basic blasting

Upload: cimot85

Post on 14-Jan-2016

5 views

Category:

Documents


0 download

DESCRIPTION

Pengenalan dasar peledakan

TRANSCRIPT

  • PELEDAKAN TAMBANG TERBUKA

    Disajikan dalam :RAKER INTERNAL PT. BUMA (11 - 12 Oktober 2004)

    oleh :DEDY IRAWANDIVISI TAMBANG UMUMPT. DAHANA (PERSERO)

    S A M A R I N D AKALIMANTAN TIMUR 2 0 0 4

  • MATERI PEMBORAN DAN PELEDAKAN

    TEKNIK PELEDAKAN

    TEKNIK PEMBORAN

    EKONOMI PELEDAKAN

    DAMPAK PELEDAKAN

    SAFE BLASTING

  • MAJOR FACTORS INFLUENCING BLAST EFFICIENCY

    ATTITUDE

    COMMUNICATION

    BLAST DESIGN

    GEOLOGICAL EFFECTS

  • ATTITUDE

    PAYING ATTENTION TO DETAILS

    EACH OPERATION MUST BE COMPLETED AS PRECISELY AS POSSIBLE

    TOTAL QUALITY MANAGEMENT (T.Q.M)

    GROUP EFFORT

  • COMMUNICATION

    ) SAFE BLASTING PRACTICES REQUIRE GOOD COMMUNICATION.

    ) COMMUNICATION BETWEEN MEMBERS OF SAME GROUP AND BETWEEN GROUPS.

    ) OPTIMUM BLAST DESIGNS DEPEND ON INPUT FROM EACH GROUP.

  • KEYS TO EFFICIENT BLAST DESIGN

    UNIFORM ENERGY DISTRIBUTIONAPPROPRIATE ENERGY CONFINEMENTPROPER ENERGY LEVELADJUSMENT OF DESIGN TO MEET -EXISTING CONDITIONS

  • APPROACH TO ACHIEVING OPTIMUMBLAST EFFIENCY

  • W a t e rStatic waterDynamic waterMultiple priming is advised in wet blast hole

    GEOLOGICAL EFFECTS

  • Simplified blocky rockmasspoorfragmentationfree facezone

    expanded pattern prevents even energy distributionuniformfragmentation

    tight pattern promotes even energy distribution

  • Zero Oxygen Balance = 94.3% AN + 5.7% FO Over fuel mix, example: 92% AN + 8% FO Prod. 6% less energy CO Under fuel mix, example: 96% AN + 4% FO Prod. 18% less energy NO2 Increase sensitivity Its generally better to over fuel ANFO rather than under fuel it.P r i m e r s : Primer diameter should closely match hole dia. Two primers are recommended for blasthole over 15 meters deep [ANFO] & 10 meters deep [Emulsion Blend].

  • SURFACE BLASTING GEOMETRY

  • Decoupling Effect on Detonation Pressure

    % reduction in wetDiameter of ExplosiveBlastholes equalsDiameter of Blasthole

    % reduction in dryDiameter of ExplosiveBlastholes equalsDiameter of Blasthole

    Example : the detonation pressure of a 127 mm diameter explosive in a 165 mm diameter blasthole will be reduced by 38% in a wet hole and 49% in a dry hole.

    Initial Burden Dimension

    Explosive Density x 2 + 1.8 x Explosive Diameter Rock Density 84

    = 1-= 1-1.82.6Burden (m) =

  • SPACINGNormally ranges from (1 to 1.8) x BurdenOptimum energy distribution:S = 1.15 x BPattern is laid out in Staggered

    SUBDRILLINGNormally ranges from ( 0.3 to 0.5 ) x Burdenor ranges from (8 12) x Hole diameterto much Sub drilling produces ExcessiveGround VibrationLess Sub drilling produces Excessive toeTo improve fragmentation the blast hole primershould be placed at grade level.

    DECKING / AIR DECKINGMinimum decking for dry holes:Deck = hole diameter x 6Minimum decking for wet holes:Deck = hole diameter x 12Air decking can reduce the amount of explosivesto achieve good results by efficiently utilising the available explosive energy.

  • S T E M M I N G

    Normally ranges from (20 to 30) x Hole dia.or equal to 0.7 x Burden.

    Crushed rock confine explosive energyBetter than drill cuttings.

    Wet blast holes require more stemming forconfinement than dry blast holes.

    Relative Confinement (RC):>> 1.4 : Confine> 80% to produce uniformfragmentation

    To improve VED : Reduce charge dia. orIncrease Bench height. Then recalculateBurden and stemming dimensions.

