moved sequentially with the mouse)

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 36

Interactive Modelling(Merl)

httpwwwmerlcompapersTR2000-13

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm

Page 7: Basic Input Operations Complex Input Operations€¦ · The advantages of these "flying mice" devices are: • Easy to learn, because of the natural, direct mapping. • Relatively

7

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 37

Interactive Modelling (Merl)httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 38

Interactive ModellingCont (Merl)

httpwwwmerlcompapersTR2000-13

111203 LMU Muumlnchen hellip Mensch-Maschine-Interaktion hellip WS0304 hellip SchmidtHuszligmann 39

ReferencesComputer Rope Interfacehttpwebmediamitedu~winCanopy20ClimbIndexhtm

Sensor Systems for Interactive Surfaces J Paradiso K Hsiao J Strickon J Lifton and A Adler IBM Systems Journal Volume 39 Nos 3 amp 4 October 2000 pp 892-914 httpwwwresearchibmcomjournalsj393part3paradisohtml

Window Tap InterfacehttpwwwmediamiteduresenvTapper

Vision-Based Face Tracking System for Large Displayshttpnaka1hakoisuecacjppaperseWallUbicomp2002pdf

httpveredroseutorontocapeopleshumin_dirpapersPhD_ThesisChapter2Chapter23html

httpwwwsiggraphorgpublicationsnewsletterv32n4contributionszhaihtml

httpwwwmerlcompapersTR2000-13

Logitech iFeel Mousehttpwwwdansdatacomifeelhtm

Exertion Interfaces httpwwwexertioninterfacescomtechnical_detailsindexhtm