backgrounds, statistics and calibration in direct ......– w. r. leo, techniques for nuclear and...

5
Backgrounds, statistics and calibration in direct detection experiments 07 and 14/01/2016 Teresa Marrod´ an Undagoitia Program: Sources of background * External background: gammas, neutrons and neutrinos * Internal and surface backgrounds Detector signals and background reduction Statistical treatment of data Detector calibration Literature: G. Heusser, Low-radioactivity background techniques, Annu. Rev. Nucl. Part. Sci. 45 (1995) 543 D.-M. Mei and A. Hime, Muon-induced Background Study for Underground Laboratories, Phys. Rev. D 73 (2006) 053004, arXiv:astro-ph/0512125 L. E. Strigari, Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors, New J. Phys. 11 (2009) 105011, arXiv:0903.3630. S. Cebrian et al., Cosmogenic activation in germanium and copper for rare event searches, Astropart. Phys. 33 (2010) 316. G. J. Feldman and R. D. Cousins, A Unified Approach to the Classical Statistical Analysis of Small Signals, Phys. Rev. D57 (1998) 3873 , arXiv:physics/9711021 S. Yellin, Finding an upper limit in the presence of unknown background, Phys. Rev. D66 (2002) 032005, arXiv:physics/0203002. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554, arXiv:1007.1727. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987 second revision 1994 T. Marrod´ an Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G: 43 (2015) 1, arXiv:1509.08767 Material for the lecture:

Upload: others

Post on 27-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Backgrounds, statistics and calibration in direct ......– W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987 second revision 1994 – T. Marrodan

Backgrounds, statistics and calibrationin direct detection experiments

07 and 14/01/2016Teresa Marrodan Undagoitia

• Program:

– Sources of background

∗ External background: gammas, neutrons and neutrinos∗ Internal and surface backgrounds

– Detector signals and background reduction

– Statistical treatment of data

– Detector calibration

• Literature:

– G. Heusser, Low-radioactivity background techniques, Annu. Rev. Nucl. Part. Sci. 45(1995) 543

– D.-M. Mei and A. Hime, Muon-induced Background Study for Underground Laboratories,Phys. Rev. D 73 (2006) 053004, arXiv:astro-ph/0512125

– L. E. Strigari, Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors, New J.Phys. 11 (2009) 105011, arXiv:0903.3630.

– S. Cebrian et al., Cosmogenic activation in germanium and copper for rare event searches,Astropart. Phys. 33 (2010) 316.

– G. J. Feldman and R. D. Cousins, A Unified Approach to the Classical Statistical Analysis ofSmall Signals, Phys. Rev. D57 (1998) 3873 , arXiv:physics/9711021

– S. Yellin, Finding an upper limit in the presence of unknown background, Phys. Rev. D66(2002) 032005, arXiv:physics/0203002.

– G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-basedtests of new physics, Eur. Phys. J. C71 (2011) 1554, arXiv:1007.1727.

– W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987second revision 1994

– T. Marrodan Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys.G: 43 (2015) 1, arXiv:1509.08767

• Material for the lecture:

Page 2: Backgrounds, statistics and calibration in direct ......– W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987 second revision 1994 – T. Marrodan

Figure 1: Left: Background spectra of a Ge detector without shield (top), with 15 cm lead shield(middle), and with shield and at 500 m.w.e. (bottom). Right: flux of cosmic ray secondaries andtertiary-produced neutrons in a typical Pb shield as function of shielding depth. Figures from G.Heusser, Annu. Rev. Nucl. Part. Sci. 45 (1995) 543.

Figure 2: (Left) Schematic of the GIOVE Ge-detector at MPIK. Figure from G. Heusser et al. Eur.Phys. J. C75 (2015) 11, 531. (Right) Total muon flux measured for the various underground sites asfunction of the equivalent vertical depth relative to flat overburden. Figure from arXiv:1509.08767.

Page 3: Backgrounds, statistics and calibration in direct ......– W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987 second revision 1994 – T. Marrodan

Figure 3: Examples of detector shielding, DAMA detector (left) and XENON100 detector (right).

Figure 4: Neutrino background, example for liquid xenon detectors. (Left) Contribution of ERfrom solar neutrinos (green) in comparison with other backgrounds. (Right) Spectral shape ofcoherent neutrino scattering in xenon. Figures from XENON Coll., arXiv:1512.07501.

Figure 5: Illustration of different statistical methods used to derive results from direct detectionexperiments. Figure from arXiv:1509.08767.

Page 4: Backgrounds, statistics and calibration in direct ......– W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987 second revision 1994 – T. Marrodan

Figure 6: Statistical methods to derive upper limits or two-sided confidence intervals. (Left)Feldman and Cousins generic confidence-belt construction. Figure from G. J. Feldman and R. D.Cousins, arXiv:physics/9711021. (Right) Yellin’s illustration of the maximum gap method. Figurefrom S. Yellin, Phys. Rev. D66 (2002) 032005.

Figure 7: Schematic of signals measured in different detection technologies. Figure fromarXiv:1509.08767.

Page 5: Backgrounds, statistics and calibration in direct ......– W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1987 second revision 1994 – T. Marrodan

Figure 8: Schematic representation for the calibration of signal and background regions fordifferent types of detectors: germanium (left), LXe (middle) and LAr (right). Figures fromarXiv:1509.08767.

]nr

Recoil energy [keV10 210 310

Na

rela

tive

scin

tilla

tion

yiel

d

0

0.1

0.2

0.3

0.4

0.5

0.6Spooner 1994

--- Bernabei 1996Tovey 1998

Grebier 1999Simon 2003Jagemann 2006

Chagani 2008Collar 2013Xu 2015

]nr

Recoil energy [keV1 10 210

Ge

rela

tive

ioni

satio

n yi

eld

0

0.1

0.2

0.3

0.4

0.5

0.6Sattler 1966Chasman 1968Jones 1971Shutt 1992

Messous 1995Baudis 1998Simon 2003CDMS 2011

]nr

Recoil energy [keV10 210

LAr

rela

tive

scin

tilla

tion

yiel

d

0

0.1

0.2

0.3

0.4

0.5

0.6Brunetti 2005Gastler 2012Regenfuss 2012

Cao 2014Creus 2015

]nr

Recoil energy [keV1 2 3 4 5 6 10 20 30 100

LXe

rela

tive

scin

tilla

tion

yiel

d

0

0.1

0.2

0.3

0.4

0.5

0.6Arneodo 2000

Bernabei 2001

Akimov 2002

Aprile 2005

Chepel 2006

Aprile 2009

Manzur 2010

Plante 2011

Figure 9: Nuclear-recoil energy scale for different target materials relevant for dark matter detec-tion. Figures from arXiv:1509.08767.