  • StemLength

    ChargeDiameterBASIC BLAST DESIGN Relative Confinement (RC)Calculation (Stem Length x 210,000) + (Charge Diameter x 600)RC = (Charge Energy ABS x Charge Diameter)

    Example 1 :Charge Diameter152 mmCharge Energy ABS3167 j/ccStemming Length3.7 m

    Relative Confinement1.80typically well confinedExample 2 :Charge Diameter152 mmCharge Energy ABS3167 j/gStemming Length2.1 mRelative Confinement1.11poorly confined

  • Sheet1

    Range Of Delay Intervals Between RowsGeneral Consideration

    Massive Structure

    Blocky Structure

    Highly Jointed Structure

    Weak Seams, Slip Planes

    Water Filled Blastholes

    Explosives Density > 1.3

    Compact Muckpile

    Loose Muckpile

    Spread Out Muckpile

    Improved Fragmentation

    Limit Back Break

    Control Flyrock

    Minimize Airblast

    Minimize Ground Vibration

    0369121518212427303336

    Delay Interval (milliseconds per metre of burden)

    Sheet2

    Explosives Absolute Bulk Strength Calculation

    Explosives Density (g/cc)

    0.60.650.70.750.80.850.90.9511.051.11.151.21.251.31.35

    2,5001,5001,6251,7501,8752,0002,1252,2502,3752,5002,6252,7502,8753,0003,1253,2503,375

    2,5501,5301,6581,7851,9132,0402,1682,2952,4232,5502,6782,8052,9333,0603,1883,3153,443

    2,6001,5601,6901,8201,9502,0802,2102,3402,4702,6002,7302,8602,9903,1203,2503,3803,510

    2,6501,5901,7231,8551,9882,1202,2532,3852,5182,6502,7832,9153,0483,1803,3133,4453,578

    2,7001,6201,7551,8902,0252,1602,2952,4302,5652,7002,8352,9703,1053,2403,3753,5103,645

    2,7501,6501,7881,9252,0632,2002,3382,4752,6132,7502,8883,0253,1633,3003,4383,5753,713

    2,8001,6801,8201,9602,1002,2402,3802,5202,6602,8002,9403,0803,2203,3603,5003,6403,780

    2,8501,7101,8531,9952,1382,2802,4232,5652,7082,8502,9933,1353,2783,4203,5633,7053,848

    2,9001,7401,8852,0302,1752,3202,4652,6102,7552,9003,0453,1903,3353,4803,6253,7703,915

    2,9501,7701,9182,0652,2132,3602,5082,6552,8032,9503,0983,2453,3933,5403,6883,8353,983

    3,0001,8001,9502,1002,2502,4002,5502,7002,8503,0003,1503,3003,4503,6003,7503,9004,050

    3,1001,8602,0152,1702,3252,4802,6352,7902,9453,1003,2553,4103,5653,7203,8754,0304,185

    3,2001,9202,0802,2402,4002,5602,7202,8803,0403,2003,3603,5203,6803,8404,0004,1604,320

    3,3001,9802,1452,3102,4752,6402,8052,9703,1353,3003,4653,6303,7953,9604,1254,2904,455

    3,4002,0402,2102,3802,5502,7202,8903,0603,2303,4003,5703,7403,9104,0804,2504,4204,590

    3,5002,1002,2752,4502,6252,8002,9753,1503,3253,5003,6753,8504,0254,2004,3754,5504,725

    3,6002,1602,3402,5202,7002,8803,0603,2403,4203,6003,7803,9604,1404,3204,5004,6804,860

    3,7002,2202,4052,5902,7752,9603,1453,3303,5153,7003,8854,0704,2554,4404,6254,8104,995

    3,8002,2802,4702,6602,8503,0403,2303,4203,6103,8003,9904,1804,3704,5604,7504,9405,130

    3,9002,3402,5352,7302,9253,1203,3153,5103,7053,9004,0954,2904,4854,6804,8755,0705,265

    4,0002,4002,6002,8003,0003,2003,4003,6003,8004,0004,2004,4004,6004,8005,0005,2005,400

    4,1502,4902,6982,9053,1133,3203,5283,7353,9434,1504,3584,5654,7734,9805,1885,3955,603

    4,3002,5802,7953,0103,2253,4403,6553,8704,0854,3004,5154,7304,9455,1605,3755,5905,805

