background and status of the water-vapour radiometer at effelsberg a. roy u. teuber r. keller

32
Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Upload: kevin-shelton

Post on 13-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Background and Status of the

Water-Vapour Radiometer at Effelsberg

A. RoyU. TeuberR. Keller

Page 2: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

The Troposphere as Seen from Orbit

Method: Synthetic Aperture Radar (Earth Resources Satellite)Frequency: 9 GHzRegion: GroningenInterferograms by differencing images from different days

5 km

5 km

Internal waves in a homo-genously cloudy troposphere

A frontal zone Convective cells

0 mm

-100 mm

100 mm

Hanssen (1997)

Page 3: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Troposphere Seen by VLBI at 86 GHz

Page 4: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Water-Vapour Radiometry Basics

Page 5: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Performance Requirements

Opacity MeasurementAim: measure tropospheric opacity with enough accuracy

to correct visibility amplitude to 1 % (1 )Info: median tropospheric transmission at 22 GHz

at Effelsberg in the period 03Jul to 04Mar was 0.07.WVR spec: absolute calibration accuracy 14 % (1 )

thermal noise per measurement 2.7 K.

Tropospheric Phase CorrectionAim: coherence = 0.9 after correction

requires / 20 path length noise after correction, ie 0.18 mm for = 3.4 mmrequires root-two better at each end of baseline (0.12 mm => 28 mK)

Info: tropo path / tropo brightness = 4.5 mm/K at 22.2 GHztypical water line strength = 35 K

WVR spec: thermal noise 14 mK in 3 sgain stability: 3.9 x 10-4 in 300 s

Page 6: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

The Scanning 18-26 GHz WVR for Effelsberg

= 18 to 26 GHz = 900 MHzNchannel = 25Treceiver = 200 K = 0.025 s per channel = 61 mK per channelsweep period = 5 s

Page 7: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

The Scanning 18-26 GHz WVR for Effelsberg

Front-end opened

Control unit

First light, April 2002, Bonn

Page 8: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR View of Atmospheric Turbulence

Absorber Zenith sky(clear blue, dry, cold)

12 h 1 h

● gain stability: 2.7x10-4 over 400 s

● sensitivity: 61 mK for τint = 0.025 s (0.038 mm rms path length noise for τint = 3 s)

Page 9: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Beamwidth: Drift-Scan on Sun

26.0 GHzbeamwidth = 1.26◦

18.0 GHzbeamwidth = 1.18◦

Page 10: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Beam Overlap Optimization

WVR – 100 m RT Beam Overlap forthree WV profiles

Atmospheric WV Profiles atEssen from Radiosonde launches every 12 h(Data courtesy Dr. S. Crewell, Uni Bonn)

Page 11: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Gain Calibration

Measure: hot load sky dip at two elevations noise diode on/off

Derive: Tsky Treceiver gain

Page 12: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Spillover Cal: Skydip with Absorber on Dish

19 to 26 GHz

el = 90 ◦ to 0 ◦

dete

ctor

ou

tpu

t

0 V

to 0

.3 V

Page 13: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Control Panel

Page 14: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Panorama of Bonn

Page 15: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Move to Effelsberg

March 20th, 2003

Page 16: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Panorama of Effelsberg

Page 17: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Scattered Cumulus, 2003 Jul 28, 1300 UT

Page 18: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Storm, 2003 Jul 24, 1500 UT

Page 19: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Validation of Opacity Measurement

Page 20: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Opacity Statistics at Effelsberg

Page 21: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

First Attempt to Validate Phase Correction

Page 22: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Noise Budget for Phase Correction

Thermal noise: 75 mK in the water line strength, April 2003186 mK per channel on absorber, scaled to 25 channelsdifference on-line and off-line channels

(34 mK in Feb 2004 due to EDAS hardware & software upgrade)

Gain changes: 65 mK in 300 s 2.7x10-4 multiplies Tsys of 255 K

Elevation noise: 230 mK typical elevation pointing jitter is 0.1◦

sky brightness gradient = 2.8 K/◦ at el = 30◦

Beam mismatch: 145 mK measured by chopping with WVR between two sky positions with 4◦ throw, Aug 20034◦ = 120 m at 1.5 km and el = 60◦

66 mK to 145 mK Sramek (1990), VLA structure functions95 mK Sault (2001), ATCA 2001apr27 1700 UT

Other ? Spillover model errors, cloud liquid waterremoval, RFI, wet dish, wet horn

Total (quadrature): 290 mK = 1.3 mm rms

Page 23: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Move to Focus Cabin

March 16th, 2004

Page 24: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Beam Geometry

Beam overlap, April 2003 Beam overlap, April 2004

Page 25: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Optical Alignment using Moon

Tantenna = 23 KTmoon = 220 K at 22 GHzBeam filling factor = 0.114

Beam efficiency = 92 %

23 K

Page 26: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Spillover Reduction

19 to 26 GHz19 to 26 GHz

el = 90 ◦ to 0 ◦

dete

ctor

ou

tpu

t

0 V

to 0

.3 V

Page 27: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

WVR Path Data from 3 mm VLBI, April 2004

Page 28: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

VLBI Path Comparison, 3 mm VLBI, April 2004

Page 29: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

VLBI Phase Correction Demo

Demonstration by Tahmoush & Rogers (2000) 3C 273Hat Creek – Kitt Peak86 GHz VLBI

400 s

4 mm

path

● RMS phase noise reduced from 0.88 mm to 0.34 mm after correction.● Coherent SNR rose by 68 %.

VLBI phase

WVR phase

Page 30: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

Australia Telescope Phase Correction Demo

Page 31: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

● Validate phase correction (3 mm VLBI from 2004 April 16-20)

● Validate zenith total delay using geodetic VLBI (July? campaign)

● Software development: (Rottmann, FP6 RadioNet, started May 3)data paths into CLASS and AIPSdata archiveonline (web-based) real-time display

● Investigate limitations on calibration accuracy

● Hardware development: (once usefulness established)temperature stabilization: further improvementsspillover: reduce with new feed?integration time efficiency: Data acquisition system upgradebeam overlap: move to prime focus receiver boxes

Future Developments

Page 32: Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller

● WVR installation complete; WVR now running continuously

● Data available from Alan Roy

● Opacities agree with those from 100 m RT

● Validation of phase-correction data within weeks

● Web-based display & archive access coming soon

● Radiometer stability is 2.7 x 10-4 in 400 s

● Radiometer sensitivity is 61 mK in 0.025 s integration time

http://www.mpifr-bonn.mpg.de/staff/aroy/wvr.html

Conclusions