    4,4502,6702,8933,1153,3383,5603,7834,0054,2284,4504,6734,8955,1185,3405,5635,7856,008

    4,6002,7602,9903,2203,4503,6803,9104,1404,3704,6004,8305,0605,2905,5205,7505,9806,210

    4,7502,8503,0883,3253,5633,8004,0384,2754,5134,7504,9885,2255,4635,7005,9386,1756,413

    4,9002,9403,1853,4303,6753,9204,1654,4104,6554,9005,1455,3905,6355,8806,1256,3706,615

    Efficient Blasting Techniques - Dyno Wesfarmers - Blast Dynamics 1995

    Basic Blast Design - Page 7

    AWS (kl/g)

    Sheet3

    RELATIVE STEMMING CONFINEMENT CALCULATION

    Charge Diameter (mm)

    5060708090100125150175200225250275300325350

    1.004,8004,1003,6003,2252,9332,7002,2802,0001,8001,6501,5331,4401,3641,3001,2461,200

    1.255,8504,9754,3503,8813,5173,2252,7002,3502,1001,9131,7671,6501,5551,4751,4081,350

    1.506,9005,8505,1004,5384,1003,7503,1202,7002,4002,1752,0001,8601,7451,6501,5691,500

    1.757,9506,7255,8505,1944,6834,2753,5403,0502,7002,4382,2332,0701,9361,8251,7311,650

    2.009,0007,6006,6005,8505,2674,8003,9603,4003,0002,7002,4672,2802,1272,0001,8921,800

    2.2510,0508,4757,3506,5065,8505,3254,3803,7503,3002,9632,7002,4902,3182,1752,0541,950

    2.5011,1009,3508,1007,1636,4335,8504,8004,1003,6003,2252,9332,7002,5092,3502,2152,100

    2.7512,15010,2258,8507,8197,0176,3755,2204,4503,9003,4883,1672,9102,7002,5252,3772,250

    3.0013,20011,1009,6008,4757,6006,9005,6404,8004,2003,7503,4003,1202,8912,7002,5382,400

    3.2514,25011,97510,3509,1318,1837,4256,0605,1504,5004,0133,6333,3303,0822,8752,7002,550

    3.5015,30012,85011,1009,7888,7677,9506,4805,5004,8004,2753,8673,5403,2733,0502,8622,700

    3.7516,35013,72511,85010,4449,3508,4756,9005,8505,1004,5384,1003,7503,4643,2253,0232,850

    4.0017,40014,60012,60011,1009,9339,0007,3206,2005,4004,8004,3333,9603,6553,4003,1853,000

    4.2518,45015,47513,35011,75610,5179,5257,7406,5505,7005,0634,5674,1703,8453,5753,3463,150

    4.7520,55017,22514,85013,06911,68310,5758,5807,2506,3005,5885,0334,5904,2273,9253,6693,450

    5.0021,60018,10015,60013,72512,26711,1009,0007,6006,6005,8505,2674,8004,4184,1003,8313,600

    5.5023,70019,85017,10015,03813,43312,1509,8408,3007,2006,3755,7335,2204,8004,4504,1543,900

    6.0025,80021,60018,60016,35014,60013,20010,6809,0007,8006,9006,2005,6405,1824,8004,4774,200

    6.5027,90023,35020,10017,66315,76714,25011,5209,7008,4007,4256,6676,0605,5645,1504,8004,500

    7.0030,00025,10021,60018,97516,93315,30012,36010,4009,0007,9507,1336,4805,9455,5005,1234,800

    7.5032,10026,85023,10020,28818,10016,35013,20011,1009,6008,4757,6006,9006,3275,8505,4465,100

    8.0034,20028,60024,60021,60019,26717,40014,04011,80010,2009,0008,0677,3206,7096,2005,7695,400

    8.5036,30030,35026,10022,91320,43318,45014,88012,50010,8009,5258,5337,7407,0916,5506,0925,700

    9.0038,40032,10027,60024,22521,60019,50015,72013,20011,40010,0509,0008,1607,4736,9006,4156,000

    9.5040,50033,85029,10025,53822,76720,55016,56013,90012,00010,5759,4678,5807,8557,2506,7386,300

    10.0042,60035,60030,60026,85023,93321,60017,40014,60012,60011,1009,9339,0008,2367,6007,0626,600

    10.5044,70037,35032,10028,16325,10022,65018,24015,30013,20011,62510,4009,4208,6187,9507,3856,900

    11.0046,80039,10033,60029,47526,26723,70019,08016,00013,80012,15010,8679,8409,0008,3007,7087,200

    11.5048,90040,85035,10030,78827,43324,75019,92016,70014,40012,67511,33310,2609,3828,6508,0317,500

    Stem Length (m)

    To calculate the relative confinement find the value that represents the stem length and charge diameter. Next divide the value by the absolute bulk strenght of the explosives. For example, with a charge diameter of 150 mm and a stem length of 4 m the corresponding value = 6200. Assuming that ANFO with an ABS of 3200 is the explosives used, the relative cinfinement will equal 6200 divided by by 3200 or 1.94. Generally if the relative confinement is greater than 1.4 the cinfinement will be adequate if the value is less than 1.4 flyrock and steming ejection may occur.

    Stem Length (m)

    Sheet4

    Initial Burden Estimation Guide

    Explosives Density

    0.500.550.600.650.700.750.800.850.900.951.001.051.101.151.201.251.301.351.401.45

    1.02.00001111111111111111111

    1.111111111111111111122

    1.211111111111111122222

    1.311111111111111222222

    1.411111111111122222222

    1.511111111112222222222

    1.611111111122222222222

    1.711111111222222222222

    1.811111112222222222233

    1.911111122222222222333

    2.011111222222222233333

    2.111111222222222333333

    2.211112222222223333333

    2.311112222222233333333

    2.411122222222333333333

    2.511222222223333333344

    2.611222222223333333444

    2.711222222233333334444

    2.812222222333333344444

    2.912222222333333344444

    3.022222223333333444444

    3.122222223333334444444

    3.222222233333344444445

    3.322222233333344444455

    3.422222333333444444555

    3.522222333334444445555

    3.622223333334444455555

    3.772223333344444455555

    3.822333334444455555666

    3.923333444445555666677

    4.033334444555566677778

    4.133344455556667777888

    4.233444555666777888999

    4.33444556667778889991010

    4.4444556667778899910101011

    4.544556667788999101011111112

    4.64556677788991010101111121213

    4.755667788899101011111212131314

    4.85667788991010111112121313141415

    4.956678899101011111212131314151516

    5.0667789910101112121313141415161617

    Rock Density

    Sheet5

  • 1Poor Energy Distribution 2Fair Energy Distribution 3

    Good Energy DistributionENERGY DISTRIBUTION

  • Step #2Place small explosives deck in hard zone. If downhole delays are used the deck should be fired 25 ms before the main charge.

    Cap Rock

    Step #3Drill satellite holes between production holes and if possible load into hard zone.

    reduce

    Step #1Increase charge length while maintaining explosives confinement and or reduce the pattern size.

    STEPS TO IMPROVE TOP BREAKAGECap Rock

    Cap Rock

  • ANGLE DRILLING

    ADVANTAGES

    >> Better energy distribution>> Reduced over break>> Better floor control>> Improve high wall stability

    DISADVANTAGES

    >> Requires attention to drill set-up>> Generally shorter bit life>> Greater hole deviation>> Higher drilling cost per meter>> Require expert drillers>> Require wider drill benches

    Normally : 10 18 DegreeRequires Profiling Technique for fresh wall.

  • ADVANTAGES OF ANGLE DRILLINGPOORFRAGMENTATION USEFUL ENERGY

    WASTED ENERGY

  • MUCKPILE DISPLACEMENT

    Short delay intervals ( 100 ms) are required between rows to maximize displacement. The type of excavator will often determine the degree of displacement required which will dictate the delay interval between rows of blast holes. WALL CONTROL To short of delay intervals between holes in a row and between rows can cause excessive over break. If the delay between blast holes in the back row is less than 42 ms, the charges can act together to damage the back wall. Too short of delay interval between rows (

  • Sheet1

    Range Of Delay Intervals Between RowsGeneral Consideration

    Massive Structure

    Blocky Structure

    Highly Jointed Structure

    Weak Seams, Slip Planes

    Water Filled Blastholes

    Explosives Density > 1.3

    Compact Muckpile

    Loose Muckpile

    Spread Out Muckpile

    Improved Fragmentation

    Limit Back Break

    Control Flyrock

    Minimize Airblast

    Minimize Ground Vibration

    0369121518212427303336

    Delay Interval (milliseconds per metre of burden)

    Sheet2

    Explosives Absolute Bulk Strength Calculation

    Explosives Density (g/cc)

    0.60.650.70.750.80.850.90.9511.051.11.151.21.251.31.35

    2,5001,5001,6251,7501,8752,0002,1252,2502,3752,5002,6252,7502,8753,0003,1253,2503,375

    2,5501,5301,6581,7851,9132,0402,1682,2952,4232,5502,6782,8052,9333,0603,1883,3153,443

    2,6001,5601,6901,8201,9502,0802,2102,3402,4702,6002,7302,8602,9903,1203,2503,3803,510

    2,6501,5901,7231,8551,9882,1202,2532,3852,5182,6502,7832,9153,0483,1803,3133,4453,578

    2,7001,6201,7551,8902,0252,1602,2952,4302,5652,7002,8352,9703,1053,2403,3753,5103,645

    2,7501,6501,7881,9252,0632,2002,3382,4752,6132,7502,8883,0253,1633,3003,4383,5753,713

    2,8001,6801,8201,9602,1002,2402,3802,5202,6602,8002,9403,0803,2203,3603,5003,6403,780

    2,8501,7101,8531,9952,1382,2802,4232,5652,7082,8502,9933,1353,2783,4203,5633,7053,848

    2,9001,7401,8852,0302,1752,3202,4652,6102,7552,9003,0453,1903,3353,4803,6253,7703,915

    2,9501,7701,9182,0652,2132,3602,5082,6552,8032,9503,0983,2453,3933,5403,6883,8353,983

    3,0001,8001,9502,1002,2502,4002,5502,7002,8503,0003,1503,3003,4503,6003,7503,9004,050

    3,1001,8602,0152,1702,3252,4802,6352,7902,9453,1003,2553,4103,5653,7203,8754,0304,185

    3,2001,9202,0802,2402,4002,5602,7202,8803,0403,2003,3603,5203,6803,8404,0004,1604,320

    3,3001,9802,1452,3102,4752,6402,8052,9703,1353,3003,4653,6303,7953,9604,1254,2904,455

    3,4002,0402,2102,3802,5502,7202,8903,0603,2303,4003,5703,7403,9104,0804,2504,4204,590

    3,5002,1002,2752,4502,6252,8002,9753,1503,3253,5003,6753,8504,0254,2004,3754,5504,725

    3,6002,1602,3402,5202,7002,8803,0603,2403,4203,6003,7803,9604,1404,3204,5004,6804,860

    3,7002,2202,4052,5902,7752,9603,1453,3303,5153,7003,8854,0704,2554,4404,6254,8104,995

    3,8002,2802,4702,6602,8503,0403,2303,4203,6103,8003,9904,1804,3704,5604,7504,9405,130

    3,9002,3402,5352,7302,9253,1203,3153,5103,7053,9004,0954,2904,4854,6804,8755,0705,265

    4,0002,4002,6002,8003,0003,2003,4003,6003,8004,0004,2004,4004,6004,8005,0005,2005,400

    4,1502,4902,6982,9053,1133,3203,5283,7353,9434,1504,3584,5654,7734,9805,1885,3955,603

    4,3002,5802,7953,0103,2253,4403,6553,8704,0854,3004,5154,7304,9455,1605,3755,5905,805

    4,4502,6702,8933,1153,3383,5603,7834,0054,2284,4504,6734,8955,1185,3405,5635,7856,008

    4,6002,7602,9903,2203,4503,6803,9104,1404,3704,6004,8305,0605,2905,5205,7505,9806,210

    4,7502,8503,0883,3253,5633,8004,0384,2754,5134,7504,9885,2255,4635,7005,9386,1756,413

    4,9002,9403,1853,4303,6753,9204,1654,4104,6554,9005,1455,3905,6355,8806,1256,3706,615

    Efficient Blasting Techniques - Dyno Wesfarmers - Blast Dynamics 1995

    Basic Blast Design - Page 7

    AWS (kl/g)

    Sheet3

    RELATIVE STEMMING CONFINEMENT CALCULATION

    Charge Diameter (mm)

    5060708090100125150175200225250275300325350

    1.004,8004,1003,6003,2252,9332,7002,2802,0001,8001,6501,5331,4401,3641,3001,2461,200

    1.255,8504,9754,3503,8813,5173,2252,7002,3502,1001,9131,7671,6501,5551,4751,4081,350

    1.506,9005,8505,1004,5384,1003,7503,1202,7002,4002,1752,0001,8601,7451,6501,5691,500

    1.757,9506,7255,8505,1944,6834,2753,5403,0502,7002,4382,2332,0701,9361,8251,7311,650

    2.009,0007,6006,6005,8505,2674,8003,9603,4003,0002,7002,4672,2802,1272,0001,8921,800

    2.2510,0508,4757,3506,5065,8505,3254,3803,7503,3002,9632,7002,4902,3182,1752,0541,950

    2.5011,1009,3508,1007,1636,4335,8504,8004,1003,6003,2252,9332,7002,5092,3502,2152,100

    2.7512,15010,2258,8507,8197,0176,3755,2204,4503,9003,4883,1672,9102,7002,5252,3772,250

    3.0013,20011,1009,6008,4757,6006,9005,6404,8004,2003,7503,4003,1202,8912,7002,5382,400

    3.2514,25011,97510,3509,1318,1837,4256,0605,1504,5004,0133,6333,3303,0822,8752,7002,550

    3.5015,30012,85011,1009,7888,7677,9506,4805,5004,8004,2753,8673,5403,2733,0502,8622,700

    3.7516,35013,72511,85010,4449,3508,4756,9005,8505,1004,5384,1003,7503,4643,2253,0232,850

    4.0017,40014,60012,60011,1009,9339,0007,3206,2005,4004,8004,3333,9603,6553,4003,1853,000

    4.2518,45015,47513,35011,75610,5179,5257,7406,5505,7005,0634,5674,1703,8453,5753,3463,150

    4.7520,55017,22514,85013,06911,68310,5758,5807,2506,3005,5885,0334,5904,2273,9253,6693,450

    5.0021,60018,10015,60013,72512,26711,1009,0007,6006,6005,8505,2674,8004,4184,1003,8313,600

    5.5023,70019,85017,10015,03813,43312,1509,8408,3007,2006,3755,7335,2204,8004,4504,1543,900

    6.0025,80021,60018,60016,35014,60013,20010,6809,0007,8006,9006,2005,6405,1824,8004,4774,200

    6.5027,90023,35020,10017,66315,76714,25011,5209,7008,4007,4256,6676,0605,5645,1504,8004,500

    7.0030,00025,10021,60018,97516,93315,30012,36010,4009,0007,9507,1336,4805,9455,5005,1234,800

    7.5032,10026,85023,10020,28818,10016,35013,20011,1009,6008,4757,6006,9006,3275,8505,4465,100

    8.0034,20028,60024,60021,60019,26717,40014,04011,80010,2009,0008,0677,3206,7096,2005,7695,400

    8.5036,30030,35026,10022,91320,43318,45014,88012,50010,8009,5258,5337,7407,0916,5506,0925,700

    9.0038,40032,10027,60024,22521,60019,50015,72013,20011,40010,0509,0008,1607,4736,9006,4156,000

    9.5040,50033,85029,10025,53822,76720,55016,56013,90012,00010,5759,4678,5807,8557,2506,7386,300

    10.0042,60035,60030,60026,85023,93321,60017,40014,60012,60011,1009,9339,0008,2367,6007,0626,600

    10.5044,70037,35032,10028,16325,10022,65018,24015,30013,20011,62510,4009,4208,6187,9507,3856,900

    11.0046,80039,10033,60029,47526,26723,70019,08016,00013,80012,15010,8679,8409,0008,3007,7087,200

    11.5048,90040,85035,10030,78827,43324,75019,92016,70014,40012,67511,33310,2609,3828,6508,0317,500

    Stem Length (m)

    To calculate the relative confinement find the value that represents the stem length and charge diameter. Next divide the value by the absolute bulk strenght of the explosives. For example, with a charge diameter of 150 mm and a stem length of 4 m the corresponding value = 6200. Assuming that ANFO with an ABS of 3200 is the explosives used, the relative cinfinement will equal 6200 divided by by 3200 or 1.94. Generally if the relative confinement is greater than 1.4 the cinfinement will be adequate if the value is less than 1.4 flyrock and steming ejection may occur.

    Stem Length (m)

    Sheet4

    Initial Burden Estimation Guide

    Explosives Density

    0.500.550.600.650.700.750.800.850.900.951.001.051.101.151.201.251.301.351.401.45

    1.02.00001111111111111111111

    1.111111111111111111122

    1.211111111111111122222

    1.311111111111111222222

    1.411111111111122222222

    1.511111111112222222222

    1.611111111122222222222

    1.711111111222222222222

    1.811111112222222222233

    1.911111122222222222333

    2.011111222222222233333

    2.111111222222222333333

    2.211112222222223333333

    2.311112222222233333333

    2.411122222222333333333

    2.511222222223333333344

    2.611222222223333333444

    2.711222222233333334444

    2.812222222333333344444

    2.912222222333333344444

    3.022222223333333444444

    3.122222223333334444444

    3.222222233333344444445

    3.322222233333344444455

    3.422222333333444444555

    3.522222333334444445555

    3.622223333334444455555

    3.772223333344444455555

    3.822333334444455555666

    3.923333444445555666677

    4.033334444555566677778

    4.133344455556667777888

    4.233444555666777888999

    4.33444556667778889991010

    4.4444556667778899910101011

    4.544556667788999101011111112

    4.64556677788991010101111121213

    4.755667788899101011111212131314

    4.85667788991010111112121313141415

    4.956678899101011111212131314151516

    5.0667789910101112121313141415161617

    Rock Density

    Sheet5

  • Blast Timing andDesign Configuration

  • Sheet1

    Row by Row Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 10

    100 100 100 100 100 100 100 100

    100 100 100 100 100 100 100 100

    200 209 218 227 236 245 254 263

    100 109 118 127 136 145 154 163

    0 9 18 27 36 45 54 63

    9 9 9 9 9 9 9

    Sheet2

    Echelon Pattern

    Delay configuration (ms timing shown)

    P1

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 12

    42 42 42 42 42 42 42

    102 144 186 228 270 312 354 396

    51 93 135 177 219 261 303 345

    0 42 84 126 168 210 252 294

    9 9 9 9 9 9 9

    9 9 9 9 9 9 9

    42

    42

    Sheet4

    Zig Zag Pattern

    Delay configuration (ms timing shown)

    P1

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 13

    17

    17

    17

    219 202 185 168 210 227 244 261

    135 118 101 84 126 143 160 177

    52 34 17 0 42 59 76 92

    17

    17

    17

    17

    17

    17

    42

    42

    42

    42

    42

    17

    17

    17

    17

    17

    17

    17

    17

    17

    Sheet3

    Diamond Pattern

    Delay configuration (ms timing shown)

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 14

    25 25 25 25 17 17 17

    219 202 185 168 210 227 244 261

    100 75 50 25 0 17 34 51

    167 142 117 92 67 76 93 110

    42 42 42 42 42 42

    42 42 42 42 42 42

    25

    25

    17

    17

    PI

  • Sheet1

    Row by Row Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 10

    100 100 100 100 100 100 100 100

    100 100 100 100 100 100 100 100

    200 209 218 227 236 245 254 263

    100 109 118 127 136 145 154 163

    0 9 18 27 36 45 54 63

    9 9 9 9 9 9 9

    Sheet2

    Echelon Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 12

    42 42 42 42 42 42 42

    102 144 186 228 270 312 354 396

    51 93 135 177 219 261 303 345

    0 42 84 126 168 210 252 294

    9 9 9 9 9 9 9

    9 9 9 9 9 9 9

    42

    42

    Sheet4

    Zig Zag Pattern

    Delay configuration (ms timing shown)

    P1

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 13

    17

    17

    17

    219 202 185 168 210 227 244 261

    135 118 101 84 126 143 160 177

    52 34 17 0 42 59 76 92

    17

    17

    17

    17

    17

    17

    42

    42

    42

    42

    42

    17

    17

    17

    17

    17

    17

    17

    17

    17

    Sheet3

    Diamond Pattern

    Delay configuration (ms timing shown)

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 14

    25 25 25 25 17 17 17

    219 202 185 168 210 227 244 261

    100 75 50 25 0 17 34 51

    167 142 117 92 67 76 93 110

    42 42 42 42 42 42

    42 42 42 42 42 42

    25

    25

    17

    17

    PI

  • Sheet1

    Row by Row Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 10

    100 100 100 100 100 100 100 100

    100 100 100 100 100 100 100 100

    200 209 218 227 236 245 254 263

    100 109 118 127 136 145 154 163

    0 9 18 27 36 45 54 63

    9 9 9 9 9 9 9

    Sheet2

    Echelon Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 12

    42 42 42 42 42 42 42

    102 144 186 228 270 312 354 396

    51 93 135 177 219 261 303 345

    0 42 84 126 168 210 252 294

    9 9 9 9 9 9 9

    9 9 9 9 9 9 9

    42

    42

    Sheet4

    Zig Zag Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 13

    17

    17

    17

    219 202 185 168 210 227 244 261

    135 118 101 84 126 143 160 177

    52 34 17 0 42 59 76 92

    17

    17

    17

    17

    17

    17

    42

    42

    42

    42

    42

    17

    17

    17

    17

    17

    17

    17

    17

    17

    Sheet3

    Diamond Pattern

    Delay configuration (ms timing shown)

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 14

    25 25 25 25 17 17 17

    219 202 185 168 210 227 244 261

    100 75 50 25 0 17 34 51

    167 142 117 92 67 76 93 110

    42 42 42 42 42 42

    42 42 42 42 42 42

    25

    25

    17

    17

    PI

  • Sheet1

    Row by Row Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 10

    100 100 100 100 100 100 100 100

    100 100 100 100 100 100 100 100

    200 209 218 227 236 245 254 263

    100 109 118 127 136 145 154 163

    0 9 18 27 36 45 54 63

    9 9 9 9 9 9 9

    Sheet2

    Echelon Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 12

    42 42 42 42 42 42 42

    102 144 186 228 270 312 354 396

    51 93 135 177 219 261 303 345

    0 42 84 126 168 210 252 294

    9 9 9 9 9 9 9

    9 9 9 9 9 9 9

    42

    42

    Sheet4

    Zig Zag Pattern

    Delay configuration (ms timing shown)

    PI

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 13

    17

    17

    17

    219 202 185 168 210 227 244 261

    135 118 101 84 126 143 160 177

    52 34 17 0 42 59 76 92

    17

    17

    17

    17

    17

    17

    42

    42

    42

    42

    42

    17

    17

    17

    17

    17

    17

    17

    17

    17

    Sheet3

    Diamond Pattern

    Delay configuration (ms timing shown)

    Nominal firing times

    Efficient Blasting Techniques - Dyno Wesfarmes - Blast Dynamics 1995

    Timing Design - Page 14

    25 25 25 25 17 17 17

    219 202 185 168 210 227 244 261

    100 75 50 25 0 17 34 51

    167 142 117 92 67 76 93 110

    42 42 42 42 42 42

    42 42 42 42 42 42

    25

    25

    17

    17

    PI

  • Sheet1

    PT. TRUMIX BETONBLASTING PLAN - BENCH : 7

    QUARRY DIVISIONNONEL FIRING SYSTEM

    DRILL & BLAST SECTIONscale 1 : 200

    BENCH-6BLASTING MACHINE

    ELECTRIC DETONATOR

    BENCH-7

    Note :Trunk Line Delay 17 ms - 6 meters

    Trunk Line Delay 65 ms - 6 meters

    Crest

    Toe

    Drill Holes

    ITEMPLANACTUALITEMSPLANACTUALITEMSPLANACTUALEVALUATION

    Diameter(inches)44Angle(degree)1010Inhole Delay No.73030Fragmentation: Good

    Spacing(meters)5.35.3Digable Volume(BCMs)15,52615,526Inhole Delay No.81515Displacement: Good

    Burden(meters)4.24.2ANFO(Kgs)4,0253,950Trunk Line Delay 17 ms1515Complaint- Fly Rock: -

    No of Holes4545Powergel Magnum(Kgs)4580Trunk Line Delay 65 ms2929- Ground Vibration: -

    Depth(meters)see tablesee tablePowder Factor(Kg/BCM)0.2620.260Electric Detonator22: Other: Back Break behind C1-C3

    Sub-drill(meters)1.51.5Date :Approved by :

    Sheet2

    PT. TRUMIX BETONBLASTING PLAN - BENCH : 7

    QUARRY DIVISIONNONEL FIRING SYSTEM

    DRILL & BLAST SECTIONscale 1 : 200

    BENCH-6BLASTING MACHINE

    ELECTRIC DETONATOR

    BENCH-7

    Note :Trunk Line Delay 17 ms - 6 meters

    Trunk Line Delay 65 ms - 6 meters

    Crest

    Toe

    Drill Holes

    ITEMPLANACTUALITEMSPLANACTUALITEMSPLANACTUALEVALUATION

    Diameter(inches)44Angle(degree)1010Inhole Delay No.73030Fragmentation: Good

    Spacing(meters)5.35.3Digable Volume(BCMs)15,52615,526Inhole Delay No.81515Displacement: Good

    Burden(meters)4.24.2ANFO(Kgs)4,0253,950Trunk Line Delay 17 ms1515Complaint- Fly Rock: -

    No of Holes4545Powergel Magnum(Kgs)4580Trunk Line Delay 65 ms2929- Ground Vibration: -

    Depth(meters)see tablesee tablePowder Factor(Kg/BCM)0.2620.260Electric Detonator22: Other: Back Break behind C1-C3

    Sub-drill(meters)1.51.5Date :Approved by :

    Sheet3